Use the term "EBB parameter" everywhere.
Add EBB parameter and EBB argument to the langref glossary to clarify the distinction between formal EBB parameter values and arguments passed to branches. - Replace "ebb_arg" with "ebb_param" in function names that deal with EBB parameters. - Rename the ValueDef variants to Result and Param. - A bunch of other small langref fixes. No functional changes intended.
This commit is contained in:
13
cranelift/docs/callex.cton
Normal file
13
cranelift/docs/callex.cton
Normal file
@@ -0,0 +1,13 @@
|
||||
test verifier
|
||||
|
||||
function %gcd(i32 uext, i32 uext) -> i32 uext native {
|
||||
fn1 = function %divmod(i32 uext, i32 uext) -> i32 uext, i32 uext
|
||||
|
||||
ebb1(v1: i32, v2: i32):
|
||||
brz v2, ebb2
|
||||
v3, v4 = call fn1(v1, v2)
|
||||
return v3
|
||||
|
||||
ebb2:
|
||||
return v1
|
||||
}
|
||||
@@ -34,7 +34,7 @@ Here is the same function compiled into Cretonne IL:
|
||||
:lines: 2-
|
||||
|
||||
The first line of a function definition provides the function *name* and
|
||||
the :term:`function signature` which declares the argument and return types.
|
||||
the :term:`function signature` which declares the parameter and return types.
|
||||
Then follows the :term:`function preamble` which declares a number of entities
|
||||
that can be referenced inside the function. In the example above, the preamble
|
||||
declares a single local variable, ``ss1``.
|
||||
@@ -60,17 +60,18 @@ The instructions in the function body use and produce *values* in SSA form. This
|
||||
means that every value is defined exactly once, and every use of a value must be
|
||||
dominated by the definition.
|
||||
|
||||
Cretonne does not have phi instructions but uses *EBB arguments* instead. An EBB
|
||||
can be defined with a list of typed arguments. Whenever control is transferred
|
||||
to the EBB, values for the arguments must be provided. When entering a function,
|
||||
the incoming function arguments are passed as arguments to the entry EBB.
|
||||
Cretonne does not have phi instructions but uses :term:`EBB parameter`\s
|
||||
instead. An EBB can be defined with a list of typed parameters. Whenever control
|
||||
is transferred to the EBB, argument values for the parameters must be provided.
|
||||
When entering a function, the incoming function parameters are passed as
|
||||
arguments to the entry EBB's parameters.
|
||||
|
||||
Instructions define zero, one, or more result values. All SSA values are either
|
||||
EBB arguments or instruction results.
|
||||
EBB parameters or instruction results.
|
||||
|
||||
In the example above, the loop induction variable ``i`` is represented as three
|
||||
SSA values: In the entry block, ``v4`` is the initial value. In the loop block
|
||||
``ebb2``, the EBB argument ``v5`` represents the value of the induction
|
||||
``ebb2``, the EBB parameter ``v5`` represents the value of the induction
|
||||
variable during each iteration. Finally, ``v12`` is computed as the induction
|
||||
variable value for the next iteration.
|
||||
|
||||
@@ -138,6 +139,7 @@ NaNs being indicated by the MSB of the trailing significand set to 0.
|
||||
|
||||
Except for bitwise and memory instructions, NaNs returned from arithmetic
|
||||
instructions are encoded as follows:
|
||||
|
||||
- If all NaN inputs to an instruction are quiet NaNs with all bits of the
|
||||
trailing significand other than the MSB set to 0, the result is a quiet
|
||||
NaN with a nondeterministic sign bit and all bits of the trailing
|
||||
@@ -160,6 +162,11 @@ Since some ISAs don't have CPU flags, these value types should not be used
|
||||
until the legalization phase of compilation where the code is adapted to fit
|
||||
the target ISA. Use instructions like :inst:`icmp` instead.
|
||||
|
||||
The CPU flags types are also restricted such that two flags values can not be
|
||||
live at the same time. After legalization, some instruction encodings will
|
||||
clobber the flags, and flags values are not allowed to be live across such
|
||||
instructions either. The verifier enforces these rules.
|
||||
|
||||
.. autoctontype:: iflags
|
||||
.. autoctontype:: fflags
|
||||
|
||||
@@ -210,12 +217,12 @@ called a *lane*. The number of lanes must be a power of two in the range 2-256.
|
||||
Pseudo-types and type classes
|
||||
-----------------------------
|
||||
|
||||
These are not concrete types, but convenient names uses to refer to real types
|
||||
These are not concrete types, but convenient names used to refer to real types
|
||||
in this reference.
|
||||
|
||||
.. type:: iAddr
|
||||
|
||||
A Pointer-sized integer.
|
||||
A Pointer-sized integer representing an address.
|
||||
|
||||
This is either :type:`i32`, or :type:`i64`, depending on whether the target
|
||||
platform has 32-bit or 64-bit pointers.
|
||||
@@ -379,21 +386,21 @@ Function calls
|
||||
==============
|
||||
|
||||
A function call needs a target function and a :term:`function signature`. The
|
||||
target function may be determined dynamically at runtime, but the signature
|
||||
must be known when the function call is compiled. The function signature
|
||||
describes how to call the function, including arguments, return values, and the
|
||||
calling convention:
|
||||
target function may be determined dynamically at runtime, but the signature must
|
||||
be known when the function call is compiled. The function signature describes
|
||||
how to call the function, including parameters, return values, and the calling
|
||||
convention:
|
||||
|
||||
.. productionlist::
|
||||
signature : "(" [arglist] ")" ["->" retlist] [call_conv]
|
||||
arglist : arg { "," arg }
|
||||
retlist : arglist
|
||||
arg : type [argext] [argspecial]
|
||||
argext : "uext" | "sext"
|
||||
argspecial: "sret" | "link" | "fp" | "csr" | "vmctx"
|
||||
callconv : `string`
|
||||
signature : "(" [paramlist] ")" ["->" retlist] [call_conv]
|
||||
paramlist : param { "," param }
|
||||
retlist : paramlist
|
||||
param : type [paramext] [paramspecial]
|
||||
paramext : "uext" | "sext"
|
||||
paramspecial : "sret" | "link" | "fp" | "csr" | "vmctx"
|
||||
callconv : "native" | "spiderwasm"
|
||||
|
||||
Arguments and return values have flags whose meaning is mostly target
|
||||
Parameters and return values have flags whose meaning is mostly target
|
||||
dependent. They make it possible to call native functions on the target
|
||||
platform. When calling other Cretonne functions, the flags are not necessary.
|
||||
|
||||
@@ -411,19 +418,11 @@ preamble`:
|
||||
.. autoinst:: call
|
||||
.. autoinst:: x_return
|
||||
|
||||
This simple example illustrates direct function calls and signatures::
|
||||
This simple example illustrates direct function calls and signatures:
|
||||
|
||||
function %gcd(i32 uext, i32 uext) -> i32 uext "C" {
|
||||
fn1 = function %divmod(i32 uext, i32 uext) -> i32 uext, i32 uext
|
||||
|
||||
ebb1(v1: i32, v2: i32):
|
||||
brz v2, ebb2
|
||||
v3, v4 = call fn1(v1, v2)
|
||||
br ebb1(v2, v4)
|
||||
|
||||
ebb2:
|
||||
return v1
|
||||
}
|
||||
.. literalinclude:: callex.cton
|
||||
:language: cton
|
||||
:lines: 3-
|
||||
|
||||
Indirect function calls use a signature declared in the preamble.
|
||||
|
||||
@@ -682,15 +681,15 @@ bounds checking is required for each access:
|
||||
Operations
|
||||
==========
|
||||
|
||||
A few instructions have variants that take immediate operands (e.g.,
|
||||
:inst:`band` / :inst:`band_imm`), but in general an instruction is required to
|
||||
load a constant into an SSA value.
|
||||
|
||||
.. autoinst:: select
|
||||
|
||||
Constant materialization
|
||||
------------------------
|
||||
|
||||
A few instructions have variants that take immediate operands (e.g.,
|
||||
:inst:`band` / :inst:`band_imm`), but in general an instruction is required to
|
||||
load a constant into an SSA value.
|
||||
|
||||
.. autoinst:: iconst
|
||||
.. autoinst:: f32const
|
||||
.. autoinst:: f64const
|
||||
@@ -944,6 +943,9 @@ Instructions that can only be used by the Intel target ISA.
|
||||
|
||||
.. autoinst:: isa.intel.instructions.sdivmodx
|
||||
.. autoinst:: isa.intel.instructions.udivmodx
|
||||
.. autoinst:: isa.intel.instructions.cvtt2si
|
||||
.. autoinst:: isa.intel.instructions.fmin
|
||||
.. autoinst:: isa.intel.instructions.fmax
|
||||
|
||||
Instruction groups
|
||||
==================
|
||||
@@ -1034,6 +1036,18 @@ Glossary
|
||||
control flow graph where only the root can be a join node. This
|
||||
definition is not equivalent to Cretonne EBBs.
|
||||
|
||||
EBB parameter
|
||||
A formal parameter for an EBB is an SSA value that dominates everything
|
||||
in the EBB. For each parameter declared by an EBB, a corresponding
|
||||
argument value must be passed when branching to the EBB. The function's
|
||||
entry EBB has parameters that correspond to the function's parameters.
|
||||
|
||||
EBB argument
|
||||
Similar to function arguments, EBB arguments must be provided when
|
||||
branching to an EBB that declares formal parameters. When execution
|
||||
begins at the top of an EBB, the formal parameters have the values of
|
||||
the arguments passed in the branch.
|
||||
|
||||
function signature
|
||||
A function signature describes how to call a function. It consists of:
|
||||
|
||||
|
||||
@@ -1,12 +1,12 @@
|
||||
test verifier
|
||||
|
||||
function %entry_block_signature_mismatch(i32) {
|
||||
ebb0: ; error: entry block arguments must match function signature
|
||||
ebb0: ; error: entry block parameters (0) must match function signature (1)
|
||||
return
|
||||
}
|
||||
|
||||
function %entry_block_arg_type(i32) {
|
||||
ebb0(v0: f32): ; error: entry block argument 0 expected to have type i32, got f32
|
||||
ebb0(v0: f32): ; error: entry block parameter 0 expected to have type i32, got f32
|
||||
return
|
||||
}
|
||||
|
||||
|
||||
@@ -450,7 +450,7 @@ mod test {
|
||||
fn unreachable_node() {
|
||||
let mut func = Function::new();
|
||||
let ebb0 = func.dfg.make_ebb();
|
||||
let v0 = func.dfg.append_ebb_arg(ebb0, types::I32);
|
||||
let v0 = func.dfg.append_ebb_param(ebb0, types::I32);
|
||||
let ebb1 = func.dfg.make_ebb();
|
||||
let ebb2 = func.dfg.make_ebb();
|
||||
|
||||
@@ -479,7 +479,7 @@ mod test {
|
||||
fn non_zero_entry_block() {
|
||||
let mut func = Function::new();
|
||||
let ebb3 = func.dfg.make_ebb();
|
||||
let cond = func.dfg.append_ebb_arg(ebb3, types::I32);
|
||||
let cond = func.dfg.append_ebb_param(ebb3, types::I32);
|
||||
let ebb1 = func.dfg.make_ebb();
|
||||
let ebb2 = func.dfg.make_ebb();
|
||||
let ebb0 = func.dfg.make_ebb();
|
||||
|
||||
@@ -185,7 +185,7 @@ mod tests {
|
||||
fn branches_and_jumps() {
|
||||
let mut func = Function::new();
|
||||
let ebb0 = func.dfg.make_ebb();
|
||||
let cond = func.dfg.append_ebb_arg(ebb0, types::I32);
|
||||
let cond = func.dfg.append_ebb_param(ebb0, types::I32);
|
||||
let ebb1 = func.dfg.make_ebb();
|
||||
let ebb2 = func.dfg.make_ebb();
|
||||
|
||||
|
||||
@@ -223,7 +223,7 @@ mod tests {
|
||||
fn types() {
|
||||
let mut func = Function::new();
|
||||
let ebb0 = func.dfg.make_ebb();
|
||||
let arg0 = func.dfg.append_ebb_arg(ebb0, I32);
|
||||
let arg0 = func.dfg.append_ebb_param(ebb0, I32);
|
||||
let mut pos = FuncCursor::new(&mut func);
|
||||
pos.insert_ebb(ebb0);
|
||||
|
||||
@@ -244,14 +244,14 @@ mod tests {
|
||||
fn reuse_results() {
|
||||
let mut func = Function::new();
|
||||
let ebb0 = func.dfg.make_ebb();
|
||||
let arg0 = func.dfg.append_ebb_arg(ebb0, I32);
|
||||
let arg0 = func.dfg.append_ebb_param(ebb0, I32);
|
||||
let mut pos = FuncCursor::new(&mut func);
|
||||
pos.insert_ebb(ebb0);
|
||||
|
||||
let v0 = pos.ins().iadd_imm(arg0, 17);
|
||||
assert_eq!(pos.func.dfg.value_type(v0), I32);
|
||||
let iadd = pos.prev_inst().unwrap();
|
||||
assert_eq!(pos.func.dfg.value_def(v0), ValueDef::Res(iadd, 0));
|
||||
assert_eq!(pos.func.dfg.value_def(v0), ValueDef::Result(iadd, 0));
|
||||
|
||||
// Detach v0 and reuse it for a different instruction.
|
||||
pos.func.dfg.clear_results(iadd);
|
||||
@@ -260,6 +260,6 @@ mod tests {
|
||||
assert_eq!(pos.current_inst(), Some(iadd));
|
||||
let iconst = pos.prev_inst().unwrap();
|
||||
assert!(iadd != iconst);
|
||||
assert_eq!(pos.func.dfg.value_def(v0), ValueDef::Res(iconst, 0));
|
||||
assert_eq!(pos.func.dfg.value_def(v0), ValueDef::Result(iconst, 0));
|
||||
}
|
||||
}
|
||||
|
||||
@@ -16,7 +16,7 @@ use std::u16;
|
||||
|
||||
/// A data flow graph defines all instructions and extended basic blocks in a function as well as
|
||||
/// the data flow dependencies between them. The DFG also tracks values which can be either
|
||||
/// instruction results or EBB arguments.
|
||||
/// instruction results or EBB parameters.
|
||||
///
|
||||
/// The layout of EBBs in the function and of instructions in each EBB is recorded by the
|
||||
/// `FunctionLayout` data structure which form the other half of the function representation.
|
||||
@@ -34,7 +34,8 @@ pub struct DataFlowGraph {
|
||||
/// primary `insts` map.
|
||||
results: EntityMap<Inst, ValueList>,
|
||||
|
||||
/// Extended basic blocks in the function and their arguments.
|
||||
/// Extended basic blocks in the function and their parameters.
|
||||
///
|
||||
/// This map is not in program order. That is handled by `Layout`, and so is the sequence of
|
||||
/// instructions contained in each EBB.
|
||||
ebbs: PrimaryMap<Ebb, EbbData>,
|
||||
@@ -45,7 +46,7 @@ pub struct DataFlowGraph {
|
||||
///
|
||||
/// - Instructions in `insts` that don't have room for their entire argument list inline.
|
||||
/// - Instruction result values in `results`.
|
||||
/// - EBB arguments in `ebbs`.
|
||||
/// - EBB parameters in `ebbs`.
|
||||
pub value_lists: ValueListPool,
|
||||
|
||||
/// Primary value table with entries for all values.
|
||||
@@ -135,7 +136,7 @@ fn resolve_aliases(values: &PrimaryMap<Value, ValueData>, value: Value) -> Value
|
||||
|
||||
/// Handling values.
|
||||
///
|
||||
/// Values are either EBB arguments or instruction results.
|
||||
/// Values are either EBB parameters or instruction results.
|
||||
impl DataFlowGraph {
|
||||
/// Allocate an extended value entry.
|
||||
fn make_value(&mut self, data: ValueData) -> Value {
|
||||
@@ -151,7 +152,7 @@ impl DataFlowGraph {
|
||||
pub fn value_type(&self, v: Value) -> Type {
|
||||
match self.values[v] {
|
||||
ValueData::Inst { ty, .. } |
|
||||
ValueData::Arg { ty, .. } |
|
||||
ValueData::Param { ty, .. } |
|
||||
ValueData::Alias { ty, .. } => ty,
|
||||
}
|
||||
}
|
||||
@@ -159,7 +160,7 @@ impl DataFlowGraph {
|
||||
/// Get the definition of a value.
|
||||
///
|
||||
/// This is either the instruction that defined it or the Ebb that has the value as an
|
||||
/// argument.
|
||||
/// parameter.
|
||||
pub fn value_def(&self, v: Value) -> ValueDef {
|
||||
match self.values[v] {
|
||||
ValueData::Inst { inst, num, .. } => {
|
||||
@@ -170,15 +171,15 @@ impl DataFlowGraph {
|
||||
v,
|
||||
self.display_inst(inst, None)
|
||||
);
|
||||
ValueDef::Res(inst, num as usize)
|
||||
ValueDef::Result(inst, num as usize)
|
||||
}
|
||||
ValueData::Arg { ebb, num, .. } => {
|
||||
ValueData::Param { ebb, num, .. } => {
|
||||
assert_eq!(
|
||||
Some(v),
|
||||
self.ebbs[ebb].args.get(num as usize, &self.value_lists),
|
||||
"Dangling EBB argument value"
|
||||
self.ebbs[ebb].params.get(num as usize, &self.value_lists),
|
||||
"Dangling EBB parameter value"
|
||||
);
|
||||
ValueDef::Arg(ebb, num as usize)
|
||||
ValueDef::Param(ebb, num as usize)
|
||||
}
|
||||
ValueData::Alias { original, .. } => {
|
||||
// Make sure we only recurse one level. `resolve_aliases` has safeguards to
|
||||
@@ -188,7 +189,7 @@ impl DataFlowGraph {
|
||||
}
|
||||
}
|
||||
|
||||
/// Determine if `v` is an attached instruction result / EBB argument.
|
||||
/// Determine if `v` is an attached instruction result / EBB parameter.
|
||||
///
|
||||
/// An attached value can't be attached to something else without first being detached.
|
||||
///
|
||||
@@ -198,7 +199,7 @@ impl DataFlowGraph {
|
||||
use self::ValueData::*;
|
||||
match self.values[v] {
|
||||
Inst { inst, num, .. } => Some(&v) == self.inst_results(inst).get(num as usize),
|
||||
Arg { ebb, num, .. } => Some(&v) == self.ebb_args(ebb).get(num as usize),
|
||||
Param { ebb, num, .. } => Some(&v) == self.ebb_params(ebb).get(num as usize),
|
||||
Alias { .. } => false,
|
||||
}
|
||||
}
|
||||
@@ -317,16 +318,16 @@ impl DataFlowGraph {
|
||||
#[derive(Debug, PartialEq, Eq)]
|
||||
pub enum ValueDef {
|
||||
/// Value is the n'th result of an instruction.
|
||||
Res(Inst, usize),
|
||||
/// Value is the n'th argument to an EBB.
|
||||
Arg(Ebb, usize),
|
||||
Result(Inst, usize),
|
||||
/// Value is the n'th parameter to an EBB.
|
||||
Param(Ebb, usize),
|
||||
}
|
||||
|
||||
impl ValueDef {
|
||||
/// Unwrap the instruction where the value was defined, or panic.
|
||||
pub fn unwrap_inst(&self) -> Inst {
|
||||
match *self {
|
||||
ValueDef::Res(inst, _) => inst,
|
||||
ValueDef::Result(inst, _) => inst,
|
||||
_ => panic!("Value is not an instruction result"),
|
||||
}
|
||||
}
|
||||
@@ -338,11 +339,11 @@ enum ValueData {
|
||||
// Value is defined by an instruction.
|
||||
Inst { ty: Type, num: u16, inst: Inst },
|
||||
|
||||
// Value is an EBB argument.
|
||||
Arg { ty: Type, num: u16, ebb: Ebb },
|
||||
// Value is an EBB parameter.
|
||||
Param { ty: Type, num: u16, ebb: Ebb },
|
||||
|
||||
// Value is an alias of another value.
|
||||
// An alias value can't be linked as an instruction result or EBB argument. It is used as a
|
||||
// An alias value can't be linked as an instruction result or EBB parameter. It is used as a
|
||||
// placeholder when the original instruction or EBB has been rewritten or modified.
|
||||
Alias { ty: Type, original: Value },
|
||||
}
|
||||
@@ -678,83 +679,82 @@ impl DataFlowGraph {
|
||||
self.ebbs.push(EbbData::new())
|
||||
}
|
||||
|
||||
/// Get the number of arguments on `ebb`.
|
||||
pub fn num_ebb_args(&self, ebb: Ebb) -> usize {
|
||||
self.ebbs[ebb].args.len(&self.value_lists)
|
||||
/// Get the number of parameters on `ebb`.
|
||||
pub fn num_ebb_params(&self, ebb: Ebb) -> usize {
|
||||
self.ebbs[ebb].params.len(&self.value_lists)
|
||||
}
|
||||
|
||||
/// Get the arguments to an EBB.
|
||||
pub fn ebb_args(&self, ebb: Ebb) -> &[Value] {
|
||||
self.ebbs[ebb].args.as_slice(&self.value_lists)
|
||||
/// Get the parameters on `ebb`.
|
||||
pub fn ebb_params(&self, ebb: Ebb) -> &[Value] {
|
||||
self.ebbs[ebb].params.as_slice(&self.value_lists)
|
||||
}
|
||||
|
||||
/// Append an argument with type `ty` to `ebb`.
|
||||
pub fn append_ebb_arg(&mut self, ebb: Ebb, ty: Type) -> Value {
|
||||
let arg = self.values.next_key();
|
||||
let num = self.ebbs[ebb].args.push(arg, &mut self.value_lists);
|
||||
assert!(num <= u16::MAX as usize, "Too many arguments to EBB");
|
||||
self.make_value(ValueData::Arg {
|
||||
/// Append a parameter with type `ty` to `ebb`.
|
||||
pub fn append_ebb_param(&mut self, ebb: Ebb, ty: Type) -> Value {
|
||||
let param = self.values.next_key();
|
||||
let num = self.ebbs[ebb].params.push(param, &mut self.value_lists);
|
||||
assert!(num <= u16::MAX as usize, "Too many parameters on EBB");
|
||||
self.make_value(ValueData::Param {
|
||||
ty,
|
||||
num: num as u16,
|
||||
ebb,
|
||||
})
|
||||
}
|
||||
|
||||
/// Removes `val` from `ebb`'s argument by swapping it with the last argument of `ebb`.
|
||||
/// Removes `val` from `ebb`'s parameters by swapping it with the last parameter on `ebb`.
|
||||
/// Returns the position of `val` before removal.
|
||||
///
|
||||
/// *Important*: to ensure O(1) deletion, this method swaps the removed argument with the
|
||||
/// last `Ebb` argument. This can disrupt all the branch instructions jumping to this
|
||||
/// `Ebb` for which you have to change the jump argument order if necessary.
|
||||
/// *Important*: to ensure O(1) deletion, this method swaps the removed parameter with the
|
||||
/// last `ebb`` parameter. This can disrupt all the branch instructions jumping to this
|
||||
/// `ebb` for which you have to change the branch argument order if necessary.
|
||||
///
|
||||
/// Panics if `val` is not an `Ebb` argument. Returns `true` if `Ebb` arguments have been
|
||||
/// swapped.
|
||||
pub fn swap_remove_ebb_arg(&mut self, val: Value) -> usize {
|
||||
let (ebb, num) = if let ValueData::Arg { num, ebb, .. } = self.values[val] {
|
||||
/// Panics if `val` is not an EBB parameter.
|
||||
pub fn swap_remove_ebb_param(&mut self, val: Value) -> usize {
|
||||
let (ebb, num) = if let ValueData::Param { num, ebb, .. } = self.values[val] {
|
||||
(ebb, num)
|
||||
} else {
|
||||
panic!("{} must be an EBB argument", val);
|
||||
panic!("{} must be an EBB parameter", val);
|
||||
};
|
||||
self.ebbs[ebb].args.swap_remove(
|
||||
self.ebbs[ebb].params.swap_remove(
|
||||
num as usize,
|
||||
&mut self.value_lists,
|
||||
);
|
||||
if let Some(last_arg_val) = self.ebbs[ebb].args.get(num as usize, &self.value_lists) {
|
||||
if let Some(last_arg_val) = self.ebbs[ebb].params.get(num as usize, &self.value_lists) {
|
||||
// We update the position of the old last arg.
|
||||
if let ValueData::Arg { num: ref mut old_num, .. } = self.values[last_arg_val] {
|
||||
if let ValueData::Param { num: ref mut old_num, .. } = self.values[last_arg_val] {
|
||||
*old_num = num;
|
||||
} else {
|
||||
panic!("{} should be an Ebb argument but is not", last_arg_val);
|
||||
panic!("{} should be an Ebb parameter", last_arg_val);
|
||||
}
|
||||
}
|
||||
num as usize
|
||||
}
|
||||
|
||||
/// Removes `val` from `ebb`'s arguments by a standard linear time list removal which preserves
|
||||
/// ordering. Also updates the values' data.
|
||||
pub fn remove_ebb_arg(&mut self, val: Value) {
|
||||
let (ebb, num) = if let ValueData::Arg { num, ebb, .. } = self.values[val] {
|
||||
/// Removes `val` from `ebb`'s parameters by a standard linear time list removal which
|
||||
/// preserves ordering. Also updates the values' data.
|
||||
pub fn remove_ebb_param(&mut self, val: Value) {
|
||||
let (ebb, num) = if let ValueData::Param { num, ebb, .. } = self.values[val] {
|
||||
(ebb, num)
|
||||
} else {
|
||||
panic!("{} must be an EBB argument", val);
|
||||
panic!("{} must be an EBB parameter", val);
|
||||
};
|
||||
self.ebbs[ebb].args.remove(
|
||||
self.ebbs[ebb].params.remove(
|
||||
num as usize,
|
||||
&mut self.value_lists,
|
||||
);
|
||||
for index in num..(self.ebb_args(ebb).len() as u16) {
|
||||
for index in num..(self.num_ebb_params(ebb) as u16) {
|
||||
match self.values[self.ebbs[ebb]
|
||||
.args
|
||||
.params
|
||||
.get(index as usize, &self.value_lists)
|
||||
.unwrap()] {
|
||||
ValueData::Arg { ref mut num, .. } => {
|
||||
ValueData::Param { ref mut num, .. } => {
|
||||
*num -= 1;
|
||||
}
|
||||
_ => {
|
||||
panic!(
|
||||
"{} must be an EBB argument",
|
||||
"{} must be an EBB parameter",
|
||||
self.ebbs[ebb]
|
||||
.args
|
||||
.params
|
||||
.get(index as usize, &self.value_lists)
|
||||
.unwrap()
|
||||
)
|
||||
@@ -764,73 +764,73 @@ impl DataFlowGraph {
|
||||
}
|
||||
|
||||
|
||||
/// Append an existing argument value to `ebb`.
|
||||
/// Append an existing value to `ebb`'s parameters.
|
||||
///
|
||||
/// The appended value can't already be attached to something else.
|
||||
///
|
||||
/// In almost all cases, you should be using `append_ebb_arg()` instead of this method.
|
||||
pub fn attach_ebb_arg(&mut self, ebb: Ebb, arg: Value) {
|
||||
assert!(!self.value_is_attached(arg));
|
||||
let num = self.ebbs[ebb].args.push(arg, &mut self.value_lists);
|
||||
assert!(num <= u16::MAX as usize, "Too many arguments to EBB");
|
||||
let ty = self.value_type(arg);
|
||||
self.values[arg] = ValueData::Arg {
|
||||
/// In almost all cases, you should be using `append_ebb_param()` instead of this method.
|
||||
pub fn attach_ebb_param(&mut self, ebb: Ebb, param: Value) {
|
||||
assert!(!self.value_is_attached(param));
|
||||
let num = self.ebbs[ebb].params.push(param, &mut self.value_lists);
|
||||
assert!(num <= u16::MAX as usize, "Too many parameters on EBB");
|
||||
let ty = self.value_type(param);
|
||||
self.values[param] = ValueData::Param {
|
||||
ty,
|
||||
num: num as u16,
|
||||
ebb,
|
||||
};
|
||||
}
|
||||
|
||||
/// Replace an EBB argument with a new value of type `ty`.
|
||||
/// Replace an EBB parameter with a new value of type `ty`.
|
||||
///
|
||||
/// The `old_value` must be an attached EBB argument. It is removed from its place in the list
|
||||
/// of arguments and replaced by a new value of type `new_type`. The new value gets the same
|
||||
/// position in the list, and other arguments are not disturbed.
|
||||
/// The `old_value` must be an attached EBB parameter. It is removed from its place in the list
|
||||
/// of parameters and replaced by a new value of type `new_type`. The new value gets the same
|
||||
/// position in the list, and other parameters are not disturbed.
|
||||
///
|
||||
/// The old value is left detached, so it should probably be changed into something else.
|
||||
///
|
||||
/// Returns the new value.
|
||||
pub fn replace_ebb_arg(&mut self, old_arg: Value, new_type: Type) -> Value {
|
||||
pub fn replace_ebb_param(&mut self, old_value: Value, new_type: Type) -> Value {
|
||||
// Create new value identical to the old one except for the type.
|
||||
let (ebb, num) = if let ValueData::Arg { num, ebb, .. } = self.values[old_arg] {
|
||||
let (ebb, num) = if let ValueData::Param { num, ebb, .. } = self.values[old_value] {
|
||||
(ebb, num)
|
||||
} else {
|
||||
panic!("{} must be an EBB argument", old_arg);
|
||||
panic!("{} must be an EBB parameter", old_value);
|
||||
};
|
||||
let new_arg = self.make_value(ValueData::Arg {
|
||||
let new_arg = self.make_value(ValueData::Param {
|
||||
ty: new_type,
|
||||
num,
|
||||
ebb,
|
||||
});
|
||||
|
||||
self.ebbs[ebb].args.as_mut_slice(&mut self.value_lists)[num as usize] = new_arg;
|
||||
self.ebbs[ebb].params.as_mut_slice(&mut self.value_lists)[num as usize] = new_arg;
|
||||
new_arg
|
||||
}
|
||||
|
||||
/// Detach all the arguments from `ebb` and return them as a `ValueList`.
|
||||
/// Detach all the parameters from `ebb` and return them as a `ValueList`.
|
||||
///
|
||||
/// This is a quite low-level operation. Sensible things to do with the detached EBB arguments
|
||||
/// is to put them back on the same EBB with `attach_ebb_arg()` or change them into aliases
|
||||
/// This is a quite low-level operation. Sensible things to do with the detached EBB parameters
|
||||
/// is to put them back on the same EBB with `attach_ebb_param()` or change them into aliases
|
||||
/// with `change_to_alias()`.
|
||||
pub fn detach_ebb_args(&mut self, ebb: Ebb) -> ValueList {
|
||||
self.ebbs[ebb].args.take()
|
||||
pub fn detach_ebb_params(&mut self, ebb: Ebb) -> ValueList {
|
||||
self.ebbs[ebb].params.take()
|
||||
}
|
||||
}
|
||||
|
||||
// Contents of an extended basic block.
|
||||
//
|
||||
// Arguments for an extended basic block are values that dominate everything in the EBB. All
|
||||
// Parameters on an extended basic block are values that dominate everything in the EBB. All
|
||||
// branches to this EBB must provide matching arguments, and the arguments to the entry EBB must
|
||||
// match the function arguments.
|
||||
#[derive(Clone)]
|
||||
struct EbbData {
|
||||
// List of arguments to this EBB.
|
||||
args: ValueList,
|
||||
// List of parameters to this EBB.
|
||||
params: ValueList,
|
||||
}
|
||||
|
||||
impl EbbData {
|
||||
fn new() -> EbbData {
|
||||
EbbData { args: ValueList::new() }
|
||||
EbbData { params: ValueList::new() }
|
||||
}
|
||||
}
|
||||
|
||||
@@ -899,7 +899,7 @@ mod tests {
|
||||
let val = dfg.first_result(inst);
|
||||
assert_eq!(dfg.inst_results(inst), &[val]);
|
||||
|
||||
assert_eq!(dfg.value_def(val), ValueDef::Res(inst, 0));
|
||||
assert_eq!(dfg.value_def(val), ValueDef::Result(inst, 0));
|
||||
assert_eq!(dfg.value_type(val), types::I32);
|
||||
|
||||
// Replacing results.
|
||||
@@ -908,7 +908,7 @@ mod tests {
|
||||
assert!(!dfg.value_is_attached(val));
|
||||
assert!(dfg.value_is_attached(v2));
|
||||
assert_eq!(dfg.inst_results(inst), &[v2]);
|
||||
assert_eq!(dfg.value_def(v2), ValueDef::Res(inst, 0));
|
||||
assert_eq!(dfg.value_def(v2), ValueDef::Result(inst, 0));
|
||||
assert_eq!(dfg.value_type(v2), types::F64);
|
||||
}
|
||||
|
||||
@@ -933,90 +933,90 @@ mod tests {
|
||||
|
||||
let ebb = dfg.make_ebb();
|
||||
assert_eq!(ebb.to_string(), "ebb0");
|
||||
assert_eq!(dfg.num_ebb_args(ebb), 0);
|
||||
assert_eq!(dfg.ebb_args(ebb), &[]);
|
||||
assert!(dfg.detach_ebb_args(ebb).is_empty());
|
||||
assert_eq!(dfg.num_ebb_args(ebb), 0);
|
||||
assert_eq!(dfg.ebb_args(ebb), &[]);
|
||||
assert_eq!(dfg.num_ebb_params(ebb), 0);
|
||||
assert_eq!(dfg.ebb_params(ebb), &[]);
|
||||
assert!(dfg.detach_ebb_params(ebb).is_empty());
|
||||
assert_eq!(dfg.num_ebb_params(ebb), 0);
|
||||
assert_eq!(dfg.ebb_params(ebb), &[]);
|
||||
|
||||
let arg1 = dfg.append_ebb_arg(ebb, types::F32);
|
||||
let arg1 = dfg.append_ebb_param(ebb, types::F32);
|
||||
assert_eq!(arg1.to_string(), "v0");
|
||||
assert_eq!(dfg.num_ebb_args(ebb), 1);
|
||||
assert_eq!(dfg.ebb_args(ebb), &[arg1]);
|
||||
assert_eq!(dfg.num_ebb_params(ebb), 1);
|
||||
assert_eq!(dfg.ebb_params(ebb), &[arg1]);
|
||||
|
||||
let arg2 = dfg.append_ebb_arg(ebb, types::I16);
|
||||
let arg2 = dfg.append_ebb_param(ebb, types::I16);
|
||||
assert_eq!(arg2.to_string(), "v1");
|
||||
assert_eq!(dfg.num_ebb_args(ebb), 2);
|
||||
assert_eq!(dfg.ebb_args(ebb), &[arg1, arg2]);
|
||||
assert_eq!(dfg.num_ebb_params(ebb), 2);
|
||||
assert_eq!(dfg.ebb_params(ebb), &[arg1, arg2]);
|
||||
|
||||
assert_eq!(dfg.value_def(arg1), ValueDef::Arg(ebb, 0));
|
||||
assert_eq!(dfg.value_def(arg2), ValueDef::Arg(ebb, 1));
|
||||
assert_eq!(dfg.value_def(arg1), ValueDef::Param(ebb, 0));
|
||||
assert_eq!(dfg.value_def(arg2), ValueDef::Param(ebb, 1));
|
||||
assert_eq!(dfg.value_type(arg1), types::F32);
|
||||
assert_eq!(dfg.value_type(arg2), types::I16);
|
||||
|
||||
// Swap the two EBB arguments.
|
||||
let vlist = dfg.detach_ebb_args(ebb);
|
||||
assert_eq!(dfg.num_ebb_args(ebb), 0);
|
||||
assert_eq!(dfg.ebb_args(ebb), &[]);
|
||||
// Swap the two EBB parameters.
|
||||
let vlist = dfg.detach_ebb_params(ebb);
|
||||
assert_eq!(dfg.num_ebb_params(ebb), 0);
|
||||
assert_eq!(dfg.ebb_params(ebb), &[]);
|
||||
assert_eq!(vlist.as_slice(&dfg.value_lists), &[arg1, arg2]);
|
||||
dfg.attach_ebb_arg(ebb, arg2);
|
||||
let arg3 = dfg.append_ebb_arg(ebb, types::I32);
|
||||
dfg.attach_ebb_arg(ebb, arg1);
|
||||
assert_eq!(dfg.ebb_args(ebb), &[arg2, arg3, arg1]);
|
||||
dfg.attach_ebb_param(ebb, arg2);
|
||||
let arg3 = dfg.append_ebb_param(ebb, types::I32);
|
||||
dfg.attach_ebb_param(ebb, arg1);
|
||||
assert_eq!(dfg.ebb_params(ebb), &[arg2, arg3, arg1]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn replace_ebb_arguments() {
|
||||
fn replace_ebb_params() {
|
||||
let mut dfg = DataFlowGraph::new();
|
||||
|
||||
let ebb = dfg.make_ebb();
|
||||
let arg1 = dfg.append_ebb_arg(ebb, types::F32);
|
||||
let arg1 = dfg.append_ebb_param(ebb, types::F32);
|
||||
|
||||
let new1 = dfg.replace_ebb_arg(arg1, types::I64);
|
||||
let new1 = dfg.replace_ebb_param(arg1, types::I64);
|
||||
assert_eq!(dfg.value_type(arg1), types::F32);
|
||||
assert_eq!(dfg.value_type(new1), types::I64);
|
||||
assert_eq!(dfg.ebb_args(ebb), &[new1]);
|
||||
assert_eq!(dfg.ebb_params(ebb), &[new1]);
|
||||
|
||||
dfg.attach_ebb_arg(ebb, arg1);
|
||||
assert_eq!(dfg.ebb_args(ebb), &[new1, arg1]);
|
||||
dfg.attach_ebb_param(ebb, arg1);
|
||||
assert_eq!(dfg.ebb_params(ebb), &[new1, arg1]);
|
||||
|
||||
let new2 = dfg.replace_ebb_arg(arg1, types::I8);
|
||||
let new2 = dfg.replace_ebb_param(arg1, types::I8);
|
||||
assert_eq!(dfg.value_type(arg1), types::F32);
|
||||
assert_eq!(dfg.value_type(new2), types::I8);
|
||||
assert_eq!(dfg.ebb_args(ebb), &[new1, new2]);
|
||||
assert_eq!(dfg.ebb_params(ebb), &[new1, new2]);
|
||||
|
||||
dfg.attach_ebb_arg(ebb, arg1);
|
||||
assert_eq!(dfg.ebb_args(ebb), &[new1, new2, arg1]);
|
||||
dfg.attach_ebb_param(ebb, arg1);
|
||||
assert_eq!(dfg.ebb_params(ebb), &[new1, new2, arg1]);
|
||||
|
||||
let new3 = dfg.replace_ebb_arg(new2, types::I16);
|
||||
let new3 = dfg.replace_ebb_param(new2, types::I16);
|
||||
assert_eq!(dfg.value_type(new1), types::I64);
|
||||
assert_eq!(dfg.value_type(new2), types::I8);
|
||||
assert_eq!(dfg.value_type(new3), types::I16);
|
||||
assert_eq!(dfg.ebb_args(ebb), &[new1, new3, arg1]);
|
||||
assert_eq!(dfg.ebb_params(ebb), &[new1, new3, arg1]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn swap_remove_ebb_arguments() {
|
||||
fn swap_remove_ebb_params() {
|
||||
let mut dfg = DataFlowGraph::new();
|
||||
|
||||
let ebb = dfg.make_ebb();
|
||||
let arg1 = dfg.append_ebb_arg(ebb, types::F32);
|
||||
let arg2 = dfg.append_ebb_arg(ebb, types::F32);
|
||||
let arg3 = dfg.append_ebb_arg(ebb, types::F32);
|
||||
assert_eq!(dfg.ebb_args(ebb), &[arg1, arg2, arg3]);
|
||||
let arg1 = dfg.append_ebb_param(ebb, types::F32);
|
||||
let arg2 = dfg.append_ebb_param(ebb, types::F32);
|
||||
let arg3 = dfg.append_ebb_param(ebb, types::F32);
|
||||
assert_eq!(dfg.ebb_params(ebb), &[arg1, arg2, arg3]);
|
||||
|
||||
dfg.swap_remove_ebb_arg(arg1);
|
||||
dfg.swap_remove_ebb_param(arg1);
|
||||
assert_eq!(dfg.value_is_attached(arg1), false);
|
||||
assert_eq!(dfg.value_is_attached(arg2), true);
|
||||
assert_eq!(dfg.value_is_attached(arg3), true);
|
||||
assert_eq!(dfg.ebb_args(ebb), &[arg3, arg2]);
|
||||
dfg.swap_remove_ebb_arg(arg2);
|
||||
assert_eq!(dfg.ebb_params(ebb), &[arg3, arg2]);
|
||||
dfg.swap_remove_ebb_param(arg2);
|
||||
assert_eq!(dfg.value_is_attached(arg2), false);
|
||||
assert_eq!(dfg.value_is_attached(arg3), true);
|
||||
assert_eq!(dfg.ebb_args(ebb), &[arg3]);
|
||||
dfg.swap_remove_ebb_arg(arg3);
|
||||
assert_eq!(dfg.ebb_params(ebb), &[arg3]);
|
||||
dfg.swap_remove_ebb_param(arg3);
|
||||
assert_eq!(dfg.value_is_attached(arg3), false);
|
||||
assert_eq!(dfg.ebb_args(ebb), &[]);
|
||||
assert_eq!(dfg.ebb_params(ebb), &[]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -1035,10 +1035,10 @@ mod tests {
|
||||
// Make sure we can resolve value aliases even when values is empty.
|
||||
assert_eq!(pos.func.dfg.resolve_aliases(v1), v1);
|
||||
|
||||
let arg0 = pos.func.dfg.append_ebb_arg(ebb0, types::I32);
|
||||
let arg0 = pos.func.dfg.append_ebb_param(ebb0, types::I32);
|
||||
let (s, c) = pos.ins().iadd_cout(v1, arg0);
|
||||
let iadd = match pos.func.dfg.value_def(s) {
|
||||
ValueDef::Res(i, 0) => i,
|
||||
ValueDef::Result(i, 0) => i,
|
||||
_ => panic!(),
|
||||
};
|
||||
|
||||
|
||||
@@ -150,7 +150,7 @@ impl Function {
|
||||
pub fn special_arg(&self, purpose: ir::ArgumentPurpose) -> Option<ir::Value> {
|
||||
let entry = self.layout.entry_block().expect("Function is empty");
|
||||
self.signature.special_arg_index(purpose).map(|i| {
|
||||
self.dfg.ebb_args(entry)[i]
|
||||
self.dfg.ebb_params(entry)[i]
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
@@ -35,8 +35,8 @@ impl From<Ebb> for ProgramPoint {
|
||||
impl From<ValueDef> for ProgramPoint {
|
||||
fn from(def: ValueDef) -> ProgramPoint {
|
||||
match def {
|
||||
ValueDef::Res(inst, _) => inst.into(),
|
||||
ValueDef::Arg(ebb, _) => ebb.into(),
|
||||
ValueDef::Result(inst, _) => inst.into(),
|
||||
ValueDef::Param(ebb, _) => ebb.into(),
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -66,8 +66,8 @@ impl From<Ebb> for ExpandedProgramPoint {
|
||||
impl From<ValueDef> for ExpandedProgramPoint {
|
||||
fn from(def: ValueDef) -> ExpandedProgramPoint {
|
||||
match def {
|
||||
ValueDef::Res(inst, _) => inst.into(),
|
||||
ValueDef::Arg(ebb, _) => ebb.into(),
|
||||
ValueDef::Result(inst, _) => inst.into(),
|
||||
ValueDef::Param(ebb, _) => ebb.into(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -37,7 +37,7 @@ fn expand_srem(inst: ir::Inst, func: &mut ir::Function, cfg: &mut ControlFlowGra
|
||||
let result = func.dfg.first_result(inst);
|
||||
let ty = func.dfg.value_type(result);
|
||||
func.dfg.clear_results(inst);
|
||||
func.dfg.attach_ebb_arg(done, result);
|
||||
func.dfg.attach_ebb_param(done, result);
|
||||
|
||||
let mut pos = FuncCursor::new(func).at_inst(inst);
|
||||
pos.use_srcloc(inst);
|
||||
@@ -112,7 +112,7 @@ fn expand_minmax(inst: ir::Inst, func: &mut ir::Function, cfg: &mut ControlFlowG
|
||||
let result = func.dfg.first_result(inst);
|
||||
let ty = func.dfg.value_type(result);
|
||||
func.dfg.clear_results(inst);
|
||||
func.dfg.attach_ebb_arg(done, result);
|
||||
func.dfg.attach_ebb_param(done, result);
|
||||
|
||||
// Test for case 1) ordered and not equal.
|
||||
let mut pos = FuncCursor::new(func).at_inst(inst);
|
||||
@@ -194,7 +194,7 @@ fn expand_fcvt_from_uint(inst: ir::Inst, func: &mut ir::Function, cfg: &mut Cont
|
||||
|
||||
// Move the `inst` result value onto the `done` EBB.
|
||||
pos.func.dfg.clear_results(inst);
|
||||
pos.func.dfg.attach_ebb_arg(done, result);
|
||||
pos.func.dfg.attach_ebb_param(done, result);
|
||||
|
||||
// If x as a signed int is not negative, we can use the existing `fcvt_from_sint` instruction.
|
||||
let is_neg = pos.ins().icmp_imm(IntCC::SignedLessThan, x, 0);
|
||||
@@ -328,7 +328,7 @@ fn expand_fcvt_to_uint(inst: ir::Inst, func: &mut ir::Function, cfg: &mut Contro
|
||||
|
||||
// Move the `inst` result value onto the `done` EBB.
|
||||
func.dfg.clear_results(inst);
|
||||
func.dfg.attach_ebb_arg(done, result);
|
||||
func.dfg.attach_ebb_param(done, result);
|
||||
|
||||
let mut pos = FuncCursor::new(func).at_inst(inst);
|
||||
pos.use_srcloc(inst);
|
||||
|
||||
@@ -136,8 +136,8 @@ mod tests {
|
||||
|
||||
let mut dfg = DataFlowGraph::new();
|
||||
let ebb = dfg.make_ebb();
|
||||
let arg64 = dfg.append_ebb_arg(ebb, types::I64);
|
||||
let arg32 = dfg.append_ebb_arg(ebb, types::I32);
|
||||
let arg64 = dfg.append_ebb_param(ebb, types::I64);
|
||||
let arg32 = dfg.append_ebb_param(ebb, types::I32);
|
||||
|
||||
// Try to encode iadd_imm.i64 v1, -10.
|
||||
let inst64 = InstructionData::BinaryImm {
|
||||
@@ -180,8 +180,8 @@ mod tests {
|
||||
|
||||
let mut dfg = DataFlowGraph::new();
|
||||
let ebb = dfg.make_ebb();
|
||||
let arg64 = dfg.append_ebb_arg(ebb, types::I64);
|
||||
let arg32 = dfg.append_ebb_arg(ebb, types::I32);
|
||||
let arg64 = dfg.append_ebb_param(ebb, types::I64);
|
||||
let arg32 = dfg.append_ebb_param(ebb, types::I32);
|
||||
|
||||
// Try to encode iadd_imm.i64 v1, -10.
|
||||
let inst64 = InstructionData::BinaryImm {
|
||||
@@ -237,7 +237,7 @@ mod tests {
|
||||
|
||||
let mut dfg = DataFlowGraph::new();
|
||||
let ebb = dfg.make_ebb();
|
||||
let arg32 = dfg.append_ebb_arg(ebb, types::I32);
|
||||
let arg32 = dfg.append_ebb_param(ebb, types::I32);
|
||||
|
||||
// Create an imul.i32 which is encodable in RV32M.
|
||||
let mul32 = InstructionData::Binary {
|
||||
|
||||
@@ -67,11 +67,11 @@ fn legalize_entry_arguments(func: &mut Function, entry: Ebb) {
|
||||
// Keep track of the argument types in the ABI-legalized signature.
|
||||
let mut abi_arg = 0;
|
||||
|
||||
// Process the EBB arguments one at a time, possibly replacing one argument with multiple new
|
||||
// ones. We do this by detaching the entry EBB arguments first.
|
||||
let ebb_args = pos.func.dfg.detach_ebb_args(entry);
|
||||
// Process the EBB parameters one at a time, possibly replacing one argument with multiple new
|
||||
// ones. We do this by detaching the entry EBB parameters first.
|
||||
let ebb_params = pos.func.dfg.detach_ebb_params(entry);
|
||||
let mut old_arg = 0;
|
||||
while let Some(arg) = ebb_args.get(old_arg, &pos.func.dfg.value_lists) {
|
||||
while let Some(arg) = ebb_params.get(old_arg, &pos.func.dfg.value_lists) {
|
||||
old_arg += 1;
|
||||
|
||||
let abi_type = pos.func.signature.argument_types[abi_arg];
|
||||
@@ -79,7 +79,7 @@ fn legalize_entry_arguments(func: &mut Function, entry: Ebb) {
|
||||
if arg_type == abi_type.value_type {
|
||||
// No value translation is necessary, this argument matches the ABI type.
|
||||
// Just use the original EBB argument value. This is the most common case.
|
||||
pos.func.dfg.attach_ebb_arg(entry, arg);
|
||||
pos.func.dfg.attach_ebb_param(entry, arg);
|
||||
match abi_type.purpose {
|
||||
ArgumentPurpose::Normal => {}
|
||||
ArgumentPurpose::StructReturn => {
|
||||
@@ -108,7 +108,7 @@ fn legalize_entry_arguments(func: &mut Function, entry: Ebb) {
|
||||
);
|
||||
if ty == abi_type.value_type {
|
||||
abi_arg += 1;
|
||||
Ok(func.dfg.append_ebb_arg(entry, ty))
|
||||
Ok(func.dfg.append_ebb_param(entry, ty))
|
||||
} else {
|
||||
Err(abi_type)
|
||||
}
|
||||
@@ -155,7 +155,7 @@ fn legalize_entry_arguments(func: &mut Function, entry: Ebb) {
|
||||
|
||||
// Just create entry block values to match here. We will use them in `handle_return_abi()`
|
||||
// below.
|
||||
pos.func.dfg.append_ebb_arg(entry, arg.value_type);
|
||||
pos.func.dfg.append_ebb_param(entry, arg.value_type);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -584,7 +584,7 @@ pub fn handle_return_abi(inst: Inst, func: &mut Function, cfg: &ControlFlowGraph
|
||||
.expect("No matching special purpose argument.");
|
||||
// Get the corresponding entry block value and add it to the return instruction's
|
||||
// arguments.
|
||||
let val = pos.func.dfg.ebb_args(
|
||||
let val = pos.func.dfg.ebb_params(
|
||||
pos.func.layout.entry_block().unwrap(),
|
||||
)
|
||||
[idx];
|
||||
@@ -611,7 +611,9 @@ pub fn handle_return_abi(inst: Inst, func: &mut Function, cfg: &ControlFlowGraph
|
||||
/// stack slot already during legalization.
|
||||
fn spill_entry_arguments(func: &mut Function, entry: Ebb) {
|
||||
for (abi, &arg) in func.signature.argument_types.iter().zip(
|
||||
func.dfg.ebb_args(entry),
|
||||
func.dfg.ebb_params(
|
||||
entry,
|
||||
),
|
||||
)
|
||||
{
|
||||
if let ArgumentLoc::Stack(offset) = abi.location {
|
||||
|
||||
@@ -26,19 +26,10 @@ pub fn expand_global_addr(inst: ir::Inst, func: &mut ir::Function, _cfg: &mut Co
|
||||
|
||||
/// Expand a `global_addr` instruction for a vmctx global.
|
||||
fn vmctx_addr(inst: ir::Inst, func: &mut ir::Function, offset: i64) {
|
||||
// Find the incoming `vmctx` function argument. Start searching from the back since the special
|
||||
// arguments are appended by signature legalization.
|
||||
//
|
||||
// This argument must exist; `vmctx` global variables can not be used in functions with calling
|
||||
// conventions that don't add a `vmctx` argument.
|
||||
let argidx = func.signature
|
||||
.argument_types
|
||||
.iter()
|
||||
.rposition(|abi| abi.purpose == ir::ArgumentPurpose::VMContext)
|
||||
.expect("Need vmctx argument for vmctx global");
|
||||
|
||||
// Get the value representing the `vmctx` argument.
|
||||
let vmctx = func.dfg.ebb_args(func.layout.entry_block().unwrap())[argidx];
|
||||
let vmctx = func.special_arg(ir::ArgumentPurpose::VMContext).expect(
|
||||
"Missing vmctx parameter",
|
||||
);
|
||||
|
||||
// Simply replace the `global_addr` instruction with an `iadd_imm`, reusing the result value.
|
||||
func.dfg.replace(inst).iadd_imm(vmctx, offset);
|
||||
|
||||
@@ -201,7 +201,7 @@ fn expand_select(inst: ir::Inst, func: &mut ir::Function, cfg: &mut ControlFlowG
|
||||
let result = func.dfg.first_result(inst);
|
||||
func.dfg.clear_results(inst);
|
||||
let new_ebb = func.dfg.make_ebb();
|
||||
func.dfg.attach_ebb_arg(new_ebb, result);
|
||||
func.dfg.attach_ebb_param(new_ebb, result);
|
||||
|
||||
func.dfg.replace(inst).brnz(ctrl, new_ebb, &[tval]);
|
||||
let mut pos = FuncCursor::new(func).after_inst(inst);
|
||||
|
||||
@@ -194,7 +194,7 @@ fn split_value(
|
||||
let mut reuse = None;
|
||||
|
||||
match pos.func.dfg.value_def(value) {
|
||||
ValueDef::Res(inst, num) => {
|
||||
ValueDef::Result(inst, num) => {
|
||||
// This is an instruction result. See if the value was created by a `concat`
|
||||
// instruction.
|
||||
if let InstructionData::Binary { opcode, args, .. } = pos.func.dfg[inst] {
|
||||
@@ -204,11 +204,11 @@ fn split_value(
|
||||
}
|
||||
}
|
||||
}
|
||||
ValueDef::Arg(ebb, num) => {
|
||||
// This is an EBB argument. We can split the argument value unless this is the entry
|
||||
ValueDef::Param(ebb, num) => {
|
||||
// This is an EBB parameter. We can split the parameter value unless this is the entry
|
||||
// block.
|
||||
if pos.func.layout.entry_block() != Some(ebb) {
|
||||
// We are going to replace the argument at `num` with two new arguments.
|
||||
// We are going to replace the parameter at `num` with two new arguments.
|
||||
// Determine the new value types.
|
||||
let ty = pos.func.dfg.value_type(value);
|
||||
let split_type = match concat {
|
||||
@@ -217,20 +217,20 @@ fn split_value(
|
||||
_ => panic!("Unhandled concat opcode: {}", concat),
|
||||
};
|
||||
|
||||
// Since the `repairs` stack potentially contains other argument numbers for `ebb`,
|
||||
// avoid shifting and renumbering EBB arguments. It could invalidate other
|
||||
// Since the `repairs` stack potentially contains other parameter numbers for
|
||||
// `ebb`, avoid shifting and renumbering EBB parameters. It could invalidate other
|
||||
// `repairs` entries.
|
||||
//
|
||||
// Replace the original `value` with the low part, and append the high part at the
|
||||
// end of the argument list.
|
||||
let lo = pos.func.dfg.replace_ebb_arg(value, split_type);
|
||||
let hi_num = pos.func.dfg.num_ebb_args(ebb);
|
||||
let hi = pos.func.dfg.append_ebb_arg(ebb, split_type);
|
||||
let lo = pos.func.dfg.replace_ebb_param(value, split_type);
|
||||
let hi_num = pos.func.dfg.num_ebb_params(ebb);
|
||||
let hi = pos.func.dfg.append_ebb_param(ebb, split_type);
|
||||
reuse = Some((lo, hi));
|
||||
|
||||
|
||||
// Now the original value is dangling. Insert a concatenation instruction that can
|
||||
// compute it from the two new arguments. This also serves as a record of what we
|
||||
// compute it from the two new parameters. This also serves as a record of what we
|
||||
// did so a future call to this function doesn't have to redo the work.
|
||||
//
|
||||
// Note that it is safe to move `pos` here since `reuse` was set above, so we don't
|
||||
@@ -243,7 +243,7 @@ fn split_value(
|
||||
hi,
|
||||
);
|
||||
|
||||
// Finally, splitting the EBB argument is not enough. We also have to repair all
|
||||
// Finally, splitting the EBB parameter is not enough. We also have to repair all
|
||||
// of the predecessor instructions that branch here.
|
||||
add_repair(concat, split_type, ebb, num, hi_num, repairs);
|
||||
}
|
||||
@@ -299,7 +299,7 @@ fn resolve_splits(dfg: &ir::DataFlowGraph, value: Value) -> Value {
|
||||
let split_res;
|
||||
let concat_opc;
|
||||
let split_arg;
|
||||
if let ValueDef::Res(inst, num) = dfg.value_def(value) {
|
||||
if let ValueDef::Result(inst, num) = dfg.value_def(value) {
|
||||
split_res = num;
|
||||
concat_opc = match dfg[inst].opcode() {
|
||||
Opcode::Isplit => Opcode::Iconcat,
|
||||
@@ -312,7 +312,7 @@ fn resolve_splits(dfg: &ir::DataFlowGraph, value: Value) -> Value {
|
||||
}
|
||||
|
||||
// See if split_arg is defined by a concatenation instruction.
|
||||
if let ValueDef::Res(inst, _) = dfg.value_def(split_arg) {
|
||||
if let ValueDef::Result(inst, _) = dfg.value_def(split_arg) {
|
||||
if dfg[inst].opcode() == concat_opc {
|
||||
return dfg.inst_args(inst)[split_res];
|
||||
}
|
||||
|
||||
@@ -63,7 +63,7 @@ fn create_pre_header(
|
||||
domtree: &DominatorTree,
|
||||
) -> Ebb {
|
||||
let pool = &mut ListPool::<Value>::new();
|
||||
let header_args_values: Vec<Value> = func.dfg.ebb_args(header).into_iter().cloned().collect();
|
||||
let header_args_values: Vec<Value> = func.dfg.ebb_params(header).into_iter().cloned().collect();
|
||||
let header_args_types: Vec<Type> = header_args_values
|
||||
.clone()
|
||||
.into_iter()
|
||||
@@ -72,7 +72,7 @@ fn create_pre_header(
|
||||
let pre_header = func.dfg.make_ebb();
|
||||
let mut pre_header_args_value: EntityList<Value> = EntityList::new();
|
||||
for typ in header_args_types {
|
||||
pre_header_args_value.push(func.dfg.append_ebb_arg(pre_header, typ), pool);
|
||||
pre_header_args_value.push(func.dfg.append_ebb_param(pre_header, typ), pool);
|
||||
}
|
||||
for &(_, last_inst) in cfg.get_predecessors(header) {
|
||||
// We only follow normal edges (not the back edges)
|
||||
@@ -143,7 +143,7 @@ fn remove_loop_invariant_instructions(
|
||||
// We traverse the loop EBB in reverse post-order.
|
||||
for ebb in postorder_ebbs_loop(loop_analysis, cfg, lp).iter().rev() {
|
||||
// Arguments of the EBB are loop values
|
||||
for val in pos.func.dfg.ebb_args(*ebb) {
|
||||
for val in pos.func.dfg.ebb_params(*ebb) {
|
||||
loop_values.insert(*val);
|
||||
}
|
||||
pos.goto_top(*ebb);
|
||||
|
||||
@@ -236,7 +236,7 @@ mod test {
|
||||
let ebb1 = func.dfg.make_ebb();
|
||||
let ebb2 = func.dfg.make_ebb();
|
||||
let ebb3 = func.dfg.make_ebb();
|
||||
let cond = func.dfg.append_ebb_arg(ebb0, types::I32);
|
||||
let cond = func.dfg.append_ebb_param(ebb0, types::I32);
|
||||
|
||||
{
|
||||
let mut cur = FuncCursor::new(&mut func);
|
||||
@@ -288,7 +288,7 @@ mod test {
|
||||
let ebb3 = func.dfg.make_ebb();
|
||||
let ebb4 = func.dfg.make_ebb();
|
||||
let ebb5 = func.dfg.make_ebb();
|
||||
let cond = func.dfg.append_ebb_arg(ebb0, types::I32);
|
||||
let cond = func.dfg.append_ebb_param(ebb0, types::I32);
|
||||
|
||||
{
|
||||
let mut cur = FuncCursor::new(&mut func);
|
||||
|
||||
@@ -2,8 +2,8 @@
|
||||
//!
|
||||
//! Conventional SSA form is a subset of SSA form where any (transitively) phi-related values do
|
||||
//! not interfere. We construct CSSA by building virtual registers that are as large as possible
|
||||
//! and inserting copies where necessary such that all values passed to an EBB argument will belong
|
||||
//! to the same virtual register as the EBB argument value itself.
|
||||
//! and inserting copies where necessary such that all argument values passed to an EBB parameter
|
||||
//! will belong to the same virtual register as the EBB parameter value itself.
|
||||
|
||||
use cursor::{Cursor, EncCursor};
|
||||
use dbg::DisplayList;
|
||||
@@ -289,8 +289,8 @@ impl Coalescing {
|
||||
for &ebb in domtree.cfg_postorder() {
|
||||
let preds = cfg.get_predecessors(ebb);
|
||||
if !preds.is_empty() {
|
||||
for argnum in 0..context.func.dfg.num_ebb_args(ebb) {
|
||||
context.coalesce_ebb_arg(ebb, argnum, preds)
|
||||
for argnum in 0..context.func.dfg.num_ebb_params(ebb) {
|
||||
context.coalesce_ebb_param(ebb, argnum, preds)
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -298,10 +298,10 @@ impl Coalescing {
|
||||
}
|
||||
|
||||
impl<'a> Context<'a> {
|
||||
/// Coalesce the `argnum`'th argument to `ebb`.
|
||||
fn coalesce_ebb_arg(&mut self, ebb: Ebb, argnum: usize, preds: &[BasicBlock]) {
|
||||
/// Coalesce the `argnum`'th parameter on `ebb`.
|
||||
fn coalesce_ebb_param(&mut self, ebb: Ebb, argnum: usize, preds: &[BasicBlock]) {
|
||||
self.split_values.clear();
|
||||
let mut succ_val = self.func.dfg.ebb_args(ebb)[argnum];
|
||||
let mut succ_val = self.func.dfg.ebb_params(ebb)[argnum];
|
||||
dbg!("Processing {}/{}: {}", ebb, argnum, succ_val);
|
||||
|
||||
// We want to merge the virtual register for `succ_val` with the virtual registers for
|
||||
@@ -421,7 +421,7 @@ impl<'a> Context<'a> {
|
||||
// Never coalesce incoming function arguments on the stack. These arguments are
|
||||
// pre-spilled, and the rest of the virtual register would be forced to spill to the
|
||||
// `incoming_arg` stack slot too.
|
||||
if let ValueDef::Arg(def_ebb, def_num) = self.func.dfg.value_def(pred_val) {
|
||||
if let ValueDef::Param(def_ebb, def_num) = self.func.dfg.value_def(pred_val) {
|
||||
if Some(def_ebb) == self.func.layout.entry_block() &&
|
||||
self.func.signature.argument_types[def_num]
|
||||
.location
|
||||
@@ -530,7 +530,7 @@ impl<'a> Context<'a> {
|
||||
/// Split the congruence class for the successor EBB value itself.
|
||||
fn split_succ(&mut self, ebb: Ebb, succ_val: Value) -> Value {
|
||||
let ty = self.func.dfg.value_type(succ_val);
|
||||
let new_val = self.func.dfg.replace_ebb_arg(succ_val, ty);
|
||||
let new_val = self.func.dfg.replace_ebb_param(succ_val, ty);
|
||||
|
||||
// Insert a copy instruction at the top of ebb.
|
||||
let mut pos = EncCursor::new(self.func, self.isa).at_first_inst(ebb);
|
||||
|
||||
@@ -409,7 +409,7 @@ impl<'a> Context<'a> {
|
||||
// If this is the first time we branch to `dest`, color its arguments to match the current
|
||||
// register state.
|
||||
if let Some(dest) = color_dest_args {
|
||||
self.color_ebb_arguments(inst, dest);
|
||||
self.color_ebb_params(inst, dest);
|
||||
}
|
||||
|
||||
// Apply the solution to the defs.
|
||||
@@ -556,7 +556,7 @@ impl<'a> Context<'a> {
|
||||
|
||||
// Now handle the EBB arguments.
|
||||
let br_args = self.cur.func.dfg.inst_variable_args(inst);
|
||||
let dest_args = self.cur.func.dfg.ebb_args(dest);
|
||||
let dest_args = self.cur.func.dfg.ebb_params(dest);
|
||||
assert_eq!(br_args.len(), dest_args.len());
|
||||
for (&dest_arg, &br_arg) in dest_args.iter().zip(br_args) {
|
||||
// The first time we encounter a branch to `dest`, we get to pick the location. The
|
||||
@@ -565,7 +565,7 @@ impl<'a> Context<'a> {
|
||||
ValueLoc::Unassigned => {
|
||||
// This is the first branch to `dest`, so we should color `dest_arg` instead of
|
||||
// `br_arg`. However, we don't know where `br_arg` will end up until
|
||||
// after `shuffle_inputs`. See `color_ebb_arguments` below.
|
||||
// after `shuffle_inputs`. See `color_ebb_params` below.
|
||||
//
|
||||
// It is possible for `dest_arg` to have no affinity, and then it should simply
|
||||
// be ignored.
|
||||
@@ -595,13 +595,13 @@ impl<'a> Context<'a> {
|
||||
false
|
||||
}
|
||||
|
||||
/// Knowing that we've never seen a branch to `dest` before, color its arguments to match our
|
||||
/// Knowing that we've never seen a branch to `dest` before, color its parameters to match our
|
||||
/// register state.
|
||||
///
|
||||
/// This function is only called when `program_ebb_arguments()` returned `true`.
|
||||
fn color_ebb_arguments(&mut self, inst: Inst, dest: Ebb) {
|
||||
fn color_ebb_params(&mut self, inst: Inst, dest: Ebb) {
|
||||
let br_args = self.cur.func.dfg.inst_variable_args(inst);
|
||||
let dest_args = self.cur.func.dfg.ebb_args(dest);
|
||||
let dest_args = self.cur.func.dfg.ebb_params(dest);
|
||||
assert_eq!(br_args.len(), dest_args.len());
|
||||
for (&dest_arg, &br_arg) in dest_args.iter().zip(br_args) {
|
||||
match self.cur.func.locations[dest_arg] {
|
||||
@@ -914,7 +914,7 @@ impl<'a> Context<'a> {
|
||||
}
|
||||
}
|
||||
|
||||
/// Replace all global values define by `inst` with local values that are then copied into the
|
||||
/// Replace all global values defined by `inst` with local values that are then copied into the
|
||||
/// global value:
|
||||
///
|
||||
/// v1 = foo
|
||||
@@ -938,7 +938,7 @@ impl<'a> Context<'a> {
|
||||
for lv in tracker.live_mut().iter_mut().rev() {
|
||||
// Keep going until we reach a value that is not defined by `inst`.
|
||||
if match self.cur.func.dfg.value_def(lv.value) {
|
||||
ValueDef::Res(i, _) => i != inst,
|
||||
ValueDef::Result(i, _) => i != inst,
|
||||
_ => true,
|
||||
}
|
||||
{
|
||||
|
||||
@@ -202,24 +202,22 @@ impl LiveValueTracker {
|
||||
}
|
||||
}
|
||||
|
||||
// Now add all the live arguments to `ebb`.
|
||||
// Now add all the live parameters to `ebb`.
|
||||
let first_arg = self.live.values.len();
|
||||
for &value in dfg.ebb_args(ebb) {
|
||||
let lr = liveness.get(value).expect(
|
||||
"EBB argument value has no live range",
|
||||
);
|
||||
for &value in dfg.ebb_params(ebb) {
|
||||
let lr = &liveness[value];
|
||||
assert_eq!(lr.def(), ebb.into());
|
||||
match lr.def_local_end().into() {
|
||||
ExpandedProgramPoint::Inst(endpoint) => {
|
||||
self.live.push(value, endpoint, lr);
|
||||
}
|
||||
ExpandedProgramPoint::Ebb(local_ebb) => {
|
||||
// This is a dead EBB argument which is not even live into the first
|
||||
// This is a dead EBB parameter which is not even live into the first
|
||||
// instruction in the EBB.
|
||||
assert_eq!(
|
||||
local_ebb,
|
||||
ebb,
|
||||
"EBB argument live range ends at wrong EBB header"
|
||||
"EBB parameter live range ends at wrong EBB header"
|
||||
);
|
||||
// Give this value a fake endpoint that is the first instruction in the EBB.
|
||||
// We expect it to be removed by calling `drop_dead_args()`.
|
||||
|
||||
@@ -205,7 +205,7 @@ fn get_or_create<'a>(
|
||||
let def;
|
||||
let affinity;
|
||||
match func.dfg.value_def(value) {
|
||||
ValueDef::Res(inst, rnum) => {
|
||||
ValueDef::Result(inst, rnum) => {
|
||||
def = inst.into();
|
||||
// Initialize the affinity from the defining instruction's result constraints.
|
||||
// Don't do this for call return values which are always tied to a single register.
|
||||
@@ -221,14 +221,14 @@ fn get_or_create<'a>(
|
||||
})
|
||||
.unwrap_or_default();
|
||||
}
|
||||
ValueDef::Arg(ebb, num) => {
|
||||
ValueDef::Param(ebb, num) => {
|
||||
def = ebb.into();
|
||||
if func.layout.entry_block() == Some(ebb) {
|
||||
// The affinity for entry block arguments can be inferred from the function
|
||||
// The affinity for entry block parameters can be inferred from the function
|
||||
// signature.
|
||||
affinity = Affinity::abi(&func.signature.argument_types[num], isa);
|
||||
} else {
|
||||
// Don't apply any affinity to normal EBB arguments.
|
||||
// Don't apply any affinity to normal EBB parameters.
|
||||
// They could be in a register or on the stack.
|
||||
affinity = Default::default();
|
||||
}
|
||||
@@ -290,8 +290,8 @@ pub struct Liveness {
|
||||
/// It lives here to avoid repeated allocation of scratch memory.
|
||||
worklist: Vec<Ebb>,
|
||||
|
||||
/// Working space for the `propagate_ebb_arguments` algorithm.
|
||||
ebb_args: Vec<Value>,
|
||||
/// Working space for the `propagate_ebb_params` algorithm.
|
||||
ebb_params: Vec<Value>,
|
||||
}
|
||||
|
||||
impl Liveness {
|
||||
@@ -303,7 +303,7 @@ impl Liveness {
|
||||
Liveness {
|
||||
ranges: LiveRangeSet::new(),
|
||||
worklist: Vec::new(),
|
||||
ebb_args: Vec::new(),
|
||||
ebb_params: Vec::new(),
|
||||
}
|
||||
}
|
||||
|
||||
@@ -378,10 +378,10 @@ impl Liveness {
|
||||
// elimination pass if we visit a post-order of the dominator tree?
|
||||
// TODO: Resolve value aliases while we're visiting instructions?
|
||||
for ebb in func.layout.ebbs() {
|
||||
// Make sure we have created live ranges for dead EBB arguments.
|
||||
// TODO: If these arguments are really dead, we could remove them, except for the entry
|
||||
// block which must match the function signature.
|
||||
for &arg in func.dfg.ebb_args(ebb) {
|
||||
// Make sure we have created live ranges for dead EBB parameters.
|
||||
// TODO: If these parameters are really dead, we could remove them, except for the
|
||||
// entry block which must match the function signature.
|
||||
for &arg in func.dfg.ebb_params(ebb) {
|
||||
get_or_create(&mut self.ranges, arg, isa, func, &enc_info);
|
||||
}
|
||||
|
||||
@@ -431,28 +431,28 @@ impl Liveness {
|
||||
}
|
||||
}
|
||||
|
||||
self.propagate_ebb_arguments(func, cfg);
|
||||
self.propagate_ebb_params(func, cfg);
|
||||
}
|
||||
|
||||
/// Propagate affinities for EBB arguments.
|
||||
/// Propagate affinities for EBB parameters.
|
||||
///
|
||||
/// If an EBB argument value has an affinity, all predecessors must pass a value with an
|
||||
/// affinity.
|
||||
pub fn propagate_ebb_arguments(&mut self, func: &Function, cfg: &ControlFlowGraph) {
|
||||
assert!(self.ebb_args.is_empty());
|
||||
pub fn propagate_ebb_params(&mut self, func: &Function, cfg: &ControlFlowGraph) {
|
||||
assert!(self.ebb_params.is_empty());
|
||||
|
||||
for ebb in func.layout.ebbs() {
|
||||
for &arg in func.dfg.ebb_args(ebb) {
|
||||
for &arg in func.dfg.ebb_params(ebb) {
|
||||
let affinity = self.ranges.get(arg).unwrap().affinity;
|
||||
if affinity.is_none() {
|
||||
continue;
|
||||
}
|
||||
self.ebb_args.push(arg);
|
||||
self.ebb_params.push(arg);
|
||||
|
||||
// Now apply the affinity to all predecessors recursively.
|
||||
while let Some(succ_arg) = self.ebb_args.pop() {
|
||||
while let Some(succ_arg) = self.ebb_params.pop() {
|
||||
let (succ_ebb, num) = match func.dfg.value_def(succ_arg) {
|
||||
ValueDef::Arg(e, n) => (e, n),
|
||||
ValueDef::Param(e, n) => (e, n),
|
||||
_ => continue,
|
||||
};
|
||||
|
||||
@@ -461,7 +461,7 @@ impl Liveness {
|
||||
let pred_affinity = &mut self.ranges.get_mut(pred_arg).unwrap().affinity;
|
||||
if pred_affinity.is_none() {
|
||||
*pred_affinity = affinity;
|
||||
self.ebb_args.push(pred_arg);
|
||||
self.ebb_params.push(pred_arg);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -139,7 +139,7 @@ impl<'a> Context<'a> {
|
||||
assert_eq!(liveins.len(), 0);
|
||||
self.visit_entry_args(ebb, args);
|
||||
} else {
|
||||
self.visit_ebb_args(ebb, args);
|
||||
self.visit_ebb_params(ebb, args);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -156,7 +156,10 @@ impl<'a> Context<'a> {
|
||||
if arg.affinity.is_stack() {
|
||||
// An incoming register parameter was spilled. Replace the parameter value
|
||||
// with a temporary register value that is immediately spilled.
|
||||
let reg = self.cur.func.dfg.replace_ebb_arg(arg.value, abi.value_type);
|
||||
let reg = self.cur.func.dfg.replace_ebb_param(
|
||||
arg.value,
|
||||
abi.value_type,
|
||||
);
|
||||
let affinity = Affinity::abi(&abi, self.cur.isa);
|
||||
self.liveness.create_dead(reg, ebb, affinity);
|
||||
self.insert_spill(ebb, arg.value, reg);
|
||||
@@ -170,7 +173,7 @@ impl<'a> Context<'a> {
|
||||
}
|
||||
}
|
||||
|
||||
fn visit_ebb_args(&mut self, ebb: Ebb, _args: &[LiveValue]) {
|
||||
fn visit_ebb_params(&mut self, ebb: Ebb, _args: &[LiveValue]) {
|
||||
self.cur.goto_first_inst(ebb);
|
||||
}
|
||||
|
||||
|
||||
@@ -101,22 +101,22 @@ impl<'a> CssaVerifier<'a> {
|
||||
|
||||
fn check_cssa(&self) -> Result {
|
||||
for ebb in self.func.layout.ebbs() {
|
||||
let ebb_args = self.func.dfg.ebb_args(ebb);
|
||||
let ebb_params = self.func.dfg.ebb_params(ebb);
|
||||
for &(_, pred) in self.cfg.get_predecessors(ebb) {
|
||||
let pred_args = self.func.dfg.inst_variable_args(pred);
|
||||
// This should have been caught by an earlier verifier pass.
|
||||
assert_eq!(
|
||||
ebb_args.len(),
|
||||
ebb_params.len(),
|
||||
pred_args.len(),
|
||||
"Wrong arguments on branch."
|
||||
);
|
||||
|
||||
for (&ebb_arg, &pred_arg) in ebb_args.iter().zip(pred_args) {
|
||||
if !self.virtregs.same_class(ebb_arg, pred_arg) {
|
||||
for (&ebb_param, &pred_arg) in ebb_params.iter().zip(pred_args) {
|
||||
if !self.virtregs.same_class(ebb_param, pred_arg) {
|
||||
return err!(
|
||||
pred,
|
||||
"{} and {} must be in the same virtual register",
|
||||
ebb_arg,
|
||||
ebb_param,
|
||||
pred_arg
|
||||
);
|
||||
}
|
||||
|
||||
@@ -49,7 +49,7 @@ impl<'a> LivenessVerifier<'a> {
|
||||
/// Check all EBB arguments.
|
||||
fn check_ebbs(&self) -> Result {
|
||||
for ebb in self.func.layout.ebbs() {
|
||||
for &val in self.func.dfg.ebb_args(ebb) {
|
||||
for &val in self.func.dfg.ebb_params(ebb) {
|
||||
let lr = match self.liveness.get(val) {
|
||||
Some(lr) => lr,
|
||||
None => return err!(ebb, "EBB arg {} has no live range", val),
|
||||
@@ -164,7 +164,7 @@ impl<'a> LivenessVerifier<'a> {
|
||||
// branch argument.
|
||||
self.func
|
||||
.dfg
|
||||
.ebb_args(dest)
|
||||
.ebb_params(dest)
|
||||
.get(argnum - fixed_args)
|
||||
.and_then(|&v| self.liveness.get(v))
|
||||
.map(|lr| lr.affinity.is_none())
|
||||
|
||||
@@ -7,7 +7,7 @@
|
||||
//! the EBB as reported by `inst_ebb()`.
|
||||
//! - Every EBB must end in a terminator instruction, and no other instruction
|
||||
//! can be a terminator.
|
||||
//! - Every value in the `ebb_args` iterator belongs to the EBB as reported by `value_ebb`.
|
||||
//! - Every value in the `ebb_params` iterator belongs to the EBB as reported by `value_ebb`.
|
||||
//!
|
||||
//! Instruction integrity
|
||||
//!
|
||||
@@ -212,10 +212,10 @@ impl<'a> Verifier<'a> {
|
||||
return err!(inst, "should belong to {} not {:?}", ebb, inst_ebb);
|
||||
}
|
||||
|
||||
// Arguments belong to the correct ebb.
|
||||
for &arg in self.func.dfg.ebb_args(ebb) {
|
||||
// Parameters belong to the correct ebb.
|
||||
for &arg in self.func.dfg.ebb_params(ebb) {
|
||||
match self.func.dfg.value_def(arg) {
|
||||
ValueDef::Arg(arg_ebb, _) => {
|
||||
ValueDef::Param(arg_ebb, _) => {
|
||||
if ebb != arg_ebb {
|
||||
return err!(arg, "does not belong to {}", ebb);
|
||||
}
|
||||
@@ -441,7 +441,7 @@ impl<'a> Verifier<'a> {
|
||||
|
||||
// SSA form
|
||||
match dfg.value_def(v) {
|
||||
ValueDef::Res(def_inst, _) => {
|
||||
ValueDef::Result(def_inst, _) => {
|
||||
// Value is defined by an instruction that exists.
|
||||
if !dfg.inst_is_valid(def_inst) {
|
||||
return err!(
|
||||
@@ -471,7 +471,7 @@ impl<'a> Verifier<'a> {
|
||||
return err!(loc_inst, "uses value from non-dominating {}", def_inst);
|
||||
}
|
||||
}
|
||||
ValueDef::Arg(ebb, _) => {
|
||||
ValueDef::Param(ebb, _) => {
|
||||
// Value is defined by an existing EBB.
|
||||
if !dfg.ebb_is_valid(ebb) {
|
||||
return err!(loc_inst, "{} is defined by invalid EBB {}", v, ebb);
|
||||
@@ -554,18 +554,23 @@ impl<'a> Verifier<'a> {
|
||||
fn typecheck_entry_block_arguments(&self) -> Result {
|
||||
if let Some(ebb) = self.func.layout.entry_block() {
|
||||
let expected_types = &self.func.signature.argument_types;
|
||||
let ebb_arg_count = self.func.dfg.num_ebb_args(ebb);
|
||||
let ebb_param_count = self.func.dfg.num_ebb_params(ebb);
|
||||
|
||||
if ebb_arg_count != expected_types.len() {
|
||||
return err!(ebb, "entry block arguments must match function signature");
|
||||
if ebb_param_count != expected_types.len() {
|
||||
return err!(
|
||||
ebb,
|
||||
"entry block parameters ({}) must match function signature ({})",
|
||||
ebb_param_count,
|
||||
expected_types.len()
|
||||
);
|
||||
}
|
||||
|
||||
for (i, &arg) in self.func.dfg.ebb_args(ebb).iter().enumerate() {
|
||||
for (i, &arg) in self.func.dfg.ebb_params(ebb).iter().enumerate() {
|
||||
let arg_type = self.func.dfg.value_type(arg);
|
||||
if arg_type != expected_types[i].value_type {
|
||||
return err!(
|
||||
ebb,
|
||||
"entry block argument {} expected to have type {}, got {}",
|
||||
"entry block parameter {} expected to have type {}, got {}",
|
||||
i,
|
||||
expected_types[i],
|
||||
arg_type
|
||||
@@ -671,14 +676,14 @@ impl<'a> Verifier<'a> {
|
||||
fn typecheck_variable_args(&self, inst: Inst) -> Result {
|
||||
match self.func.dfg[inst].analyze_branch(&self.func.dfg.value_lists) {
|
||||
BranchInfo::SingleDest(ebb, _) => {
|
||||
let iter = self.func.dfg.ebb_args(ebb).iter().map(|&v| {
|
||||
let iter = self.func.dfg.ebb_params(ebb).iter().map(|&v| {
|
||||
self.func.dfg.value_type(v)
|
||||
});
|
||||
self.typecheck_variable_args_iterator(inst, iter)?;
|
||||
}
|
||||
BranchInfo::Table(table) => {
|
||||
for (_, ebb) in self.func.jump_tables[table].entries() {
|
||||
let arg_count = self.func.dfg.num_ebb_args(ebb);
|
||||
let arg_count = self.func.dfg.num_ebb_params(ebb);
|
||||
if arg_count != 0 {
|
||||
return err!(
|
||||
inst,
|
||||
|
||||
@@ -121,7 +121,7 @@ pub fn write_ebb_header(
|
||||
let regs = isa.map(TargetIsa::register_info);
|
||||
let regs = regs.as_ref();
|
||||
|
||||
let mut args = func.dfg.ebb_args(ebb).iter().cloned();
|
||||
let mut args = func.dfg.ebb_params(ebb).iter().cloned();
|
||||
match args.next() {
|
||||
None => return writeln!(w, ":"),
|
||||
Some(arg) => {
|
||||
@@ -177,8 +177,8 @@ fn type_suffix(func: &Function, inst: Inst) -> Option<Type> {
|
||||
if constraints.use_typevar_operand() {
|
||||
let ctrl_var = inst_data.typevar_operand(&func.dfg.value_lists).unwrap();
|
||||
let def_ebb = match func.dfg.value_def(ctrl_var) {
|
||||
ValueDef::Res(instr, _) => func.layout.inst_ebb(instr),
|
||||
ValueDef::Arg(ebb, _) => Some(ebb),
|
||||
ValueDef::Result(instr, _) => func.layout.inst_ebb(instr),
|
||||
ValueDef::Param(ebb, _) => Some(ebb),
|
||||
};
|
||||
if def_ebb.is_some() && def_ebb == func.layout.inst_ebb(inst) {
|
||||
return None;
|
||||
@@ -465,13 +465,13 @@ mod tests {
|
||||
"function %foo() native {\n ss0 = local 4\n\nebb0:\n}\n"
|
||||
);
|
||||
|
||||
f.dfg.append_ebb_arg(ebb, types::I8);
|
||||
f.dfg.append_ebb_param(ebb, types::I8);
|
||||
assert_eq!(
|
||||
f.to_string(),
|
||||
"function %foo() native {\n ss0 = local 4\n\nebb0(v0: i8):\n}\n"
|
||||
);
|
||||
|
||||
f.dfg.append_ebb_arg(ebb, types::F32.by(4).unwrap());
|
||||
f.dfg.append_ebb_param(ebb, types::F32.by(4).unwrap());
|
||||
assert_eq!(
|
||||
f.to_string(),
|
||||
"function %foo() native {\n ss0 = local 4\n\nebb0(v0: i8, v1: f32x4):\n}\n"
|
||||
|
||||
@@ -136,7 +136,7 @@ impl<'short, 'long, Variable> InstBuilderBase<'short> for FuncInstBuilder<'short
|
||||
}
|
||||
_ => panic!("should not happen"),
|
||||
};
|
||||
self.builder.ebb_args_adjustment(dest_ebb, &args_types);
|
||||
self.builder.ebb_params_adjustment(dest_ebb, &args_types);
|
||||
self.builder.declare_successor(dest_ebb, inst);
|
||||
}
|
||||
None => {
|
||||
@@ -273,8 +273,8 @@ where
|
||||
let basic_block = self.builder.ssa.header_block(ebb);
|
||||
// Then we change the cursor position.
|
||||
self.position = Position { ebb, basic_block };
|
||||
self.ebb_args_adjustment(ebb, jump_args);
|
||||
self.func.dfg.ebb_args(ebb)
|
||||
self.ebb_params_adjustment(ebb, jump_args);
|
||||
self.func.dfg.ebb_params(ebb)
|
||||
}
|
||||
|
||||
/// Declares that all the predecessors of this block are known.
|
||||
@@ -411,10 +411,10 @@ impl<'a, Variable> FunctionBuilder<'a, Variable>
|
||||
where
|
||||
Variable: EntityRef + Default,
|
||||
{
|
||||
/// Retrieves all the arguments for an `Ebb` currently inferred from the jump instructions
|
||||
/// Retrieves all the parameters for an `Ebb` currently inferred from the jump instructions
|
||||
/// inserted that target it and the SSA construction.
|
||||
pub fn ebb_args(&self, ebb: Ebb) -> &[Value] {
|
||||
self.func.dfg.ebb_args(ebb)
|
||||
pub fn ebb_params(&self, ebb: Ebb) -> &[Value] {
|
||||
self.func.dfg.ebb_params(ebb)
|
||||
}
|
||||
|
||||
/// Retrieves the signature with reference `sigref` previously added with `import_signature`.
|
||||
@@ -422,14 +422,14 @@ where
|
||||
self.func.dfg.signatures.get(sigref)
|
||||
}
|
||||
|
||||
/// Creates an argument for a specific `Ebb` by appending it to the list of already existing
|
||||
/// arguments.
|
||||
/// Creates a parameter for a specific `Ebb` by appending it to the list of already existing
|
||||
/// parameters.
|
||||
///
|
||||
/// **Note:** this function has to be called at the creation of the `Ebb` before adding
|
||||
/// instructions to it, otherwise this could interfere with SSA construction.
|
||||
pub fn append_ebb_arg(&mut self, ebb: Ebb, ty: Type) -> Value {
|
||||
pub fn append_ebb_param(&mut self, ebb: Ebb, ty: Type) -> Value {
|
||||
debug_assert!(self.builder.ebbs[ebb].pristine);
|
||||
self.func.dfg.append_ebb_arg(ebb, ty)
|
||||
self.func.dfg.append_ebb_param(ebb, ty)
|
||||
}
|
||||
|
||||
/// Returns the result values of an instruction.
|
||||
@@ -547,14 +547,14 @@ where
|
||||
debug_assert!(self.pristine);
|
||||
for argtyp in &self.func.signature.argument_types {
|
||||
self.builder.function_args_values.push(
|
||||
self.func.dfg.append_ebb_arg(ebb, argtyp.value_type),
|
||||
self.func.dfg.append_ebb_param(ebb, argtyp.value_type),
|
||||
);
|
||||
}
|
||||
self.pristine = false;
|
||||
}
|
||||
|
||||
|
||||
fn ebb_args_adjustment(&mut self, dest_ebb: Ebb, jump_args: &[Value]) {
|
||||
fn ebb_params_adjustment(&mut self, dest_ebb: Ebb, jump_args: &[Value]) {
|
||||
if self.builder.ssa.predecessors(dest_ebb).is_empty() ||
|
||||
self.builder.ebbs[dest_ebb].pristine
|
||||
{
|
||||
@@ -562,12 +562,12 @@ where
|
||||
// so the jump arguments supplied here are this Ebb' arguments
|
||||
// However some of the arguments might already be there
|
||||
// in the Ebb so we have to check they're consistent
|
||||
let dest_ebb_args_len = {
|
||||
let dest_ebb_args = self.func.dfg.ebb_args(dest_ebb);
|
||||
let dest_ebb_params_len = {
|
||||
let dest_ebb_params = self.func.dfg.ebb_params(dest_ebb);
|
||||
debug_assert!(
|
||||
dest_ebb_args
|
||||
dest_ebb_params
|
||||
.iter()
|
||||
.zip(jump_args.iter().take(dest_ebb_args.len()))
|
||||
.zip(jump_args.iter().take(dest_ebb_params.len()))
|
||||
.all(|(dest_arg, jump_arg)| {
|
||||
self.func.dfg.value_type(*jump_arg) ==
|
||||
self.func.dfg.value_type(*dest_arg)
|
||||
@@ -575,12 +575,12 @@ where
|
||||
"the jump argument supplied has not the \
|
||||
same type as the corresponding dest ebb argument"
|
||||
);
|
||||
dest_ebb_args.len()
|
||||
dest_ebb_params.len()
|
||||
};
|
||||
self.builder.ebbs[dest_ebb].user_arg_count = jump_args.len();
|
||||
for val in jump_args.iter().skip(dest_ebb_args_len) {
|
||||
for val in jump_args.iter().skip(dest_ebb_params_len) {
|
||||
let ty = self.func.dfg.value_type(*val);
|
||||
self.func.dfg.append_ebb_arg(dest_ebb, ty);
|
||||
self.func.dfg.append_ebb_param(dest_ebb, ty);
|
||||
}
|
||||
} else {
|
||||
// The Ebb already has predecessors
|
||||
@@ -595,7 +595,7 @@ where
|
||||
debug_assert!(
|
||||
jump_args
|
||||
.iter()
|
||||
.zip(self.func.dfg.ebb_args(dest_ebb).iter().take(
|
||||
.zip(self.func.dfg.ebb_params(dest_ebb).iter().take(
|
||||
self.builder.ebbs[dest_ebb].user_arg_count,
|
||||
))
|
||||
.all(|(jump_arg, dest_arg)| {
|
||||
|
||||
@@ -210,7 +210,7 @@ enum Call {
|
||||
/// call `seal_ebb_header_block` on it with the `Function` that you are building.
|
||||
///
|
||||
/// This API will give you the correct SSA values to use as arguments of your instructions,
|
||||
/// as well as modify the jump instruction and `Ebb` headers arguments to account for the SSA
|
||||
/// as well as modify the jump instruction and `Ebb` headers parameters to account for the SSA
|
||||
/// Phi functions.
|
||||
///
|
||||
impl<Variable> SSABuilder<Variable>
|
||||
@@ -261,18 +261,18 @@ where
|
||||
fn use_var_nonlocal(&mut self, func: &mut Function, var: Variable, ty: Type, block: Block) {
|
||||
let case = match self.blocks[block] {
|
||||
BlockData::EbbHeader(ref mut data) => {
|
||||
// The block has multiple predecessors so we append an Ebb argument that
|
||||
// The block has multiple predecessors so we append an Ebb parameter that
|
||||
// will serve as a value.
|
||||
if data.sealed {
|
||||
if data.predecessors.len() == 1 {
|
||||
// Only one predecessor, straightforward case
|
||||
UseVarCases::SealedOnePredecessor(data.predecessors[0].0)
|
||||
} else {
|
||||
let val = func.dfg.append_ebb_arg(data.ebb, ty);
|
||||
let val = func.dfg.append_ebb_param(data.ebb, ty);
|
||||
UseVarCases::SealedMultiplePredecessors(val, data.ebb)
|
||||
}
|
||||
} else {
|
||||
let val = func.dfg.append_ebb_arg(data.ebb, ty);
|
||||
let val = func.dfg.append_ebb_param(data.ebb, ty);
|
||||
data.undef_variables.push((var, val));
|
||||
UseVarCases::Unsealed(val)
|
||||
}
|
||||
@@ -285,7 +285,7 @@ where
|
||||
self.calls.push(Call::FinishSealedOnePredecessor(block));
|
||||
self.calls.push(Call::UseVar(pred));
|
||||
}
|
||||
// The block has multiple predecessors, we register the ebb argument as the current
|
||||
// The block has multiple predecessors, we register the EBB parameter as the current
|
||||
// definition for the variable.
|
||||
UseVarCases::Unsealed(val) => {
|
||||
self.def_var(var, val, block);
|
||||
@@ -293,7 +293,7 @@ where
|
||||
}
|
||||
UseVarCases::SealedMultiplePredecessors(val, ebb) => {
|
||||
// If multiple predecessor we look up a use_var in each of them:
|
||||
// if they all yield the same value no need for an Ebb argument
|
||||
// if they all yield the same value no need for an EBB parameter
|
||||
self.def_var(var, val, block);
|
||||
self.begin_predecessors_lookup(val, ebb);
|
||||
}
|
||||
@@ -385,7 +385,7 @@ where
|
||||
}
|
||||
};
|
||||
|
||||
// For each undef var we look up values in the predecessors and create an Ebb argument
|
||||
// For each undef var we look up values in the predecessors and create an EBB parameter
|
||||
// only if necessary.
|
||||
for (var, val) in undef_vars {
|
||||
let ty = func.dfg.value_type(val);
|
||||
@@ -443,7 +443,7 @@ where
|
||||
}
|
||||
|
||||
/// Examine the values from the predecessors and compute a result value, creating
|
||||
/// block arguments as needed.
|
||||
/// block parameters as needed.
|
||||
fn finish_predecessors_lookup(
|
||||
&mut self,
|
||||
func: &mut Function,
|
||||
@@ -499,7 +499,7 @@ where
|
||||
// so we don't need to have it as an ebb argument.
|
||||
// We need to replace all the occurences of val with pred_val but since
|
||||
// we can't afford a re-writing pass right now we just declare an alias.
|
||||
func.dfg.remove_ebb_arg(temp_arg_val);
|
||||
func.dfg.remove_ebb_param(temp_arg_val);
|
||||
func.dfg.change_to_alias(temp_arg_val, pred_val);
|
||||
pred_val
|
||||
}
|
||||
@@ -908,8 +908,8 @@ mod tests {
|
||||
|
||||
ssa.declare_ebb_predecessor(ebb1, block3, jump_ebb2_ebb1);
|
||||
ssa.seal_ebb_header_block(ebb1, &mut func);
|
||||
assert_eq!(func.dfg.ebb_args(ebb1)[0], z2);
|
||||
assert_eq!(func.dfg.ebb_args(ebb1)[1], y3);
|
||||
assert_eq!(func.dfg.ebb_params(ebb1)[0], z2);
|
||||
assert_eq!(func.dfg.ebb_params(ebb1)[1], y3);
|
||||
assert_eq!(func.dfg.resolve_aliases(x3), x1);
|
||||
|
||||
}
|
||||
@@ -1027,9 +1027,9 @@ mod tests {
|
||||
let block1 = ssa.declare_ebb_header_block(ebb1);
|
||||
ssa.declare_ebb_predecessor(ebb1, block0, jump_inst);
|
||||
let z2 = ssa.use_var(&mut func, z_var, I32, block1).0;
|
||||
assert_eq!(func.dfg.ebb_args(ebb1)[0], z2);
|
||||
assert_eq!(func.dfg.ebb_params(ebb1)[0], z2);
|
||||
let x2 = ssa.use_var(&mut func, x_var, I32, block1).0;
|
||||
assert_eq!(func.dfg.ebb_args(ebb1)[1], x2);
|
||||
assert_eq!(func.dfg.ebb_params(ebb1)[1], x2);
|
||||
let x3 = {
|
||||
let mut cur = FuncCursor::new(&mut func).at_bottom(ebb1);
|
||||
cur.ins().iadd(x2, z2)
|
||||
@@ -1037,7 +1037,7 @@ mod tests {
|
||||
ssa.def_var(x_var, x3, block1);
|
||||
let x4 = ssa.use_var(&mut func, x_var, I32, block1).0;
|
||||
let y3 = ssa.use_var(&mut func, y_var, I32, block1).0;
|
||||
assert_eq!(func.dfg.ebb_args(ebb1)[2], y3);
|
||||
assert_eq!(func.dfg.ebb_params(ebb1)[2], y3);
|
||||
let y4 = {
|
||||
let mut cur = FuncCursor::new(&mut func).at_bottom(ebb1);
|
||||
cur.ins().isub(y3, x4)
|
||||
@@ -1051,7 +1051,7 @@ mod tests {
|
||||
ssa.seal_ebb_header_block(ebb1, &mut func);
|
||||
// At sealing the "z" argument disappear but the remaining "x" and "y" args have to be
|
||||
// in the right order.
|
||||
assert_eq!(func.dfg.ebb_args(ebb1)[1], y3);
|
||||
assert_eq!(func.dfg.ebb_args(ebb1)[0], x2);
|
||||
assert_eq!(func.dfg.ebb_params(ebb1)[1], y3);
|
||||
assert_eq!(func.dfg.ebb_params(ebb1)[0], x2);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1362,7 +1362,7 @@ impl<'a> Parser<'a> {
|
||||
// Parse an extended basic block, add contents to `ctx`.
|
||||
//
|
||||
// extended-basic-block ::= * ebb-header { instruction }
|
||||
// ebb-header ::= Ebb(ebb) [ebb-args] ":"
|
||||
// ebb-header ::= Ebb(ebb) [ebb-params] ":"
|
||||
//
|
||||
fn parse_extended_basic_block(&mut self, ctx: &mut Context) -> Result<()> {
|
||||
let ebb_num = self.match_ebb("expected EBB header")?;
|
||||
@@ -1370,8 +1370,8 @@ impl<'a> Parser<'a> {
|
||||
self.gather_comments(ebb);
|
||||
|
||||
if !self.optional(Token::Colon) {
|
||||
// ebb-header ::= Ebb(ebb) [ * ebb-args ] ":"
|
||||
self.parse_ebb_args(ctx, ebb)?;
|
||||
// ebb-header ::= Ebb(ebb) [ * ebb-params ] ":"
|
||||
self.parse_ebb_params(ctx, ebb)?;
|
||||
self.match_token(
|
||||
Token::Colon,
|
||||
"expected ':' after EBB arguments",
|
||||
@@ -1429,27 +1429,27 @@ impl<'a> Parser<'a> {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
// Parse parenthesized list of EBB arguments. Returns a vector of (u32, Type) pairs with the
|
||||
// Parse parenthesized list of EBB parameters. Returns a vector of (u32, Type) pairs with the
|
||||
// source value numbers of the defined values and the defined types.
|
||||
//
|
||||
// ebb-args ::= * "(" ebb-arg { "," ebb-arg } ")"
|
||||
fn parse_ebb_args(&mut self, ctx: &mut Context, ebb: Ebb) -> Result<()> {
|
||||
// ebb-args ::= * "(" ebb-arg { "," ebb-arg } ")"
|
||||
// ebb-params ::= * "(" ebb-param { "," ebb-param } ")"
|
||||
fn parse_ebb_params(&mut self, ctx: &mut Context, ebb: Ebb) -> Result<()> {
|
||||
// ebb-params ::= * "(" ebb-param { "," ebb-param } ")"
|
||||
self.match_token(
|
||||
Token::LPar,
|
||||
"expected '(' before EBB arguments",
|
||||
)?;
|
||||
|
||||
// ebb-args ::= "(" * ebb-arg { "," ebb-arg } ")"
|
||||
self.parse_ebb_arg(ctx, ebb)?;
|
||||
// ebb-params ::= "(" * ebb-param { "," ebb-param } ")"
|
||||
self.parse_ebb_param(ctx, ebb)?;
|
||||
|
||||
// ebb-args ::= "(" ebb-arg * { "," ebb-arg } ")"
|
||||
// ebb-params ::= "(" ebb-param * { "," ebb-param } ")"
|
||||
while self.optional(Token::Comma) {
|
||||
// ebb-args ::= "(" ebb-arg { "," * ebb-arg } ")"
|
||||
self.parse_ebb_arg(ctx, ebb)?;
|
||||
// ebb-params ::= "(" ebb-param { "," * ebb-param } ")"
|
||||
self.parse_ebb_param(ctx, ebb)?;
|
||||
}
|
||||
|
||||
// ebb-args ::= "(" ebb-arg { "," ebb-arg } * ")"
|
||||
// ebb-params ::= "(" ebb-param { "," ebb-param } * ")"
|
||||
self.match_token(
|
||||
Token::RPar,
|
||||
"expected ')' after EBB arguments",
|
||||
@@ -1458,27 +1458,27 @@ impl<'a> Parser<'a> {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
// Parse a single EBB argument declaration, and append it to `ebb`.
|
||||
// Parse a single EBB parameter declaration, and append it to `ebb`.
|
||||
//
|
||||
// ebb-arg ::= * Value(v) ":" Type(t) arg-loc?
|
||||
// ebb-param ::= * Value(v) ":" Type(t) arg-loc?
|
||||
// arg-loc ::= "[" value-location "]"
|
||||
//
|
||||
fn parse_ebb_arg(&mut self, ctx: &mut Context, ebb: Ebb) -> Result<()> {
|
||||
// ebb-arg ::= * Value(v) ":" Type(t) arg-loc?
|
||||
fn parse_ebb_param(&mut self, ctx: &mut Context, ebb: Ebb) -> Result<()> {
|
||||
// ebb-param ::= * Value(v) ":" Type(t) arg-loc?
|
||||
let v = self.match_value("EBB argument must be a value")?;
|
||||
let v_location = self.loc;
|
||||
// ebb-arg ::= Value(v) * ":" Type(t) arg-loc?
|
||||
// ebb-param ::= Value(v) * ":" Type(t) arg-loc?
|
||||
self.match_token(
|
||||
Token::Colon,
|
||||
"expected ':' after EBB argument",
|
||||
)?;
|
||||
// ebb-arg ::= Value(v) ":" * Type(t) arg-loc?
|
||||
// ebb-param ::= Value(v) ":" * Type(t) arg-loc?
|
||||
let t = self.match_type("expected EBB argument type")?;
|
||||
// Allocate the EBB argument and add the mapping.
|
||||
let value = ctx.function.dfg.append_ebb_arg(ebb, t);
|
||||
let value = ctx.function.dfg.append_ebb_param(ebb, t);
|
||||
ctx.map.def_value(v, value, &v_location)?;
|
||||
|
||||
// ebb-arg ::= Value(v) ":" Type(t) * arg-loc?
|
||||
// ebb-param ::= Value(v) ":" Type(t) * arg-loc?
|
||||
if self.optional(Token::LBracket) {
|
||||
let loc = self.parse_value_location(ctx)?;
|
||||
ctx.function.locations[value] = loc;
|
||||
@@ -2473,10 +2473,10 @@ mod tests {
|
||||
let mut ebbs = func.layout.ebbs();
|
||||
|
||||
let ebb0 = ebbs.next().unwrap();
|
||||
assert_eq!(func.dfg.ebb_args(ebb0), &[]);
|
||||
assert_eq!(func.dfg.ebb_params(ebb0), &[]);
|
||||
|
||||
let ebb4 = ebbs.next().unwrap();
|
||||
let ebb4_args = func.dfg.ebb_args(ebb4);
|
||||
let ebb4_args = func.dfg.ebb_params(ebb4);
|
||||
assert_eq!(ebb4_args.len(), 1);
|
||||
assert_eq!(func.dfg.value_type(ebb4_args[0]), types::I32);
|
||||
}
|
||||
|
||||
@@ -121,7 +121,7 @@ pub fn translate_operator<FE: FuncEnvironment + ?Sized>(
|
||||
Operator::Block { ty } => {
|
||||
let next = builder.create_ebb();
|
||||
if let Ok(ty_cre) = type_to_type(&ty) {
|
||||
builder.append_ebb_arg(next, ty_cre);
|
||||
builder.append_ebb_param(next, ty_cre);
|
||||
}
|
||||
state.push_block(next, num_return_values(ty));
|
||||
}
|
||||
@@ -129,7 +129,7 @@ pub fn translate_operator<FE: FuncEnvironment + ?Sized>(
|
||||
let loop_body = builder.create_ebb();
|
||||
let next = builder.create_ebb();
|
||||
if let Ok(ty_cre) = type_to_type(&ty) {
|
||||
builder.append_ebb_arg(next, ty_cre);
|
||||
builder.append_ebb_param(next, ty_cre);
|
||||
}
|
||||
builder.ins().jump(loop_body, &[]);
|
||||
state.push_loop(loop_body, next, num_return_values(ty));
|
||||
@@ -146,7 +146,7 @@ pub fn translate_operator<FE: FuncEnvironment + ?Sized>(
|
||||
// - either the If have an Else clause, in that case the destination of this jump
|
||||
// instruction will be changed later when we translate the Else operator.
|
||||
if let Ok(ty_cre) = type_to_type(&ty) {
|
||||
builder.append_ebb_arg(if_not, ty_cre);
|
||||
builder.append_ebb_param(if_not, ty_cre);
|
||||
}
|
||||
state.push_if(jump_inst, if_not, num_return_values(ty));
|
||||
}
|
||||
@@ -190,7 +190,7 @@ pub fn translate_operator<FE: FuncEnvironment + ?Sized>(
|
||||
}
|
||||
state.stack.truncate(frame.original_stack_size());
|
||||
state.stack.extend_from_slice(
|
||||
builder.ebb_args(frame.following_code()),
|
||||
builder.ebb_params(frame.following_code()),
|
||||
);
|
||||
}
|
||||
/**************************** Branch instructions *********************************
|
||||
@@ -876,7 +876,7 @@ fn translate_unreachable_operator(
|
||||
// And add the return values of the block but only if the next block is reachble
|
||||
// (which corresponds to testing if the stack depth is 1)
|
||||
if state.real_unreachable_stack_depth == 1 {
|
||||
stack.extend_from_slice(builder.ebb_args(frame.following_code()));
|
||||
stack.extend_from_slice(builder.ebb_params(frame.following_code()));
|
||||
}
|
||||
state.real_unreachable_stack_depth -= 1;
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user