Expand Func documentation, rewrite Rust embed docs (#1236)
This commit expands the documentation of the `Func` type as well as updating the Rust embedding tutorial with more recent APIs. I wanted to also leave space in the Rust tutorial to get more ambitious over time with what it's documenting, but I stopped around here, curious to see what others think about it!
This commit is contained in:
@@ -1,14 +1,21 @@
|
||||
# Embedding Wasmtime in Rust
|
||||
|
||||
This document shows how to embed Wasmtime using the Rust API, and run a simple
|
||||
wasm program.
|
||||
This document shows an example of how to embed Wasmtime using the [Rust
|
||||
API][apidoc] to execute a simple wasm program. Be sure to also check out the
|
||||
[full API documentation][apidoc] for a full listing of what the [`wasmtime`
|
||||
crate][crate] has to offer.
|
||||
|
||||
# Create some wasm
|
||||
[apidoc]: https://bytecodealliance.github.io/wasmtime/api/wasmtime/
|
||||
[wasmtime]: https://crates.io/crates/wasmtime
|
||||
|
||||
Let's create a simple WebAssembly file with a single exported function that returns an integer:
|
||||
## Creating the WebAssembly to execute
|
||||
|
||||
Creation of a WebAssembly file is generally covered by the [Writing
|
||||
WebAssembly chapter](./wasm.md), so we'll just assume that you've already got a
|
||||
wasm file on hand for the rest of this tutorial. To make things simple we'll
|
||||
also just assume you've got a `hello.wat` file which looks like this:
|
||||
|
||||
```wat
|
||||
(;; wat2wasm hello.wat -o $WASM_FILES/hello.wasm ;;)
|
||||
(module
|
||||
(func (export "answer") (result i32)
|
||||
i32.const 42
|
||||
@@ -16,135 +23,148 @@ Let's create a simple WebAssembly file with a single exported function that retu
|
||||
)
|
||||
```
|
||||
|
||||
# Create rust project
|
||||
Here we're just exporting one function which returns an integer that we'll read
|
||||
from Rust.
|
||||
|
||||
## Hello, World!
|
||||
|
||||
First up let's create a rust project
|
||||
|
||||
```sh
|
||||
$ cargo new --bin wasmtime_hello
|
||||
$ cd wasmtime_hello
|
||||
$ cp $WASM_FILES/hello.wasm .
|
||||
```
|
||||
|
||||
We will be using the wasmtime engine/API to run the wasm file, so we will add the dependency to `Cargo.toml`:
|
||||
Next you'll want to add `hello.wat` to the root of your project.
|
||||
|
||||
We will be using the `wasmtime` crate to run the wasm file, so next up we need a
|
||||
dependency in `Cargo.toml`:
|
||||
|
||||
```toml
|
||||
[dependencies]
|
||||
wasmtime = "<current version>"
|
||||
wasmtime = "0.12.0"
|
||||
```
|
||||
|
||||
where "<current version>" is the current version number of the `wasmtime` crate.
|
||||
|
||||
It is time to add code to the `src/main.rs`. First, storage needs to be activated:
|
||||
|
||||
```rust
|
||||
# extern crate wasmtime;
|
||||
use wasmtime::*;
|
||||
|
||||
let store = Store::default();
|
||||
```
|
||||
|
||||
The `hello.wasm` can be read from the file system and provided to the `Module` object constructor as `&[u8]`:
|
||||
|
||||
```rust,no_run
|
||||
# extern crate wasmtime;
|
||||
# use wasmtime::*;
|
||||
# fn main() -> Result<(), Box<dyn std::error::Error>> {
|
||||
# let store = Store::default();
|
||||
use std::fs::read;
|
||||
|
||||
let hello_wasm = read("hello.wasm")?;
|
||||
|
||||
let module = Module::new(&store, &hello_wasm)?;
|
||||
# Ok(())
|
||||
# }
|
||||
```
|
||||
|
||||
The module instance can now be created. Normally, you would provide imports, but
|
||||
in this case, there are none required:
|
||||
|
||||
```rust
|
||||
# extern crate wasmtime;
|
||||
# use wasmtime::*;
|
||||
# fn main() -> Result<(), Box<dyn std::error::Error>> {
|
||||
# let store = Store::default();
|
||||
# let module = Module::new(&store, "(module)")?;
|
||||
let instance = Instance::new(&module, &[])?;
|
||||
# Ok(())
|
||||
# }
|
||||
```
|
||||
|
||||
Everything is set. If a WebAssembly module has a start function -- it was run.
|
||||
The instance's exports can be used at this point. wasmtime provides functions
|
||||
to get an export by name, and ensure that it's a function:
|
||||
|
||||
```rust
|
||||
# extern crate wasmtime;
|
||||
# use wasmtime::*;
|
||||
# fn main() -> Result<(), Box<dyn std::error::Error>> {
|
||||
# let store = Store::default();
|
||||
# let module = Module::new(&store, r#"(module (func (export "answer")))"#)?;
|
||||
# let instance = Instance::new(&module, &[])?;
|
||||
let answer = instance.get_export("answer").expect("answer").func().expect("function");
|
||||
# Ok(())
|
||||
# }
|
||||
```
|
||||
|
||||
The exported function can be called using the `call` method. The exported
|
||||
"answer" function accepts no parameters and returns a single `i32` value.
|
||||
|
||||
```rust
|
||||
# extern crate wasmtime;
|
||||
# use wasmtime::*;
|
||||
# fn main() -> Result<(), Box<dyn std::error::Error>> {
|
||||
# let store = Store::default();
|
||||
# let module = Module::new(&store, r#"(module (func (export "answer") (result i32) i32.const 2))"#)?;
|
||||
# let instance = Instance::new(&module, &[])?;
|
||||
# let answer = instance.get_export("answer").expect("answer").func().expect("function");
|
||||
let result = answer.call(&[])?;
|
||||
println!("Answer: {:?}", result[0].i32());
|
||||
# Ok(())
|
||||
# }
|
||||
```
|
||||
|
||||
Since we know the signature of the function ahead of time, we can also assert
|
||||
its signature and call the function directly without doing conversions:
|
||||
|
||||
```rust
|
||||
# extern crate wasmtime;
|
||||
# use wasmtime::*;
|
||||
# fn main() -> Result<(), Box<dyn std::error::Error>> {
|
||||
# let store = Store::default();
|
||||
# let module = Module::new(&store, r#"(module (func (export "answer") (result i32) i32.const 2))"#)?;
|
||||
# let instance = Instance::new(&module, &[])?;
|
||||
# let answer = instance.get_export("answer").expect("answer").func().expect("function");
|
||||
let answer = answer.get0::<i32>()?;
|
||||
let result: i32 = answer()?;
|
||||
println!("Answer: {}", result);
|
||||
# Ok(())
|
||||
# }
|
||||
```
|
||||
|
||||
The names of the WebAssembly module's imports and exports can be discovered by
|
||||
means of module's corresponding methods.
|
||||
|
||||
# src/main.rs
|
||||
Next up let's write the code that we need to execute this wasm file. The
|
||||
simplest version of this looks like so:
|
||||
|
||||
```rust,no_run
|
||||
# extern crate wasmtime;
|
||||
use std::error::Error;
|
||||
use std::fs::read;
|
||||
use wasmtime::*;
|
||||
|
||||
fn main() -> Result<(), Box<dyn Error>> {
|
||||
// A `Store` is a sort of "global object" in a sense, but for now it suffices
|
||||
// to say that it's generally passed to most constructors.
|
||||
let store = Store::default();
|
||||
|
||||
let wasm = read("hello.wasm")?;
|
||||
# if false {
|
||||
// We start off by creating a `Module` which represents a compiled form
|
||||
// of our input wasm module. In this case it'll be JIT-compiled after
|
||||
// we parse the text format.
|
||||
let module = Module::from_file(&store, "hello.wat")?;
|
||||
# }
|
||||
# let module = Module::new(&store, r#"(module (func (export "answer") (result i32) i32.const 42))"#)?;
|
||||
|
||||
let module = Module::new(&store, &wasm)?;
|
||||
// After we have a compiled `Module` we can then instantiate it, creating
|
||||
// an `Instance` which we can actually poke at functions on.
|
||||
let instance = Instance::new(&module, &[])?;
|
||||
|
||||
let answer = instance.get_export("answer").expect("answer").func().expect("function");
|
||||
let result = answer.call(&[])?;
|
||||
println!("Answer: {:?}", result[0].i32());
|
||||
// The `Instance` gives us access to various exported functions and items,
|
||||
// which we access here to pull out our `answer` exported function and
|
||||
// run it.
|
||||
let answer = instance.get_export("answer")
|
||||
.expect("export named `answer` not found")
|
||||
.func()
|
||||
.expect("export `answer` was not a function");
|
||||
|
||||
// There's a few ways we can call the `answer` `Func` value. The easiest
|
||||
// is to statically assert its signature with `get0` (in this case asserting
|
||||
// it takes no arguments and returns one i32) and then call it.
|
||||
let answer = answer.get0::<i32>()?;
|
||||
|
||||
// And finally we can call our function! Note that the error propagation
|
||||
// with `?` is done to handle the case where the wasm function traps.
|
||||
let result = answer()?;
|
||||
println!("Answer: {:?}", result);
|
||||
Ok(())
|
||||
}
|
||||
```
|
||||
|
||||
We can build and execute our example with `cargo run`. Note that by depending on
|
||||
`wasmtime` you're depending on a JIT compiler, so it may take a moment to build
|
||||
all of its dependencies:
|
||||
|
||||
```sh
|
||||
$ cargo run
|
||||
Compiling ...
|
||||
...
|
||||
Finished dev [unoptimized + debuginfo] target(s) in 42.32s
|
||||
Running `wasmtime_hello/target/debug/wasmtime_hello`
|
||||
Answer: 42
|
||||
```
|
||||
|
||||
and there we go! We've now executed our first WebAssembly in `wasmtime` and
|
||||
gotten the result back.
|
||||
|
||||
## Importing Host Functionality
|
||||
|
||||
What we've just seen is a pretty small example of how to call a wasm function
|
||||
and take a look at the result. Most interesting wasm modules, however, are going
|
||||
to import some functions to do something a bit more interesting. For that you'll
|
||||
need to provide imported functions from Rust for wasm to call!
|
||||
|
||||
Let's take a look at a wasm module which imports a logging function as well as
|
||||
some simple arithmetic from the environment.
|
||||
|
||||
```wat
|
||||
(module
|
||||
(import "" "log" (func $log (param i32)))
|
||||
(import "" "double" (func $double (param i32) (result i32)))
|
||||
(func (export "run") (result i32)
|
||||
i32.const 0
|
||||
call $log
|
||||
i32.const 1
|
||||
call $log
|
||||
i32.const 2
|
||||
call $double
|
||||
call $log
|
||||
)
|
||||
)
|
||||
```
|
||||
|
||||
This wasm module will call our `"log"` import a few times and then also call the
|
||||
`"double"` import. We can compile and instantiate this module with code that
|
||||
looks like this:
|
||||
|
||||
```rust,no_run
|
||||
# extern crate wasmtime;
|
||||
# use std::error::Error;
|
||||
# use wasmtime::*;
|
||||
# fn main() -> Result<(), Box<dyn Error>> {
|
||||
# let store = Store::default();
|
||||
# let module = Module::new(&store, r#"
|
||||
# (module
|
||||
# (import "" "log" (func $log (param i32)))
|
||||
# (import "" "double" (func $double (param i32) (result i32))))"#)?;
|
||||
// First we can create our `log` function, which will simply print out the
|
||||
// parameter it receives.
|
||||
let log = Func::wrap1(&store, |param: i32| {
|
||||
println!("log: {}", param);
|
||||
});
|
||||
|
||||
// Next we can create our double function which doubles the input it receives.
|
||||
let double = Func::wrap1(&store, |param: i32| param * 2);
|
||||
|
||||
// When instantiating the module we now need to provide the imports to the
|
||||
// instantiation process. This is the second slice argument, where each
|
||||
// entry in the slice must line up with the imports in the module.
|
||||
let instance = Instance::new(&module, &[log.into(), double.into()])?;
|
||||
# Ok(())
|
||||
# }
|
||||
```
|
||||
|
||||
Note that there's a number of ways to define a `Func`, be sure to [consult its
|
||||
documentation][`Func`] for other ways to create a host-defined function.
|
||||
|
||||
[`Func`]: https://bytecodealliance.github.io/wasmtime/api/wasmtime/struct.Func.html
|
||||
|
||||
Reference in New Issue
Block a user