Modify the dominator tree's intersect method to interact with Basic Blocks

Corresponding changes to test cases are also included.
This commit is contained in:
Morgan Phillips
2016-08-23 13:30:38 -07:00
parent ddd205ff78
commit 9165eef823
3 changed files with 99 additions and 82 deletions

View File

@@ -10,6 +10,11 @@ pub struct DominatorTree {
} }
impl DominatorTree { impl DominatorTree {
/// Insert data directly into a dominator tree.
pub fn from_data(data: EntityMap<Ebb, Option<BasicBlock>>) -> DominatorTree {
DominatorTree { data: data }
}
/// Build a dominator tree from a control flow graph using Keith D. Cooper's /// Build a dominator tree from a control flow graph using Keith D. Cooper's
/// "Simple, Fast Dominator Algorithm." /// "Simple, Fast Dominator Algorithm."
pub fn new(cfg: &ControlFlowGraph) -> DominatorTree { pub fn new(cfg: &ControlFlowGraph) -> DominatorTree {
@@ -40,21 +45,20 @@ impl DominatorTree {
let preds = cfg.get_predecessors(ebb); let preds = cfg.get_predecessors(ebb);
let mut new_idom = None; let mut new_idom = None;
for &(p_ebb, _) in preds { for pred in preds {
if new_idom == None { if new_idom == None {
new_idom = Some((p_ebb, NO_INST)); new_idom = Some(pred.clone());
continue; continue;
} }
// If this predecessor has an idom available find its common // If this predecessor has an idom available find its common
// ancestor with the current value of new_idom. // ancestor with the current value of new_idom.
if let Some(_) = data[p_ebb] { if let Some(_) = data[pred.0] {
new_idom = match new_idom { new_idom = match new_idom {
Some(cur_idom) => { Some(cur_idom) => {
Some((DominatorTree::intersect(&mut data, Some((DominatorTree::intersect(&mut data,
&postorder_map, &postorder_map,
p_ebb, *pred,
cur_idom.0), cur_idom)))
NO_INST))
} }
None => panic!("A 'current idom' should have been set!"), None => panic!("A 'current idom' should have been set!"),
} }
@@ -67,7 +71,7 @@ impl DominatorTree {
} }
Some(idom) => { Some(idom) => {
// Old idom != New idom // Old idom != New idom
if idom != new_idom.unwrap() { if idom.0 != new_idom.unwrap().0 {
data[ebb] = new_idom; data[ebb] = new_idom;
changed = true; changed = true;
} }
@@ -76,39 +80,15 @@ impl DominatorTree {
} }
} }
// At this point the basic blocks in the tree are incomplete
// since they have all been set with NO_INST. Here we add instructions
// by iterating through each Ebb -> BasicBlock mapping in the dominator
// tree and replacing the basic block with a corresponding predecessor
// from the Ebb (on the left hand side).
//
// The predecessor chosen should have the lowest instruction number and
// an Ebb which matches the Ebb from the dummy basic block. Because
// extended basic blocks have a single entry point this will always
// result in the correct basic block being chosen.
for lhs_ebb in ebbs {
let rhs_bb = data[lhs_ebb].unwrap();
for pred_bb in cfg.get_predecessors(lhs_ebb) {
if rhs_bb.0 == pred_bb.0 {
// Predecessors are added in order while iterating through
// instructions from lowest to highest. Because of this,
// the first match we encounter will have the lowest instruction
// number.
data[lhs_ebb] = Some(pred_bb.clone());
break;
}
}
}
DominatorTree { data: data } DominatorTree { data: data }
} }
/// Find the common dominator of two ebbs. /// Find the common dominator of two ebbs.
fn intersect(data: &EntityMap<Ebb, Option<BasicBlock>>, fn intersect(data: &EntityMap<Ebb, Option<BasicBlock>>,
ordering: &EntityMap<Ebb, usize>, ordering: &EntityMap<Ebb, usize>,
first: Ebb, first: BasicBlock,
second: Ebb) second: BasicBlock)
-> Ebb { -> BasicBlock {
let mut a = first; let mut a = first;
let mut b = second; let mut b = second;
@@ -116,15 +96,23 @@ impl DominatorTree {
// visitation number, to ensure that we move upward through the tree. // visitation number, to ensure that we move upward through the tree.
// Walking upward means that we may always expect self.data[a] and // Walking upward means that we may always expect self.data[a] and
// self.data[b] to contain non-None entries. // self.data[b] to contain non-None entries.
while a != b { while a.0 != b.0 {
while ordering[a] < ordering[b] { while ordering[a.0] < ordering[b.0] {
a = data[a].unwrap().0; a = data[a.0].unwrap();
} }
while ordering[b] < ordering[a] { while ordering[b.0] < ordering[a.0] {
b = data[b].unwrap().0; b = data[b.0].unwrap();
} }
} }
a
// TODO: we can't rely on instruction numbers to always be ordered
// from lowest to highest. Given that, it will be necessary to create
// an abolute mapping to determine the instruction order in the future.
if a.1 == NO_INST || a.1 < b.1 {
a
} else {
b
}
} }
/// Returns the immediate dominator of some ebb or None if the /// Returns the immediate dominator of some ebb or None if the

View File

@@ -14,3 +14,4 @@ cretonne = { path = "../libcretonne" }
cretonne-reader = { path = "../libreader" } cretonne-reader = { path = "../libreader" }
docopt = "0.6.80" docopt = "0.6.80"
rustc-serialize = "0.3.19" rustc-serialize = "0.3.19"
regex = "0.1.73"

View File

@@ -1,49 +1,77 @@
extern crate cretonne; extern crate cretonne;
extern crate cton_reader; extern crate cton_reader;
extern crate regex;
use regex::Regex;
use self::cretonne::ir::Ebb; use self::cretonne::ir::Ebb;
use self::cton_reader::parser::Parser; use self::cton_reader::parser::Parser;
use self::cretonne::ir::function::Function;
use self::cretonne::entity_map::EntityMap;
use self::cretonne::ir::entities::NO_INST; use self::cretonne::ir::entities::NO_INST;
use self::cretonne::cfg::ControlFlowGraph; use self::cretonne::cfg::ControlFlowGraph;
use self::cretonne::ir::instructions::BranchInfo;
use self::cretonne::dominator_tree::DominatorTree; use self::cretonne::dominator_tree::DominatorTree;
fn test_dominator_tree(function_source: &str, idoms: Vec<u32>) { /// Construct a dominator tree from specially formatted comments in
/// cton source. Each line with a jump/branch instruction should
/// have a comment of the format: `dominates(n, ..., N)`, where each `n`
/// is the Ebb number for which this instruction is the immediate dominator.
fn dominator_tree_from_source(func: &Function, function_source: &str) -> DominatorTree {
let ebb_re = Regex::new("^[ \t]*ebb[0-9]+.*:").unwrap();
let dom_re = Regex::new("dominates\\(([0-9,]+)\\)").unwrap();
let inst_re = Regex::new("^[ \t]*[a-zA-Z0-9]+[^{}]*").unwrap();
let func_re = Regex::new("^[ \t]*function.*").unwrap();
let ebbs = func.layout.ebbs().collect::<Vec<_>>();
let mut data = EntityMap::with_capacity(ebbs.len());
if ebbs.len() < 1 {
return DominatorTree::from_data(data);
}
let mut ebb_offset = 0;
let mut inst_offset = 0;
let mut cur_ebb = ebbs[0];
let mut insts = func.layout.ebb_insts(ebbs[ebb_offset]).collect::<Vec<_>>();
for line in function_source.lines() {
if ebb_re.is_match(line) {
cur_ebb = ebbs[ebb_offset];
insts = func.layout.ebb_insts(cur_ebb).collect::<Vec<_>>();
ebb_offset += 1;
inst_offset = 0;
} else if inst_re.is_match(line) && !func_re.is_match(line) {
inst_offset += 1;
}
match dom_re.captures(line) {
Some(caps) => {
for s in caps.at(1).unwrap().split(",") {
let this_ebb = Ebb::with_number(s.parse::<u32>().unwrap()).unwrap();
let inst = if inst_offset == 0 {
NO_INST
} else {
insts[inst_offset - 1].clone()
};
data[this_ebb] = Some((cur_ebb.clone(), inst));
}
},
None => continue,
};
}
DominatorTree::from_data(data)
}
fn test_dominator_tree(function_source: &str) {
let func = &Parser::parse(function_source).unwrap()[0]; let func = &Parser::parse(function_source).unwrap()[0];
let src_dtree = dominator_tree_from_source(&func, function_source);
let cfg = ControlFlowGraph::new(&func); let cfg = ControlFlowGraph::new(&func);
let dtree = DominatorTree::new(&cfg); let dtree = DominatorTree::new(&cfg);
assert_eq!(dtree.ebbs().collect::<Vec<_>>().len(), idoms.len());
for (i, j) in idoms.iter().enumerate() {
let ebb = Ebb::with_number(i.clone() as u32).unwrap();
let idom_ebb = Ebb::with_number(*j).unwrap();
let mut idom_inst = NO_INST;
// Find the first branch/jump instruction which points to the idom_ebb for ebb in func.layout.ebbs() {
// and use it to denote our idom basic block. assert_eq!(dtree.idom(ebb), src_dtree.idom(ebb));
for inst in func.layout.ebb_insts(idom_ebb) {
match func.dfg[inst].analyze_branch() {
BranchInfo::SingleDest(dest, _) => {
if dest == ebb {
idom_inst = inst;
break;
}
}
BranchInfo::Table(jt) => {
for (_, dest) in func.jump_tables[jt].entries() {
if dest == ebb {
idom_inst = inst;
break;
}
}
// We already found our inst!
if idom_inst != NO_INST {
break;
}
}
BranchInfo::NotABranch => {}
}
}
assert_eq!(dtree.idom(ebb).unwrap(), (idom_ebb, idom_inst));
} }
} }
@@ -51,26 +79,26 @@ fn test_dominator_tree(function_source: &str, idoms: Vec<u32>) {
fn basic() { fn basic() {
test_dominator_tree(" test_dominator_tree("
function test(i32) { function test(i32) {
ebb0(v0: i32): ebb0(v0: i32): ; dominates(0)
jump ebb1 jump ebb1 ; dominates(1)
ebb1: ebb1:
brz v0, ebb3 brz v0, ebb3 ; dominates(3)
jump ebb2 jump ebb2 ; dominates(2)
ebb2: ebb2:
jump ebb3 jump ebb3
ebb3: ebb3:
return return
} }
", vec![0, 0, 1, 1]); ");
} }
#[test] #[test]
fn loops() { fn loops() {
test_dominator_tree(" test_dominator_tree("
function test(i32) { function test(i32) {
ebb0(v0: i32): ebb0(v0: i32): ; dominates(0)
brz v0, ebb1 brz v0, ebb1 ; dominates(1,3,4,5)
jump ebb2 jump ebb2 ; dominates(2)
ebb1: ebb1:
jump ebb3 jump ebb3
ebb2: ebb2:
@@ -85,5 +113,5 @@ fn loops() {
brz v0, ebb4 brz v0, ebb4
return return
} }
", vec![0, 0, 0, 0, 0, 0]); ");
} }