Emit runtime type checks in legalizer.rs (#112)

* Emit runtime type checks in legalizer.rs
This commit is contained in:
d1m0
2017-07-10 15:28:32 -07:00
committed by Jakob Stoklund Olesen
parent 464f2625d4
commit 98f822f347
9 changed files with 494 additions and 69 deletions

View File

@@ -10,7 +10,7 @@ from .typevar import TypeVar
from .predicates import IsEqual, And
try:
from typing import Union, Tuple, Sequence, TYPE_CHECKING # noqa
from typing import Union, Tuple, Sequence, TYPE_CHECKING, Dict, List # noqa
if TYPE_CHECKING:
from .operands import ImmediateKind # noqa
from .predicates import PredNode # noqa
@@ -18,6 +18,19 @@ except ImportError:
pass
def replace_var(arg, m):
# type: (Expr, Dict[Var, Var]) -> Expr
"""
Given a var v return either m[v] or a new variable v' (and remember
m[v]=v'). Otherwise return the argument unchanged
"""
if isinstance(arg, Var):
new_arg = m.get(arg, Var(arg.name)) # type: Var
m[arg] = new_arg
return new_arg
return arg
class Def(object):
"""
An AST definition associates a set of variables with the values produced by
@@ -60,6 +73,21 @@ class Def(object):
return "({}) << {!s}".format(
', '.join(map(str, self.defs)), self.expr)
def copy(self, m):
# type: (Dict[Var, Var]) -> Def
"""
Return a copy of this Def with vars replaced with fresh variables,
in accordance with the map m. Update m as neccessary.
"""
new_expr = self.expr.copy(m)
new_defs = [] # type: List[Var]
for v in self.defs:
new_v = replace_var(v, m)
assert(isinstance(new_v, Var))
new_defs.append(new_v)
return Def(tuple(new_defs), new_expr)
class Expr(object):
"""
@@ -303,6 +331,15 @@ class Apply(Expr):
return pred
def copy(self, m):
# type: (Dict[Var, Var]) -> Apply
"""
Return a copy of this Expr with vars replaced with fresh variables,
in accordance with the map m. Update m as neccessary.
"""
return Apply(self.inst, tuple(map(lambda e: replace_var(e, m),
self.args)))
class Enumerator(Expr):
"""

View File

@@ -6,30 +6,17 @@ from base.immediates import intcc
from .typevar import TypeVar
from .ast import Var, Def
from .xform import Rtl, XForm
from .ti import ti_rtl, subst, TypeEnv, get_type_env
from .ti import ti_rtl, subst, TypeEnv, get_type_env, ConstrainTVsEqual
from unittest import TestCase
from functools import reduce
try:
from .ti import TypeMap, ConstraintList, VarMap, TypingOrError # noqa
from .ti import Constraint
from typing import List, Dict, Tuple, TYPE_CHECKING, cast # noqa
except ImportError:
TYPE_CHECKING = False
def sort_constr(c):
# type: (Constraint) -> Constraint
"""
Sort the 2 typevars in a constraint by name for comparison
"""
r = tuple(sorted(c, key=lambda y: y.name))
if TYPE_CHECKING:
return cast(Constraint, r)
else:
return r
def agree(me, other):
# type: (TypeEnv, TypeEnv) -> bool
"""
@@ -63,13 +50,10 @@ def agree(me, other):
return False
# Translate our constraints using m, and sort
me_equiv_constr = [(subst(a, m), subst(b, m)) for (a, b) in me.constraints]
me_equiv_constr = sorted([sort_constr(x) for x in me_equiv_constr])
me_equiv_constr = sorted([constr.translate(m)
for constr in me.constraints])
# Sort other's constraints
other_equiv_constr = sorted([sort_constr(x) for x in other.constraints],
key=lambda y: y[0].name)
other_equiv_constr = sorted(other.constraints)
return me_equiv_constr == other_equiv_constr
@@ -224,7 +208,7 @@ class TestRTL(TypeCheckingBaseTest):
self.v3: txn,
self.v4: txn,
self.v5: txn,
}, [(ixn.as_bool(), txn.as_bool())]))
}, [ConstrainTVsEqual(ixn.as_bool(), txn.as_bool())]))
def test_vselect_vsplits(self):
# type: () -> None

View File

@@ -8,13 +8,12 @@ from itertools import product
try:
from typing import Dict, TYPE_CHECKING, Union, Tuple, Optional, Set # noqa
from typing import Iterable # noqa
from typing import cast, List
from typing import Iterable, List # noqa
from typing import cast
from .xform import Rtl, XForm # noqa
from .ast import Expr # noqa
from .typevar import TypeSet # noqa
if TYPE_CHECKING:
Constraint = Tuple[TypeVar, TypeVar]
ConstraintList = List[Constraint]
TypeMap = Dict[TypeVar, TypeVar]
VarMap = Dict[Var, TypeVar]
except ImportError:
@@ -22,6 +21,122 @@ except ImportError:
pass
class TypeConstraint(object):
"""
Base class for all runtime-emittable type constraints.
"""
class ConstrainTVsEqual(TypeConstraint):
"""
Constraint specifying that two derived type vars must have the same runtime
type.
"""
def __init__(self, tv1, tv2):
# type: (TypeVar, TypeVar) -> None
assert tv1.is_derived and tv2.is_derived
(self.tv1, self.tv2) = sorted([tv1, tv2], key=repr)
def is_trivial(self):
# type: () -> bool
"""
Return true if this constrain is statically decidable.
"""
return self.tv1 == self.tv2 or \
(self.tv1.singleton_type() is not None and
self.tv2.singleton_type() is not None)
def translate(self, m):
# type: (Union[TypeEnv, TypeMap]) -> ConstrainTVsEqual
"""
Translate any TypeVars in the constraint according to the map m
"""
if isinstance(m, TypeEnv):
return ConstrainTVsEqual(m[self.tv1], m[self.tv2])
else:
return ConstrainTVsEqual(subst(self.tv1, m), subst(self.tv2, m))
def __eq__(self, other):
# type: (object) -> bool
if (not isinstance(other, ConstrainTVsEqual)):
return False
return (self.tv1, self.tv2) == (other.tv1, other.tv2)
def __hash__(self):
# type: () -> int
return hash((self.tv1, self.tv2))
def eval(self):
# type: () -> bool
"""
Evaluate this constraint. Should only be called when the constraint has
been translated to concrete types.
"""
assert self.tv1.singleton_type() is not None and \
self.tv2.singleton_type() is not None
return self.tv1.singleton_type() == self.tv2.singleton_type()
class ConstrainTVInTypeset(TypeConstraint):
"""
Constraint specifying that a type var must belong to some typeset.
"""
def __init__(self, tv, ts):
# type: (TypeVar, TypeSet) -> None
assert not tv.is_derived and tv.name.startswith("typeof_")
self.tv = tv
self.ts = ts
def is_trivial(self):
# type: () -> bool
"""
Return true if this constrain is statically decidable.
"""
tv_ts = self.tv.get_typeset().copy()
# Trivially True
if (tv_ts.issubset(self.ts)):
return True
# Trivially false
tv_ts &= self.ts
if (tv_ts.size() == 0):
return True
return False
def translate(self, m):
# type: (Union[TypeEnv, TypeMap]) -> ConstrainTVInTypeset
"""
Translate any TypeVars in the constraint according to the map m
"""
if isinstance(m, TypeEnv):
return ConstrainTVInTypeset(m[self.tv], self.ts)
else:
return ConstrainTVInTypeset(subst(self.tv, m), self.ts)
def __eq__(self, other):
# type: (object) -> bool
if (not isinstance(other, ConstrainTVInTypeset)):
return False
return (self.tv, self.ts) == (other.tv, other.ts)
def __hash__(self):
# type: () -> int
return hash((self.tv, self.ts))
def eval(self):
# type: () -> bool
"""
Evaluate this constraint. Should only be called when the constraint has
been translated to concrete types.
"""
assert self.tv.singleton_type() is not None
return self.tv.get_typeset().issubset(self.ts)
class TypeEnv(object):
"""
Class encapsulating the neccessary book keeping for type inference.
@@ -43,13 +158,13 @@ class TypeEnv(object):
RANK_INTERNAL = 0
def __init__(self, arg=None):
# type: (Optional[Tuple[TypeMap, ConstraintList]]) -> None
# type: (Optional[Tuple[TypeMap, List[TypeConstraint]]]) -> None
self.ranks = {} # type: Dict[TypeVar, int]
self.vars = set() # type: Set[Var]
if arg is None:
self.type_map = {} # type: TypeMap
self.constraints = [] # type: ConstraintList
self.constraints = [] # type: List[TypeConstraint]
else:
self.type_map, self.constraints = arg
@@ -94,7 +209,9 @@ class TypeEnv(object):
"""
Add a new equivalence constraint between tv1 and tv2
"""
self.constraints.append((tv1, tv2))
constr = ConstrainTVsEqual(tv1, tv2)
if (constr not in self.constraints):
self.constraints.append(constr)
def get_uid(self):
# type: () -> str
@@ -206,15 +323,24 @@ class TypeEnv(object):
"""
vars_tvs = set([v.get_typevar() for v in self.vars])
new_type_map = {tv: self[tv] for tv in vars_tvs if tv != self[tv]}
new_constraints = [(self[tv1], self[tv2])
for (tv1, tv2) in self.constraints]
# Sanity: new constraints and the new type_map should only contain
# tvs associated with real vars
for (a, b) in new_constraints:
assert a.free_typevar() in vars_tvs and\
b.free_typevar() in vars_tvs
new_constraints = [] # type: List[TypeConstraint]
for constr in self.constraints:
# Currently typeinference only generates ConstrainTVsEqual
# constraints
assert isinstance(constr, ConstrainTVsEqual)
constr = constr.translate(self)
if constr.is_trivial() or constr in new_constraints:
continue
# Sanity: translated constraints should refer to only real vars
assert constr.tv1.free_typevar() in vars_tvs and\
constr.tv2.free_typevar() in vars_tvs
new_constraints.append(constr)
# Sanity: translated typemap should refer to only real vars
for (k, v) in new_type_map.items():
assert k in vars_tvs
assert v.free_typevar() is None or v.free_typevar() in vars_tvs
@@ -245,13 +371,13 @@ class TypeEnv(object):
# Check if constraints are satisfied for this typing
failed = None
for (tv1, tv2) in self.constraints:
tv1 = subst(tv1, m)
tv2 = subst(tv2, m)
assert tv1.get_typeset().size() == 1 and\
tv2.get_typeset().size() == 1
if (tv1.get_typeset() != tv2.get_typeset()):
failed = (tv1, tv2)
for constr in self.constraints:
# Currently typeinference only generates ConstrainTVsEqual
# constraints
assert isinstance(constr, ConstrainTVsEqual)
concrete_constr = constr.translate(m)
if not concrete_constr.eval():
failed = concrete_constr
break
if (failed is not None):
@@ -287,9 +413,10 @@ class TypeEnv(object):
edges.add((v, v.base, "solid", v.derived_func))
v = v.base
for (a, b) in self.constraints:
assert a in nodes and b in nodes
edges.add((a, b, "dashed", None))
for constr in self.constraints:
assert isinstance(constr, ConstrainTVsEqual)
assert constr.tv1 in nodes and constr.tv2 in nodes
edges.add((constr.tv1, constr.tv2, "dashed", None))
root_nodes = set([x for x in nodes
if x not in self.type_map and not x.is_derived])

View File

@@ -41,6 +41,14 @@ class Rtl(object):
# type: (*DefApply) -> None
self.rtl = tuple(map(canonicalize_defapply, args))
def copy(self, m):
# type: (Dict[Var, Var]) -> Rtl
"""
Return a copy of this rtl with all Vars substituted with copies or
according to m. Update m as neccessary.
"""
return Rtl(*[d.copy(m) for d in self.rtl])
class XForm(object):
"""

View File

@@ -336,6 +336,25 @@ def get_constraint(op, ctrl_typevar, type_sets):
return 'Same'
# TypeSet indexes are encoded in 8 bits, with `0xff` reserved.
typeset_limit = 0xff
def gen_typesets_table(fmt, type_sets):
# type: (srcgen.Formatter, UniqueTable) -> None
"""
Generate the table of ValueTypeSets described by type_sets.
"""
fmt.comment('Table of value type sets.')
assert len(type_sets.table) <= typeset_limit, "Too many type sets"
with fmt.indented(
'const TYPE_SETS : [ValueTypeSet; {}] = ['
.format(len(type_sets.table)), '];'):
for ts in type_sets.table:
with fmt.indented('ValueTypeSet {', '},'):
ts.emit_fields(fmt)
def gen_type_constraints(fmt, instrs):
# type: (srcgen.Formatter, Sequence[Instruction]) -> None
"""
@@ -360,9 +379,6 @@ def gen_type_constraints(fmt, instrs):
# Preload table with constraints for typical binops.
operand_seqs.add(['Same'] * 3)
# TypeSet indexes are encoded in 8 bits, with `0xff` reserved.
typeset_limit = 0xff
fmt.comment('Table of opcode constraints.')
with fmt.indented(
'const OPCODE_CONSTRAINTS : [OpcodeConstraints; {}] = ['
@@ -418,14 +434,7 @@ def gen_type_constraints(fmt, instrs):
fmt.line('typeset_offset: {},'.format(ctrl_typeset))
fmt.line('constraint_offset: {},'.format(offset))
fmt.comment('Table of value type sets.')
assert len(type_sets.table) <= typeset_limit, "Too many type sets"
with fmt.indented(
'const TYPE_SETS : [ValueTypeSet; {}] = ['
.format(len(type_sets.table)), '];'):
for ts in type_sets.table:
with fmt.indented('ValueTypeSet {', '},'):
ts.emit_fields(fmt)
gen_typesets_table(fmt, type_sets)
fmt.comment('Table of operand constraint sequences.')
with fmt.indented(

View File

@@ -11,16 +11,116 @@ from __future__ import absolute_import
from srcgen import Formatter
from base import legalize, instructions
from cdsl.ast import Var
from cdsl.ti import ti_rtl, TypeEnv, get_type_env, ConstrainTVsEqual,\
ConstrainTVInTypeset
from unique_table import UniqueTable
from gen_instr import gen_typesets_table
from cdsl.typevar import TypeVar
try:
from typing import Sequence # noqa
from typing import Sequence, List, Dict # noqa
from cdsl.isa import TargetISA # noqa
from cdsl.ast import Def # noqa
from cdsl.xform import XForm, XFormGroup # noqa
from cdsl.typevar import TypeSet # noqa
from cdsl.ti import TypeConstraint # noqa
except ImportError:
pass
def get_runtime_typechecks(xform):
# type: (XForm) -> List[TypeConstraint]
"""
Given a XForm build a list of runtime type checks neccessary to determine
if it applies. We have 2 types of runtime checks:
1) typevar tv belongs to typeset T - needed for free tvs whose
typeset is constrainted by their use in the dst pattern
2) tv1 == tv2 where tv1 and tv2 are derived TVs - caused by unification
of non-bijective functions
"""
check_l = [] # type: List[TypeConstraint]
# 1) Perform ti only on the source RTL. Accumulate any free tvs that have a
# different inferred type in src, compared to the type inferred for both
# src and dst.
symtab = {} # type: Dict[Var, Var]
src_copy = xform.src.copy(symtab)
src_typenv = get_type_env(ti_rtl(src_copy, TypeEnv()))
for v in xform.ti.vars:
if not v.has_free_typevar():
continue
# In rust the local variable containing a free TV associated with var v
# has name typeof_v. We rely on the python TVs having the same name.
assert "typeof_{}".format(v) == xform.ti[v].name
if v not in symtab:
# We can have singleton vars defined only on dst. Ignore them
assert v.get_typevar().singleton_type() is not None
continue
src_ts = src_typenv[symtab[v]].get_typeset()
xform_ts = xform.ti[v].get_typeset()
assert xform_ts.issubset(src_ts)
if src_ts != xform_ts:
check_l.append(ConstrainTVInTypeset(xform.ti[v], xform_ts))
# 2,3) Add any constraints that appear in xform.ti
check_l.extend(xform.ti.constraints)
return check_l
def emit_runtime_typecheck(check, fmt, type_sets):
# type: (TypeConstraint, Formatter, UniqueTable) -> None
"""
Emit rust code for the given check.
"""
def build_derived_expr(tv):
# type: (TypeVar) -> str
if not tv.is_derived:
assert tv.name.startswith('typeof_')
return "Some({})".format(tv.name)
base_exp = build_derived_expr(tv.base)
if (tv.derived_func == TypeVar.LANEOF):
return "{}.map(|t: Type| -> t.lane_type())".format(base_exp)
elif (tv.derived_func == TypeVar.ASBOOL):
return "{}.map(|t: Type| -> t.as_bool())".format(base_exp)
elif (tv.derived_func == TypeVar.HALFWIDTH):
return "{}.and_then(|t: Type| -> t.half_width())".format(base_exp)
elif (tv.derived_func == TypeVar.DOUBLEWIDTH):
return "{}.and_then(|t: Type| -> t.double_width())"\
.format(base_exp)
elif (tv.derived_func == TypeVar.HALFVECTOR):
return "{}.and_then(|t: Type| -> t.half_vector())".format(base_exp)
elif (tv.derived_func == TypeVar.DOUBLEVECTOR):
return "{}.and_then(|t: Type| -> t.by(2))".format(base_exp)
else:
assert False, "Unknown derived function {}".format(tv.derived_func)
if (isinstance(check, ConstrainTVInTypeset)):
tv = check.tv.name
if check.ts not in type_sets.index:
type_sets.add(check.ts)
ts = type_sets.index[check.ts]
fmt.comment("{} must belong to {}".format(tv, check.ts))
with fmt.indented('if !TYPE_SETS[{}].contains({}) {{'.format(ts, tv),
'};'):
fmt.line('return false;')
elif (isinstance(check, ConstrainTVsEqual)):
tv1 = build_derived_expr(check.tv1)
tv2 = build_derived_expr(check.tv2)
with fmt.indented('if {} != {} {{'.format(tv1, tv2), '};'):
fmt.line('return false;')
else:
assert False, "Unknown check {}".format(check)
def unwrap_inst(iref, node, fmt):
# type: (str, Def, Formatter) -> bool
"""
@@ -183,8 +283,8 @@ def emit_dst_inst(node, fmt):
fmt.line('pos.next_inst();')
def gen_xform(xform, fmt):
# type: (XForm, Formatter) -> None
def gen_xform(xform, fmt, type_sets):
# type: (XForm, Formatter, UniqueTable) -> None
"""
Emit code for `xform`, assuming the the opcode of xform's root instruction
has already been matched.
@@ -203,6 +303,10 @@ def gen_xform(xform, fmt):
instp = xform.src.rtl[0].expr.inst_predicate()
assert instp is None, "Instruction predicates not supported in legalizer"
# Emit any runtime checks.
for check in get_runtime_typechecks(xform):
emit_runtime_typecheck(check, fmt, type_sets)
# Emit the destination pattern.
for dst in xform.dst.rtl:
emit_dst_inst(dst, fmt)
@@ -213,8 +317,8 @@ def gen_xform(xform, fmt):
fmt.line('assert_eq!(pos.remove_inst(), inst);')
def gen_xform_group(xgrp, fmt):
# type: (XFormGroup, Formatter) -> None
def gen_xform_group(xgrp, fmt, type_sets):
# type: (XFormGroup, Formatter, UniqueTable) -> None
fmt.doc_comment("Legalize the instruction pointed to by `pos`.")
fmt.line('#[allow(unused_variables,unused_assignments)]')
with fmt.indented(
@@ -231,7 +335,7 @@ def gen_xform_group(xgrp, fmt):
inst = xform.src.rtl[0].expr.inst
with fmt.indented(
'Opcode::{} => {{'.format(inst.camel_name), '}'):
gen_xform(xform, fmt)
gen_xform(xform, fmt, type_sets)
# We'll assume there are uncovered opcodes.
fmt.line('_ => return false,')
fmt.line('true')
@@ -240,6 +344,11 @@ def gen_xform_group(xgrp, fmt):
def generate(isas, out_dir):
# type: (Sequence[TargetISA], str) -> None
fmt = Formatter()
gen_xform_group(legalize.narrow, fmt)
gen_xform_group(legalize.expand, fmt)
# Table of TypeSet instances
type_sets = UniqueTable()
gen_xform_group(legalize.narrow, fmt, type_sets)
gen_xform_group(legalize.expand, fmt, type_sets)
gen_typesets_table(fmt, type_sets)
fmt.update_file('legalizer.rs', out_dir)

View File

@@ -0,0 +1,145 @@
import doctest
import gen_legalizer
from unittest import TestCase
from srcgen import Formatter
from gen_legalizer import get_runtime_typechecks, emit_runtime_typecheck
from base.instructions import vselect, vsplit, isplit, iconcat, vconcat, \
iconst, b1, icmp, copy # noqa
from base.legalize import narrow, expand # noqa
from base.immediates import intcc # noqa
from cdsl.typevar import TypeVar, TypeSet
from cdsl.ast import Var, Def # noqa
from cdsl.xform import Rtl, XForm # noqa
from cdsl.ti import ti_rtl, subst, TypeEnv, get_type_env # noqa
from unique_table import UniqueTable
from functools import reduce
try:
from typing import Callable, TYPE_CHECKING, Iterable, Any # noqa
if TYPE_CHECKING:
CheckProducer = Callable[[UniqueTable], str]
except ImportError:
TYPE_CHECKING = False
def load_tests(loader, tests, ignore):
# type: (Any, Any, Any) -> Any
tests.addTests(doctest.DocTestSuite(gen_legalizer))
return tests
def format_check(typesets, s, *args):
# type: (...) -> str
def transform(x):
# type: (Any) -> str
if isinstance(x, TypeSet):
return str(typesets.index[x])
elif isinstance(x, TypeVar):
assert not x.is_derived
return x.name
else:
return str(x)
dummy_s = s # type: str
args = tuple(map(lambda x: transform(x), args))
return dummy_s.format(*args)
def typeset_check(v, ts):
# type: (Var, TypeSet) -> CheckProducer
return lambda typesets: format_check(
typesets,
'if !TYPE_SETS[{}].contains(typeof_{}) ' +
'{{\n return false;\n}};\n', ts, v)
def equiv_check(tv1, tv2):
# type: (TypeVar, TypeVar) -> CheckProducer
return lambda typesets: format_check(
typesets,
'if Some({}).map(|t: Type| -> t.as_bool()) != ' +
'Some({}).map(|t: Type| -> t.as_bool()) ' +
'{{\n return false;\n}};\n', tv1, tv2)
def sequence(*args):
# type: (...) -> CheckProducer
dummy = args # type: Iterable[CheckProducer]
def sequenceF(typesets):
# type: (UniqueTable) -> str
def strconcat(acc, el):
# type: (str, CheckProducer) -> str
return acc + el(typesets)
return reduce(strconcat, dummy, "")
return sequenceF
class TestRuntimeChecks(TestCase):
def setUp(self):
# type: () -> None
self.v0 = Var("v0")
self.v1 = Var("v1")
self.v2 = Var("v2")
self.v3 = Var("v3")
self.v4 = Var("v4")
self.v5 = Var("v5")
self.v6 = Var("v6")
self.v7 = Var("v7")
self.v8 = Var("v8")
self.v9 = Var("v9")
self.imm0 = Var("imm0")
self.IxN_nonscalar = TypeVar("IxN_nonscalar", "", ints=True,
scalars=False, simd=True)
self.TxN = TypeVar("TxN", "", ints=True, bools=True, floats=True,
scalars=False, simd=True)
self.b1 = TypeVar.singleton(b1)
def check_yo_check(self, xform, expected_f):
# type: (XForm, CheckProducer) -> None
fmt = Formatter()
type_sets = UniqueTable()
for check in get_runtime_typechecks(xform):
emit_runtime_typecheck(check, fmt, type_sets)
# Remove comments
got = "".join([l for l in fmt.lines if not l.strip().startswith("//")])
expected = expected_f(type_sets)
self.assertEqual(got, expected)
def test_width_check(self):
# type: () -> None
x = XForm(Rtl(self.v0 << copy(self.v1)),
Rtl((self.v2, self.v3) << isplit(self.v1),
self.v0 << iconcat(self.v2, self.v3)))
WideInt = TypeSet(lanes=(1, 256), ints=(16, 64))
self.check_yo_check(x, typeset_check(self.v1, WideInt))
def test_lanes_check(self):
# type: () -> None
x = XForm(Rtl(self.v0 << copy(self.v1)),
Rtl((self.v2, self.v3) << vsplit(self.v1),
self.v0 << vconcat(self.v2, self.v3)))
WideVec = TypeSet(lanes=(2, 256), ints=(8, 64), floats=(32, 64),
bools=(1, 64))
self.check_yo_check(x, typeset_check(self.v1, WideVec))
def test_vselect_imm(self):
# type: () -> None
ts = TypeSet(lanes=(2, 256), ints=(8, 64),
floats=(32, 64), bools=(8, 64))
r = Rtl(
self.v0 << iconst(self.imm0),
self.v1 << icmp(intcc.eq, self.v2, self.v0),
self.v5 << vselect(self.v1, self.v3, self.v4),
)
x = XForm(r, r)
self.check_yo_check(
x, sequence(typeset_check(self.v3, ts),
equiv_check(self.v2.get_typevar(),
self.v3.get_typevar())))

View File

@@ -506,10 +506,14 @@ type BitSet16 = BitSet<u16>;
/// A value type set describes the permitted set of types for a type variable.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct ValueTypeSet {
lanes: BitSet16,
ints: BitSet8,
floats: BitSet8,
bools: BitSet8,
/// Allowed lane sizes
pub lanes: BitSet16,
/// Allowed int widths
pub ints: BitSet8,
/// Allowed float widths
pub floats: BitSet8,
/// Allowed bool widths
pub bools: BitSet8,
}
impl ValueTypeSet {

View File

@@ -18,6 +18,8 @@ use flowgraph::ControlFlowGraph;
use ir::{Function, Cursor, DataFlowGraph, InstructionData, Opcode, InstBuilder};
use ir::condcodes::IntCC;
use isa::{TargetIsa, Legalize};
use bitset::BitSet;
use ir::instructions::ValueTypeSet;
mod boundary;
mod split;