Use the term "EBB parameter" everywhere.

Add EBB parameter and EBB argument to the langref glossary to clarify
the distinction between formal EBB parameter values and arguments passed
to branches.

- Replace "ebb_arg" with "ebb_param" in function names that deal with
  EBB parameters.
- Rename the ValueDef variants to Result and Param.
- A bunch of other small langref fixes.

No functional changes intended.
This commit is contained in:
Jakob Stoklund Olesen
2017-10-19 14:15:23 -07:00
parent ea68a69f8b
commit 921bcc6c25
30 changed files with 392 additions and 366 deletions

View File

@@ -67,11 +67,11 @@ fn legalize_entry_arguments(func: &mut Function, entry: Ebb) {
// Keep track of the argument types in the ABI-legalized signature.
let mut abi_arg = 0;
// Process the EBB arguments one at a time, possibly replacing one argument with multiple new
// ones. We do this by detaching the entry EBB arguments first.
let ebb_args = pos.func.dfg.detach_ebb_args(entry);
// Process the EBB parameters one at a time, possibly replacing one argument with multiple new
// ones. We do this by detaching the entry EBB parameters first.
let ebb_params = pos.func.dfg.detach_ebb_params(entry);
let mut old_arg = 0;
while let Some(arg) = ebb_args.get(old_arg, &pos.func.dfg.value_lists) {
while let Some(arg) = ebb_params.get(old_arg, &pos.func.dfg.value_lists) {
old_arg += 1;
let abi_type = pos.func.signature.argument_types[abi_arg];
@@ -79,7 +79,7 @@ fn legalize_entry_arguments(func: &mut Function, entry: Ebb) {
if arg_type == abi_type.value_type {
// No value translation is necessary, this argument matches the ABI type.
// Just use the original EBB argument value. This is the most common case.
pos.func.dfg.attach_ebb_arg(entry, arg);
pos.func.dfg.attach_ebb_param(entry, arg);
match abi_type.purpose {
ArgumentPurpose::Normal => {}
ArgumentPurpose::StructReturn => {
@@ -108,7 +108,7 @@ fn legalize_entry_arguments(func: &mut Function, entry: Ebb) {
);
if ty == abi_type.value_type {
abi_arg += 1;
Ok(func.dfg.append_ebb_arg(entry, ty))
Ok(func.dfg.append_ebb_param(entry, ty))
} else {
Err(abi_type)
}
@@ -155,7 +155,7 @@ fn legalize_entry_arguments(func: &mut Function, entry: Ebb) {
// Just create entry block values to match here. We will use them in `handle_return_abi()`
// below.
pos.func.dfg.append_ebb_arg(entry, arg.value_type);
pos.func.dfg.append_ebb_param(entry, arg.value_type);
}
}
@@ -584,7 +584,7 @@ pub fn handle_return_abi(inst: Inst, func: &mut Function, cfg: &ControlFlowGraph
.expect("No matching special purpose argument.");
// Get the corresponding entry block value and add it to the return instruction's
// arguments.
let val = pos.func.dfg.ebb_args(
let val = pos.func.dfg.ebb_params(
pos.func.layout.entry_block().unwrap(),
)
[idx];
@@ -611,7 +611,9 @@ pub fn handle_return_abi(inst: Inst, func: &mut Function, cfg: &ControlFlowGraph
/// stack slot already during legalization.
fn spill_entry_arguments(func: &mut Function, entry: Ebb) {
for (abi, &arg) in func.signature.argument_types.iter().zip(
func.dfg.ebb_args(entry),
func.dfg.ebb_params(
entry,
),
)
{
if let ArgumentLoc::Stack(offset) = abi.location {

View File

@@ -26,19 +26,10 @@ pub fn expand_global_addr(inst: ir::Inst, func: &mut ir::Function, _cfg: &mut Co
/// Expand a `global_addr` instruction for a vmctx global.
fn vmctx_addr(inst: ir::Inst, func: &mut ir::Function, offset: i64) {
// Find the incoming `vmctx` function argument. Start searching from the back since the special
// arguments are appended by signature legalization.
//
// This argument must exist; `vmctx` global variables can not be used in functions with calling
// conventions that don't add a `vmctx` argument.
let argidx = func.signature
.argument_types
.iter()
.rposition(|abi| abi.purpose == ir::ArgumentPurpose::VMContext)
.expect("Need vmctx argument for vmctx global");
// Get the value representing the `vmctx` argument.
let vmctx = func.dfg.ebb_args(func.layout.entry_block().unwrap())[argidx];
let vmctx = func.special_arg(ir::ArgumentPurpose::VMContext).expect(
"Missing vmctx parameter",
);
// Simply replace the `global_addr` instruction with an `iadd_imm`, reusing the result value.
func.dfg.replace(inst).iadd_imm(vmctx, offset);

View File

@@ -201,7 +201,7 @@ fn expand_select(inst: ir::Inst, func: &mut ir::Function, cfg: &mut ControlFlowG
let result = func.dfg.first_result(inst);
func.dfg.clear_results(inst);
let new_ebb = func.dfg.make_ebb();
func.dfg.attach_ebb_arg(new_ebb, result);
func.dfg.attach_ebb_param(new_ebb, result);
func.dfg.replace(inst).brnz(ctrl, new_ebb, &[tval]);
let mut pos = FuncCursor::new(func).after_inst(inst);

View File

@@ -194,7 +194,7 @@ fn split_value(
let mut reuse = None;
match pos.func.dfg.value_def(value) {
ValueDef::Res(inst, num) => {
ValueDef::Result(inst, num) => {
// This is an instruction result. See if the value was created by a `concat`
// instruction.
if let InstructionData::Binary { opcode, args, .. } = pos.func.dfg[inst] {
@@ -204,11 +204,11 @@ fn split_value(
}
}
}
ValueDef::Arg(ebb, num) => {
// This is an EBB argument. We can split the argument value unless this is the entry
ValueDef::Param(ebb, num) => {
// This is an EBB parameter. We can split the parameter value unless this is the entry
// block.
if pos.func.layout.entry_block() != Some(ebb) {
// We are going to replace the argument at `num` with two new arguments.
// We are going to replace the parameter at `num` with two new arguments.
// Determine the new value types.
let ty = pos.func.dfg.value_type(value);
let split_type = match concat {
@@ -217,20 +217,20 @@ fn split_value(
_ => panic!("Unhandled concat opcode: {}", concat),
};
// Since the `repairs` stack potentially contains other argument numbers for `ebb`,
// avoid shifting and renumbering EBB arguments. It could invalidate other
// Since the `repairs` stack potentially contains other parameter numbers for
// `ebb`, avoid shifting and renumbering EBB parameters. It could invalidate other
// `repairs` entries.
//
// Replace the original `value` with the low part, and append the high part at the
// end of the argument list.
let lo = pos.func.dfg.replace_ebb_arg(value, split_type);
let hi_num = pos.func.dfg.num_ebb_args(ebb);
let hi = pos.func.dfg.append_ebb_arg(ebb, split_type);
let lo = pos.func.dfg.replace_ebb_param(value, split_type);
let hi_num = pos.func.dfg.num_ebb_params(ebb);
let hi = pos.func.dfg.append_ebb_param(ebb, split_type);
reuse = Some((lo, hi));
// Now the original value is dangling. Insert a concatenation instruction that can
// compute it from the two new arguments. This also serves as a record of what we
// compute it from the two new parameters. This also serves as a record of what we
// did so a future call to this function doesn't have to redo the work.
//
// Note that it is safe to move `pos` here since `reuse` was set above, so we don't
@@ -243,7 +243,7 @@ fn split_value(
hi,
);
// Finally, splitting the EBB argument is not enough. We also have to repair all
// Finally, splitting the EBB parameter is not enough. We also have to repair all
// of the predecessor instructions that branch here.
add_repair(concat, split_type, ebb, num, hi_num, repairs);
}
@@ -299,7 +299,7 @@ fn resolve_splits(dfg: &ir::DataFlowGraph, value: Value) -> Value {
let split_res;
let concat_opc;
let split_arg;
if let ValueDef::Res(inst, num) = dfg.value_def(value) {
if let ValueDef::Result(inst, num) = dfg.value_def(value) {
split_res = num;
concat_opc = match dfg[inst].opcode() {
Opcode::Isplit => Opcode::Iconcat,
@@ -312,7 +312,7 @@ fn resolve_splits(dfg: &ir::DataFlowGraph, value: Value) -> Value {
}
// See if split_arg is defined by a concatenation instruction.
if let ValueDef::Res(inst, _) = dfg.value_def(split_arg) {
if let ValueDef::Result(inst, _) = dfg.value_def(split_arg) {
if dfg[inst].opcode() == concat_opc {
return dfg.inst_args(inst)[split_res];
}