winch: Use cranelift-codegen x64 backend for emission. (#5581)

This change substitutes the string based emission mechanism with
cranelift-codegen's x64 backend.

This change _does not_:

* Introduce new functionality in terms of supported instructions.
* Change the semantics of the assembler/macroassembler in terms of the logic to
emit instructions.

The most notable differences between this change and the previous version are:

* Handling of shared flags and ISA-specific flags, which for now are left with
the default value.
* Simplification of instruction emission per operand size: previously the
assembler defined different methods depending on the operand size (e.g. `mov`
for 64 bits, and `movl` for 32 bits). This change updates such approach so that
each assembler method takes an operand size as a parameter, reducing duplication
and making the code more concise and easier to integrate with the x64's `Inst` enum.
* Introduction of a disassembler for testing purposes.

As of this change, Winch generates the following code for the following test
programs:

```wat
(module
  (export "main" (func $main))

  (func $main (result i32)
        (i32.const 10)
        (i32.const 20)
        i32.add
        ))
```

```asm
   0:	55                   	push	rbp
   1:	48 89 e5             	mov	rbp, rsp
   4:	b8 0a 00 00 00       	mov	eax, 0xa
   9:	83 c0 14             	add	eax, 0x14
   c:	5d                   	pop	rbp
   d:	c3                   	ret
```

```wat
(module
  (export "main" (func $main))

  (func $main (result i32)
        (local $foo i32)
    (local $bar i32)
        (i32.const 10)
    (local.set $foo)
        (i32.const 20)
    (local.set $bar)

        (local.get $foo)
        (local.get $bar)
        i32.add
        ))
```

```asm
   0:	55                   	push	rbp
   1:	48 89 e5             	mov	rbp, rsp
   4:	48 83 ec 08          	sub	rsp, 8
   8:	48 c7 04 24 00 00 00 00	mov	qword ptr [rsp], 0
  10:	b8 0a 00 00 00       	mov	eax, 0xa
  15:	89 44 24 04          	mov	dword ptr [rsp + 4], eax
  19:	b8 14 00 00 00       	mov	eax, 0x14
  1e:	89 04 24             	mov	dword ptr [rsp], eax
  21:	8b 04 24             	mov	eax, dword ptr [rsp]
  24:	8b 4c 24 04          	mov	ecx, dword ptr [rsp + 4]
  28:	01 c1                	add	ecx, eax
  2a:	48 89 c8             	mov	rax, rcx
  2d:	48 83 c4 08          	add	rsp, 8
  31:	5d                   	pop	rbp
  32:	c3                   	ret
```

```wat
(module
  (export "main" (func $main))

  (func $main (param i32) (param i32) (result i32)
        (local.get 0)
        (local.get 1)
        i32.add
        ))
```

```asm
   0:	55                   	push	rbp
   1:	48 89 e5             	mov	rbp, rsp
   4:	48 83 ec 08          	sub	rsp, 8
   8:	89 7c 24 04          	mov	dword ptr [rsp + 4], edi
   c:	89 34 24             	mov	dword ptr [rsp], esi
   f:	8b 04 24             	mov	eax, dword ptr [rsp]
  12:	8b 4c 24 04          	mov	ecx, dword ptr [rsp + 4]
  16:	01 c1                	add	ecx, eax
  18:	48 89 c8             	mov	rax, rcx
  1b:	48 83 c4 08          	add	rsp, 8
  1f:	5d                   	pop	rbp
  20:	c3                   	ret
```
This commit is contained in:
Saúl Cabrera
2023-01-18 06:58:13 -05:00
committed by GitHub
parent 1e6c13d83e
commit 94b51cdb17
22 changed files with 533 additions and 383 deletions

View File

@@ -0,0 +1,262 @@
//! Assembler library implementation for x64.
use crate::{abi::Address, isa::reg::Reg, masm::OperandSize};
use cranelift_codegen::{
isa::x64::{
args::{
self, AluRmiROpcode, Amode, ExtMode, FromWritableReg, Gpr, GprMem, GprMemImm, RegMem,
RegMemImm, SyntheticAmode, WritableGpr,
},
settings as x64_settings, EmitInfo, EmitState, Inst,
},
settings, Final, MachBuffer, MachBufferFinalized, MachInstEmit, Writable,
};
/// A x64 instruction operand.
#[derive(Debug, Copy, Clone)]
pub(crate) enum Operand {
/// Register.
Reg(Reg),
/// Memory address.
Mem(Address),
/// Immediate.
Imm(i32),
}
// Conversions between winch-codegen x64 types and cranelift-codegen x64 types.
impl From<Reg> for RegMemImm {
fn from(reg: Reg) -> Self {
RegMemImm::reg(reg.into())
}
}
impl From<OperandSize> for args::OperandSize {
fn from(size: OperandSize) -> Self {
match size {
OperandSize::S32 => Self::Size32,
OperandSize::S64 => Self::Size64,
}
}
}
/// Low level assembler implementation for x64.
pub(crate) struct Assembler {
/// The machine instruction buffer.
buffer: MachBuffer<Inst>,
/// Constant emission information.
emit_info: EmitInfo,
/// Emission state.
emit_state: EmitState,
}
impl Assembler {
/// Create a new x64 assembler.
pub fn new(shared_flags: settings::Flags, isa_flags: x64_settings::Flags) -> Self {
Self {
buffer: MachBuffer::<Inst>::new(),
emit_state: Default::default(),
emit_info: EmitInfo::new(shared_flags, isa_flags),
}
}
/// Return the emitted code.
pub fn finalize(self) -> MachBufferFinalized<Final> {
let stencil = self.buffer.finish();
stencil.apply_base_srcloc(Default::default())
}
fn emit(&mut self, inst: Inst) {
inst.emit(&[], &mut self.buffer, &self.emit_info, &mut self.emit_state);
}
/// Push register.
pub fn push_r(&mut self, reg: Reg) {
let src = GprMemImm::new(reg.into()).expect("valid gpr");
self.emit(Inst::Push64 { src });
}
/// Pop to register.
pub fn pop_r(&mut self, dst: Reg) {
let writable = Writable::from_reg(dst.into());
let dst = WritableGpr::from_writable_reg(writable).expect("valid writable gpr");
self.emit(Inst::Pop64 { dst });
}
/// Return instruction.
pub fn ret(&mut self) {
self.emit(Inst::Ret { rets: vec![] });
}
/// Move instruction variants.
pub fn mov(&mut self, src: Operand, dst: Operand, size: OperandSize) {
use self::Operand::*;
match &(src, dst) {
(Reg(lhs), Reg(rhs)) => self.mov_rr(*lhs, *rhs, size),
(Reg(lhs), Mem(addr)) => match addr {
Address::Base { base, imm } => self.mov_rm(*lhs, *base, *imm, size),
},
(Imm(imm), Mem(addr)) => match addr {
Address::Base { base, imm: disp } => self.mov_im(*imm as u64, *base, *disp, size),
},
(Imm(imm), Reg(reg)) => self.mov_ir(*imm as u64, *reg, size),
(Mem(addr), Reg(reg)) => match addr {
Address::Base { base, imm } => self.mov_mr(*base, *imm, *reg, size),
},
_ => panic!(
"Invalid operand combination for mov; src={:?}, dst={:?}",
src, dst
),
}
}
/// Register-to-register move.
pub fn mov_rr(&mut self, src: Reg, dst: Reg, size: OperandSize) {
let src = Gpr::new(src.into()).expect("valid gpr");
let dst = WritableGpr::from_writable_reg(Writable::from_reg(dst.into()))
.expect("valid writable gpr");
self.emit(Inst::MovRR {
src,
dst,
size: size.into(),
});
}
/// Register-to-memory move.
pub fn mov_rm(&mut self, src: Reg, base: Reg, disp: u32, size: OperandSize) {
let src = Gpr::new(src.into()).expect("valid gpr");
let dst = Amode::imm_reg(disp, base.into());
self.emit(Inst::MovRM {
size: size.into(),
src,
dst: SyntheticAmode::real(dst),
});
}
/// Immediate-to-memory move.
pub fn mov_im(&mut self, src: u64, base: Reg, disp: u32, size: OperandSize) {
let dst = Amode::imm_reg(disp, base.into());
self.emit(Inst::MovImmM {
size: size.into(),
simm64: src,
dst: SyntheticAmode::real(dst),
});
}
/// Immediate-to-register move.
pub fn mov_ir(&mut self, imm: u64, dst: Reg, size: OperandSize) {
let dst = WritableGpr::from_writable_reg(Writable::from_reg(dst.into()))
.expect("valid writable gpr");
self.emit(Inst::Imm {
dst_size: size.into(),
simm64: imm,
dst,
});
}
/// Memory-to-register load.
pub fn mov_mr(&mut self, base: Reg, disp: u32, dst: Reg, size: OperandSize) {
use OperandSize::S64;
let dst = WritableGpr::from_writable_reg(Writable::from_reg(dst.into()))
.expect("valid writable gpr");
let amode = Amode::imm_reg(disp, base.into());
let src = SyntheticAmode::real(amode);
if size == S64 {
self.emit(Inst::Mov64MR { src, dst });
} else {
let reg_mem = RegMem::mem(src);
self.emit(Inst::MovzxRmR {
ext_mode: ExtMode::LQ,
src: GprMem::new(reg_mem).expect("valid memory address"),
dst,
});
}
}
/// Subtact immediate register.
pub fn sub_ir(&mut self, imm: u32, dst: Reg, size: OperandSize) {
let writable = WritableGpr::from_writable_reg(Writable::from_reg(dst.into()))
.expect("valid writable gpr");
let src = Gpr::new(dst.into()).expect("valid gpr");
let imm = RegMemImm::imm(imm);
self.emit(Inst::AluRmiR {
size: size.into(),
op: AluRmiROpcode::Sub,
src1: src,
src2: GprMemImm::new(imm).expect("valid immediate"),
dst: writable,
});
}
/// Add instruction variants.
pub fn add(&mut self, src: Operand, dst: Operand, size: OperandSize) {
match &(src, dst) {
(Operand::Imm(imm), Operand::Reg(dst)) => self.add_ir(*imm, *dst, size),
(Operand::Reg(src), Operand::Reg(dst)) => self.add_rr(*src, *dst, size),
_ => panic!(
"Invalid operand combination for add; src = {:?} dst = {:?}",
src, dst
),
}
}
/// Add immediate and register.
pub fn add_ir(&mut self, imm: i32, dst: Reg, size: OperandSize) {
let writable = WritableGpr::from_writable_reg(Writable::from_reg(dst.into()))
.expect("valid writable gpr");
let src = Gpr::new(dst.into()).expect("valid gpr");
let imm = RegMemImm::imm(imm as u32);
self.emit(Inst::AluRmiR {
size: size.into(),
op: AluRmiROpcode::Add,
src1: src,
src2: GprMemImm::new(imm).expect("valid immediate"),
dst: writable,
});
}
/// Add register and register.
pub fn add_rr(&mut self, src: Reg, dst: Reg, size: OperandSize) {
let dest = WritableGpr::from_writable_reg(Writable::from_reg(dst.into()))
.expect("valid writable gpr");
let src1 = Gpr::new(dst.into()).expect("valid gpr");
let src2 = RegMemImm::reg(src.into());
self.emit(Inst::AluRmiR {
size: size.into(),
op: AluRmiROpcode::Add,
src1,
src2: GprMemImm::new(src2).expect("valid gpr"),
dst: dest,
});
}
/// Logical exclusive or with registers.
pub fn xor_rr(&mut self, src: Reg, dst: Reg, size: OperandSize) {
let dest = WritableGpr::from_writable_reg(Writable::from_reg(dst.into()))
.expect("valid writable gpr");
let src1 = Gpr::new(dst.into()).expect("valid gpr");
let src2 = RegMemImm::reg(src.into());
self.emit(Inst::AluRmiR {
size: size.into(),
op: AluRmiROpcode::Xor,
src1,
src2: GprMemImm::new(src2).expect("valid gpr"),
dst: dest,
});
}
}