Move library crates under 'lib/'.

Give these crates each a more standard directory layout with sources in
a 'src' sub-sirectory and Cargo.toml in the top lib/foo directory.

Add license and description fields to each.

The build script for the cretonne crate now lives in
'lib/cretonne/build.rs' separating it from the normal library sources
under 'lib/cretonne/src'.
This commit is contained in:
Jakob Stoklund Olesen
2016-10-17 14:44:43 -07:00
parent af6355e2ef
commit 846db00a21
52 changed files with 64 additions and 64 deletions

229
lib/cretonne/src/cfg.rs Normal file
View File

@@ -0,0 +1,229 @@
//! A control flow graph represented as mappings of extended basic blocks to their predecessors
//! and successors. Successors are represented as extended basic blocks while predecessors are
//! represented by basic blocks.
//! BasicBlocks are denoted by tuples of EBB and branch/jump instructions. Each predecessor
//! tuple corresponds to the end of a basic block.
//!
//! ```c
//! Ebb0:
//! ... ; beginning of basic block
//!
//! ...
//!
//! brz vx, Ebb1 ; end of basic block
//!
//! ... ; beginning of basic block
//!
//! ...
//!
//! jmp Ebb2 ; end of basic block
//! ```
//!
//! Here Ebb1 and Ebb2 would each have a single predecessor denoted as (Ebb0, `brz vx, Ebb1`)
//! and (Ebb0, `jmp Ebb2`) respectively.
use ir::{Function, Inst, Ebb};
use ir::instructions::BranchInfo;
use entity_map::{EntityMap, Keys};
use std::collections::HashSet;
/// A basic block denoted by its enclosing Ebb and last instruction.
pub type BasicBlock = (Ebb, Inst);
/// A container for the successors and predecessors of some Ebb.
#[derive(Debug, Clone, Default)]
pub struct CFGNode {
pub successors: Vec<Ebb>,
pub predecessors: Vec<BasicBlock>,
}
impl CFGNode {
pub fn new() -> CFGNode {
CFGNode {
successors: Vec::new(),
predecessors: Vec::new(),
}
}
}
/// The Control Flow Graph maintains a mapping of ebbs to their predecessors
/// and successors where predecessors are basic blocks and successors are
/// extended basic blocks.
#[derive(Debug)]
pub struct ControlFlowGraph {
entry_block: Option<Ebb>,
data: EntityMap<Ebb, CFGNode>,
}
impl ControlFlowGraph {
/// During initialization mappings will be generated for any existing
/// blocks within the CFG's associated function.
pub fn new(func: &Function) -> ControlFlowGraph {
let mut cfg = ControlFlowGraph {
data: EntityMap::with_capacity(func.dfg.num_ebbs()),
entry_block: func.layout.entry_block(),
};
for ebb in &func.layout {
for inst in func.layout.ebb_insts(ebb) {
match func.dfg[inst].analyze_branch() {
BranchInfo::SingleDest(dest, _) => {
cfg.add_edge((ebb, inst), dest);
}
BranchInfo::Table(jt) => {
for (_, dest) in func.jump_tables[jt].entries() {
cfg.add_edge((ebb, inst), dest);
}
}
BranchInfo::NotABranch => {}
}
}
}
cfg
}
fn add_edge(&mut self, from: BasicBlock, to: Ebb) {
self.data[from.0].successors.push(to);
self.data[to].predecessors.push(from);
}
pub fn get_predecessors(&self, ebb: Ebb) -> &Vec<BasicBlock> {
&self.data[ebb].predecessors
}
pub fn get_successors(&self, ebb: Ebb) -> &Vec<Ebb> {
&self.data[ebb].successors
}
/// Return [reachable] ebbs in postorder.
pub fn postorder_ebbs(&self) -> Vec<Ebb> {
let entry_block = match self.entry_block {
None => {
return Vec::new();
}
Some(eb) => eb,
};
let mut grey = HashSet::new();
let mut black = HashSet::new();
let mut stack = vec![entry_block.clone()];
let mut postorder = Vec::new();
while !stack.is_empty() {
let node = stack.pop().unwrap();
if !grey.contains(&node) {
// This is a white node. Mark it as gray.
grey.insert(node);
stack.push(node);
// Get any children weve never seen before.
for child in self.get_successors(node) {
if !grey.contains(child) {
stack.push(child.clone());
}
}
} else if !black.contains(&node) {
postorder.push(node.clone());
black.insert(node.clone());
}
}
postorder
}
/// An iterator across all of the ebbs stored in the cfg.
pub fn ebbs(&self) -> Keys<Ebb> {
self.data.keys()
}
}
#[cfg(test)]
mod tests {
use super::*;
use ir::{Function, Builder, Cursor, VariableArgs, types};
#[test]
fn empty() {
let func = Function::new();
let cfg = ControlFlowGraph::new(&func);
assert_eq!(None, cfg.ebbs().next());
}
#[test]
fn no_predecessors() {
let mut func = Function::new();
let ebb0 = func.dfg.make_ebb();
let ebb1 = func.dfg.make_ebb();
let ebb2 = func.dfg.make_ebb();
func.layout.append_ebb(ebb0);
func.layout.append_ebb(ebb1);
func.layout.append_ebb(ebb2);
let cfg = ControlFlowGraph::new(&func);
let nodes = cfg.ebbs().collect::<Vec<_>>();
assert_eq!(nodes.len(), 3);
let mut fun_ebbs = func.layout.ebbs();
for ebb in nodes {
assert_eq!(ebb, fun_ebbs.next().unwrap());
assert_eq!(cfg.get_predecessors(ebb).len(), 0);
assert_eq!(cfg.get_successors(ebb).len(), 0);
}
}
#[test]
fn branches_and_jumps() {
let mut func = Function::new();
let ebb0 = func.dfg.make_ebb();
let cond = func.dfg.append_ebb_arg(ebb0, types::I32);
let ebb1 = func.dfg.make_ebb();
let ebb2 = func.dfg.make_ebb();
let br_ebb0_ebb2;
let br_ebb1_ebb1;
let jmp_ebb0_ebb1;
let jmp_ebb1_ebb2;
{
let mut cursor = Cursor::new(&mut func.layout);
let mut b = Builder::new(&mut func.dfg, &mut cursor);
b.insert_ebb(ebb0);
br_ebb0_ebb2 = b.brnz(cond, ebb2, VariableArgs::new());
jmp_ebb0_ebb1 = b.jump(ebb1, VariableArgs::new());
b.insert_ebb(ebb1);
br_ebb1_ebb1 = b.brnz(cond, ebb1, VariableArgs::new());
jmp_ebb1_ebb2 = b.jump(ebb2, VariableArgs::new());
b.insert_ebb(ebb2);
}
let cfg = ControlFlowGraph::new(&func);
let ebb0_predecessors = cfg.get_predecessors(ebb0);
let ebb1_predecessors = cfg.get_predecessors(ebb1);
let ebb2_predecessors = cfg.get_predecessors(ebb2);
let ebb0_successors = cfg.get_successors(ebb0);
let ebb1_successors = cfg.get_successors(ebb1);
let ebb2_successors = cfg.get_successors(ebb2);
assert_eq!(ebb0_predecessors.len(), 0);
assert_eq!(ebb1_predecessors.len(), 2);
assert_eq!(ebb2_predecessors.len(), 2);
assert_eq!(ebb1_predecessors.contains(&(ebb0, jmp_ebb0_ebb1)), true);
assert_eq!(ebb1_predecessors.contains(&(ebb1, br_ebb1_ebb1)), true);
assert_eq!(ebb2_predecessors.contains(&(ebb0, br_ebb0_ebb2)), true);
assert_eq!(ebb2_predecessors.contains(&(ebb1, jmp_ebb1_ebb2)), true);
assert_eq!(ebb0_successors.len(), 2);
assert_eq!(ebb1_successors.len(), 2);
assert_eq!(ebb2_successors.len(), 0);
assert_eq!(ebb0_successors.contains(&ebb1), true);
assert_eq!(ebb0_successors.contains(&ebb2), true);
assert_eq!(ebb1_successors.contains(&ebb1), true);
assert_eq!(ebb1_successors.contains(&ebb2), true);
}
}