Move the ctrl_typevar function into dfg.

Soon, InstructionData won't have sufficient information to compute this.

Give TargetIsa::encode() an explicit ctrl_typevar argument. This
function does not require the instruction to be inserted in the DFG
tables.
This commit is contained in:
Jakob Stoklund Olesen
2017-04-12 13:14:03 -07:00
parent 00ee850e33
commit 9c6a36d36d
11 changed files with 69 additions and 53 deletions

View File

@@ -1,12 +1,13 @@
//! Data flow graph tracking Instructions, Values, and EBBs.
use ir::{Ebb, Inst, Value, Type, SigRef, Signature, FuncRef, ValueList, ValueListPool};
use ir::entities::ExpandedValue;
use ir::instructions::{Opcode, InstructionData, CallInfo};
use ir::extfunc::ExtFuncData;
use entity_map::{EntityMap, PrimaryEntityData};
use ir::builder::{InsertBuilder, ReplaceBuilder};
use ir::entities::ExpandedValue;
use ir::extfunc::ExtFuncData;
use ir::instructions::{Opcode, InstructionData, CallInfo};
use ir::layout::Cursor;
use ir::types;
use ir::{Ebb, Inst, Value, Type, SigRef, Signature, FuncRef, ValueList, ValueListPool};
use write::write_operands;
use std::fmt;
@@ -541,6 +542,22 @@ impl DataFlowGraph {
.map(|&arg| arg.value_type)
})
}
/// Get the controlling type variable, or `VOID` if `inst` isn't polymorphic.
pub fn ctrl_typevar(&self, inst: Inst) -> Type {
let constraints = self[inst].opcode().constraints();
if !constraints.is_polymorphic() {
types::VOID
} else if constraints.requires_typevar_operand() {
// Not all instruction formats have a designated operand, but in that case
// `requires_typevar_operand()` should never be true.
self.value_type(self[inst].typevar_operand(&self.value_lists)
.expect("Instruction format doesn't have a designated operand, bad opcode."))
} else {
self.value_type(self.first_result(inst))
}
}
}
/// Allow immutable access to instructions via indexing.
@@ -688,7 +705,7 @@ impl<'a> fmt::Display for DisplayInst<'a> {
}
let typevar = inst.ctrl_typevar(dfg);
let typevar = dfg.ctrl_typevar(self.1);
if typevar.is_void() {
write!(f, "{}", inst.opcode())?;
} else {

View File

@@ -14,7 +14,6 @@ use ir::{Value, Type, Ebb, JumpTable, SigRef, FuncRef, StackSlot, MemFlags};
use ir::immediates::{Imm64, Uimm8, Ieee32, Ieee64, Offset32, Uoffset32};
use ir::condcodes::*;
use ir::types;
use ir::DataFlowGraph;
use entity_list;
use ref_slice::{ref_slice, ref_slice_mut};
@@ -397,27 +396,6 @@ impl InstructionData {
_ => CallInfo::NotACall,
}
}
/// Get the controlling type variable, or `VOID` if this instruction isn't polymorphic.
///
/// In most cases, the controlling type variable is the same as the first result type, but some
/// opcodes require us to read the type of the designated type variable operand from `dfg`.
pub fn ctrl_typevar(&self, dfg: &DataFlowGraph) -> Type {
let constraints = self.opcode().constraints();
if !constraints.is_polymorphic() {
types::VOID
} else if constraints.requires_typevar_operand() {
// Not all instruction formats have a designated operand, but in that case
// `requires_typevar_operand()` should never be true.
dfg.value_type(self.typevar_operand(&dfg.value_lists)
.expect("Instruction format doesn't have a designated operand, bad opcode."))
} else {
// For locality of reference, we prefer to get the controlling type variable from
// `idata` itself, when possible.
self.first_type()
}
}
}
/// Information about branch and jump instructions.

View File

@@ -60,10 +60,11 @@ impl TargetIsa for Isa {
}
fn encode(&self,
dfg: &ir::DataFlowGraph,
inst: &ir::InstructionData)
_dfg: &ir::DataFlowGraph,
inst: &ir::InstructionData,
ctrl_typevar: ir::Type)
-> Result<Encoding, Legalize> {
lookup_enclist(inst.ctrl_typevar(dfg),
lookup_enclist(ctrl_typevar,
inst.opcode(),
self.cpumode,
&enc_tables::LEVEL2[..])

View File

@@ -53,10 +53,11 @@ impl TargetIsa for Isa {
}
fn encode(&self,
dfg: &ir::DataFlowGraph,
inst: &ir::InstructionData)
_dfg: &ir::DataFlowGraph,
inst: &ir::InstructionData,
ctrl_typevar: ir::Type)
-> Result<Encoding, Legalize> {
lookup_enclist(inst.ctrl_typevar(dfg),
lookup_enclist(ctrl_typevar,
inst.opcode(),
&enc_tables::LEVEL1_A64[..],
&enc_tables::LEVEL2[..])

View File

@@ -60,10 +60,11 @@ impl TargetIsa for Isa {
}
fn encode(&self,
dfg: &ir::DataFlowGraph,
inst: &ir::InstructionData)
_dfg: &ir::DataFlowGraph,
inst: &ir::InstructionData,
ctrl_typevar: ir::Type)
-> Result<Encoding, Legalize> {
lookup_enclist(inst.ctrl_typevar(dfg),
lookup_enclist(ctrl_typevar,
inst.opcode(),
self.cpumode,
&enc_tables::LEVEL2[..])

View File

@@ -46,7 +46,7 @@ pub use isa::registers::{RegInfo, RegUnit, RegClass, RegClassIndex};
use binemit::CodeSink;
use settings;
use ir::{Function, Inst, InstructionData, DataFlowGraph, Signature};
use ir::{Function, Inst, InstructionData, DataFlowGraph, Signature, Type};
pub mod riscv;
pub mod intel;
@@ -141,7 +141,11 @@ pub trait TargetIsa {
/// Otherwise, return `None`.
///
/// This is also the main entry point for determining if an instruction is legal.
fn encode(&self, dfg: &DataFlowGraph, inst: &InstructionData) -> Result<Encoding, Legalize>;
fn encode(&self,
dfg: &DataFlowGraph,
inst: &InstructionData,
ctrl_typevar: Type)
-> Result<Encoding, Legalize>;
/// Get a data structure describing the instruction encodings in this ISA.
fn encoding_info(&self) -> EncInfo;

View File

@@ -11,7 +11,7 @@ use binemit::CodeSink;
use isa::enc_tables::{self as shared_enc_tables, lookup_enclist, general_encoding};
use isa::Builder as IsaBuilder;
use isa::{TargetIsa, RegInfo, EncInfo, Encoding, Legalize};
use ir::{Function, Inst, InstructionData, DataFlowGraph, Signature};
use ir::{Function, Inst, InstructionData, DataFlowGraph, Signature, Type};
#[allow(dead_code)]
struct Isa {
@@ -60,8 +60,12 @@ impl TargetIsa for Isa {
enc_tables::INFO.clone()
}
fn encode(&self, dfg: &DataFlowGraph, inst: &InstructionData) -> Result<Encoding, Legalize> {
lookup_enclist(inst.ctrl_typevar(dfg),
fn encode(&self,
_dfg: &DataFlowGraph,
inst: &InstructionData,
ctrl_typevar: Type)
-> Result<Encoding, Legalize> {
lookup_enclist(ctrl_typevar,
inst.opcode(),
self.cpumode,
&enc_tables::LEVEL2[..])
@@ -120,7 +124,8 @@ mod tests {
};
// ADDI is I/0b00100
assert_eq!(encstr(&*isa, isa.encode(&dfg, &inst64).unwrap()), "I#04");
assert_eq!(encstr(&*isa, isa.encode(&dfg, &inst64, types::I64).unwrap()),
"I#04");
// Try to encode iadd_imm.i64 vx1, -10000.
let inst64_large = InstructionData::BinaryImm {
@@ -131,7 +136,8 @@ mod tests {
};
// Immediate is out of range for ADDI.
assert_eq!(isa.encode(&dfg, &inst64_large), Err(isa::Legalize::Expand));
assert_eq!(isa.encode(&dfg, &inst64_large, types::I64),
Err(isa::Legalize::Expand));
// Create an iadd_imm.i32 which is encodable in RV64.
let inst32 = InstructionData::BinaryImm {
@@ -142,7 +148,8 @@ mod tests {
};
// ADDIW is I/0b00110
assert_eq!(encstr(&*isa, isa.encode(&dfg, &inst32).unwrap()), "I#06");
assert_eq!(encstr(&*isa, isa.encode(&dfg, &inst32, types::I32).unwrap()),
"I#06");
}
// Same as above, but for RV32.
@@ -167,7 +174,8 @@ mod tests {
};
// In 32-bit mode, an i64 bit add should be narrowed.
assert_eq!(isa.encode(&dfg, &inst64), Err(isa::Legalize::Narrow));
assert_eq!(isa.encode(&dfg, &inst64, types::I64),
Err(isa::Legalize::Narrow));
// Try to encode iadd_imm.i64 vx1, -10000.
let inst64_large = InstructionData::BinaryImm {
@@ -178,7 +186,8 @@ mod tests {
};
// In 32-bit mode, an i64 bit add should be narrowed.
assert_eq!(isa.encode(&dfg, &inst64_large), Err(isa::Legalize::Narrow));
assert_eq!(isa.encode(&dfg, &inst64_large, types::I64),
Err(isa::Legalize::Narrow));
// Create an iadd_imm.i32 which is encodable in RV32.
let inst32 = InstructionData::BinaryImm {
@@ -189,7 +198,8 @@ mod tests {
};
// ADDI is I/0b00100
assert_eq!(encstr(&*isa, isa.encode(&dfg, &inst32).unwrap()), "I#04");
assert_eq!(encstr(&*isa, isa.encode(&dfg, &inst32, types::I32).unwrap()),
"I#04");
// Create an imul.i32 which is encodable in RV32, but only when use_m is true.
let mul32 = InstructionData::Binary {
@@ -198,7 +208,8 @@ mod tests {
args: [arg32, arg32],
};
assert_eq!(isa.encode(&dfg, &mul32), Err(isa::Legalize::Expand));
assert_eq!(isa.encode(&dfg, &mul32, types::I32),
Err(isa::Legalize::Expand));
}
#[test]
@@ -224,6 +235,7 @@ mod tests {
ty: types::I32,
args: [arg32, arg32],
};
assert_eq!(encstr(&*isa, isa.encode(&dfg, &mul32).unwrap()), "R#10c");
assert_eq!(encstr(&*isa, isa.encode(&dfg, &mul32, types::I32).unwrap()),
"R#10c");
}
}

View File

@@ -64,7 +64,7 @@ pub fn legalize_function(func: &mut Function, cfg: &mut ControlFlowGraph, isa: &
split::simplify_branch_arguments(&mut func.dfg, inst);
}
match isa.encode(&func.dfg, &func.dfg[inst]) {
match isa.encode(&func.dfg, &func.dfg[inst], func.dfg.ctrl_typevar(inst)) {
Ok(encoding) => *func.encodings.ensure(inst) = encoding,
Err(action) => {
// We should transform the instruction into legal equivalents.

View File

@@ -425,7 +425,7 @@ impl<'a> Verifier<'a> {
let ctrl_type = if let Some(value_typeset) = constraints.ctrl_typeset() {
// For polymorphic opcodes, determine the controlling type variable first.
let ctrl_type = inst_data.ctrl_typevar(&self.func.dfg);
let ctrl_type = self.func.dfg.ctrl_typevar(inst);
if !value_typeset.contains(ctrl_type) {
return err!(inst, "has an invalid controlling type {}", ctrl_type);

View File

@@ -152,7 +152,7 @@ fn type_suffix(func: &Function, inst: Inst) -> Option<Type> {
}
}
let rtype = inst_data.ctrl_typevar(&func.dfg);
let rtype = func.dfg.ctrl_typevar(inst);
assert!(!rtype.is_void(),
"Polymorphic instruction must produce a result");
Some(rtype)

View File

@@ -110,7 +110,9 @@ impl SubTest for TestBinEmit {
.get(inst)
.map(|e| e.is_legal())
.unwrap_or(false) {
if let Ok(enc) = isa.encode(&func.dfg, &func.dfg[inst]) {
if let Ok(enc) = isa.encode(&func.dfg,
&func.dfg[inst],
func.dfg.ctrl_typevar(inst)) {
*func.encodings.ensure(inst) = enc;
}
}