Address review comments

- put the division in the synthetic instruction as well,
- put the branch table check in the inst's emission code,
- replace OneWayCondJmp by TrapIf vcode instruction,
- add comments describing code generated by the synthetic instructions
This commit is contained in:
Benjamin Bouvier
2020-07-02 17:11:06 +02:00
parent 2115e70acb
commit 9d5be00de4
6 changed files with 277 additions and 188 deletions

View File

@@ -1,6 +1,8 @@
use log::debug;
use regalloc::Reg;
use std::convert::TryFrom;
use crate::binemit::Reloc;
use crate::isa::x64::inst::*;
@@ -284,11 +286,9 @@ fn emit_std_enc_mem(
sink.put4(0);
}
BranchTarget::ResolvedOffset(offset) => {
assert!(
offset <= u32::max_value() as isize,
"rip-relative can't hold >= U32_MAX values"
);
sink.put4(offset as u32);
let offset =
u32::try_from(offset).expect("rip-relative can't hold >= U32_MAX values");
sink.put4(offset);
}
}
}
@@ -370,6 +370,16 @@ fn emit_simm(sink: &mut MachBuffer<Inst>, size: u8, simm32: u32) {
}
}
/// Emits a one way conditional jump if CC is set (true).
fn one_way_jmp(sink: &mut MachBuffer<Inst>, cc: CC, label: MachLabel) {
let cond_start = sink.cur_offset();
let cond_disp_off = cond_start + 2;
sink.use_label_at_offset(cond_disp_off, label, LabelUse::JmpRel32);
sink.put1(0x0F);
sink.put1(0x80 + cc.get_enc());
sink.put4(0x0);
}
/// The top-level emit function.
///
/// Important! Do not add improved (shortened) encoding cases to existing
@@ -580,88 +590,115 @@ pub(crate) fn emit(
}
Inst::SignExtendRaxRdx { size } => {
let (prefix, rex_flags) = match size {
2 => (LegacyPrefix::_66, RexFlags::clear_w()),
4 => (LegacyPrefix::None, RexFlags::clear_w()),
8 => (LegacyPrefix::None, RexFlags::set_w()),
match size {
2 => sink.put1(0x66),
4 => {}
8 => sink.put1(0x48),
_ => unreachable!(),
};
prefix.emit(sink);
rex_flags.emit_two_op(sink, 0, 0);
}
sink.put1(0x99);
}
Inst::SignedDivOrRem {
Inst::CheckedDivOrRemSeq {
is_div,
is_signed,
size,
divisor,
loc,
} => {
// Generates the following code sequence:
//
// ;; check divide by zero:
// cmp 0 %divisor
// jnz $after_trap
// ud2
// $after_trap:
//
// ;; for signed modulo/div:
// cmp -1 %divisor
// jnz $do_op
// ;; for signed modulo, result is 0
// mov #0, %rdx
// j $done
// ;; for signed div, check for integer overflow against INT_MIN of the right size
// cmp INT_MIN, %rax
// jnz $do_op
// ud2
//
// $do_op:
// ;; if signed
// cdq ;; sign-extend from rax into rdx
// ;; else
// mov #0, %rdx
// idiv %divisor
//
// $done:
debug_assert!(flags.avoid_div_traps());
// Check if the divisor is zero, first.
let inst = Inst::cmp_rmi_r(*size, RegMemImm::imm(0), *divisor);
inst.emit(sink, flags, state);
let inst = Inst::one_way_jmp(
CC::NZ,
BranchTarget::ResolvedOffset(Inst::size_of_trap() as isize),
);
let inst = Inst::trap_if(CC::Z, TrapCode::IntegerDivisionByZero, *loc);
inst.emit(sink, flags, state);
let inst = Inst::trap(*loc, TrapCode::IntegerDivisionByZero);
inst.emit(sink, flags, state);
// Now check if the divisor is -1.
let inst = Inst::cmp_rmi_r(*size, RegMemImm::imm(0xffffffff), *divisor);
inst.emit(sink, flags, state);
let do_op = sink.get_label();
// If not equal, jump to do-op.
let inst = Inst::one_way_jmp(CC::NZ, BranchTarget::Label(do_op));
inst.emit(sink, flags, state);
// Here, divisor == -1.
let done_label = if !*is_div {
// x % -1 = 0; put the result into the destination, $rdx.
let done_label = sink.get_label();
let inst = Inst::imm_r(*size == 8, 0, Writable::from_reg(regs::rdx()));
let (do_op, done_label) = if *is_signed {
// Now check if the divisor is -1.
let inst = Inst::cmp_rmi_r(*size, RegMemImm::imm(0xffffffff), *divisor);
inst.emit(sink, flags, state);
let inst = Inst::jmp_known(BranchTarget::Label(done_label));
inst.emit(sink, flags, state);
let do_op = sink.get_label();
Some(done_label)
// If not equal, jump to do-op.
one_way_jmp(sink, CC::NZ, do_op);
// Here, divisor == -1.
if !*is_div {
// x % -1 = 0; put the result into the destination, $rdx.
let done_label = sink.get_label();
let inst = Inst::imm_r(*size == 8, 0, Writable::from_reg(regs::rdx()));
inst.emit(sink, flags, state);
let inst = Inst::jmp_known(BranchTarget::Label(done_label));
inst.emit(sink, flags, state);
(Some(do_op), Some(done_label))
} else {
// Check for integer overflow.
let inst = Inst::cmp_rmi_r(*size, RegMemImm::imm(0x80000000), regs::rax());
inst.emit(sink, flags, state);
// If not equal, jump over the trap.
let inst = Inst::trap_if(CC::Z, TrapCode::IntegerOverflow, *loc);
inst.emit(sink, flags, state);
(Some(do_op), None)
}
} else {
// Check for integer overflow.
let inst = Inst::cmp_rmi_r(*size, RegMemImm::imm(0x80000000), regs::rax());
inst.emit(sink, flags, state);
// If not equal, jump over the trap.
let inst = Inst::one_way_jmp(
CC::NZ,
BranchTarget::ResolvedOffset(Inst::size_of_trap() as isize),
);
inst.emit(sink, flags, state);
let inst = Inst::trap(*loc, TrapCode::IntegerOverflow);
inst.emit(sink, flags, state);
None
(None, None)
};
sink.bind_label(do_op);
if let Some(do_op) = do_op {
sink.bind_label(do_op);
}
// Fill in the "high" parts: sign-extend the sign-bit of rax into rdx.
let inst = Inst::sign_extend_rax_to_rdx(*size);
// Fill in the high parts:
if *is_signed {
// sign-extend the sign-bit of rax into rdx, for signed opcodes.
let inst = Inst::sign_extend_rax_to_rdx(*size);
inst.emit(sink, flags, state);
} else {
// zero for unsigned opcodes.
let inst = Inst::imm_r(true /* is_64 */, 0, Writable::from_reg(regs::rdx()));
inst.emit(sink, flags, state);
}
let inst = Inst::div(*size, *is_signed, RegMem::reg(*divisor), *loc);
inst.emit(sink, flags, state);
let inst = Inst::div(*size, true /*signed*/, RegMem::reg(*divisor), *loc);
inst.emit(sink, flags, state);
// The lowering takes care of moving the result back into the right register, see
// comment there.
// Lowering takes care of moving the result back into the right register, see comment
// there.
if let Some(done) = done_label {
sink.bind_label(done);
@@ -1173,18 +1210,6 @@ pub(crate) fn emit(
sink.put4(nt_disp);
}
Inst::OneWayJmpCond { cc, dst } => {
let cond_start = sink.cur_offset();
let cond_disp_off = cond_start + 2;
if let Some(l) = dst.as_label() {
sink.use_label_at_offset(cond_disp_off, l, LabelUse::JmpRel32);
}
let dst_disp = dst.as_offset32_or_zero() as u32;
sink.put1(0x0F);
sink.put1(0x80 + cc.get_enc());
sink.put4(dst_disp);
}
Inst::JmpUnknown { target } => {
match target {
RegMem::Reg { reg } => {
@@ -1215,19 +1240,41 @@ pub(crate) fn emit(
}
}
Inst::JmpTable {
Inst::JmpTableSeq {
idx,
tmp1,
tmp2,
ref targets,
default_target,
..
} => {
// This sequence is *one* instruction in the vcode, and is expanded only here at
// emission time, because we cannot allow the regalloc to insert spills/reloads in
// the middle; we depend on hardcoded PC-rel addressing below.
//
// We don't have to worry about emitting islands, because the only label-use type has a
// maximum range of 2 GB. If we later consider using shorter-range label references,
// this will need to be revisited.
// Save index in a tmp (the live range of ridx only goes to start of this
// sequence; rtmp1 or rtmp2 may overwrite it).
// We generate the following sequence:
// ;; generated by lowering: cmp #jmp_table_size, %idx
// jnb $default_target
// mov %idx, %tmp2
// lea start_of_jump_table_offset(%rip), %tmp1
// movzlq [%tmp1, %tmp2], %tmp2
// addq %tmp2, %tmp1
// j *%tmp1
// $start_of_jump_table:
// -- jump table entries
let default_label = match default_target {
BranchTarget::Label(label) => label,
_ => unreachable!(),
};
one_way_jmp(sink, CC::NB, *default_label); // idx unsigned >= jmp table size
let inst = Inst::gen_move(*tmp2, *idx, I64);
inst.emit(sink, flags, state);
@@ -1265,12 +1312,33 @@ pub(crate) fn emit(
let jt_off = sink.cur_offset();
for &target in targets.iter() {
let word_off = sink.cur_offset();
// off_into_table is an addend here embedded in the label to be later patched at
// the end of codegen. The offset is initially relative to this jump table entry;
// with the extra addend, it'll be relative to the jump table's start, after
// patching.
let off_into_table = word_off - jt_off;
sink.use_label_at_offset(word_off, target.as_label().unwrap(), LabelUse::PCRel32);
sink.put4(off_into_table);
}
}
Inst::TrapIf {
cc,
trap_code,
srcloc,
} => {
let else_label = sink.get_label();
// Jump over if the invert of CC is set (i.e. CC is not set).
one_way_jmp(sink, cc.invert(), else_label);
// Trap!
let inst = Inst::trap(*srcloc, *trap_code);
inst.emit(sink, flags, state);
sink.bind_label(else_label);
}
Inst::XMM_Mov_RM_R {
op,
src: src_e,
@@ -1343,14 +1411,8 @@ pub(crate) fn emit(
Inst::Ud2 { trap_info } => {
sink.add_trap(trap_info.0, trap_info.1);
let cur_offset = sink.cur_offset();
sink.put1(0x0f);
sink.put1(0x0b);
assert_eq!(
sink.cur_offset() - cur_offset,
Inst::size_of_trap(),
"invalid trap size"
);
}
Inst::VirtualSPOffsetAdj { offset } => {