Mass rename Ebb and relatives to Block (#1365)

* Manually rename BasicBlock to BlockPredecessor

BasicBlock is a pair of (Ebb, Inst) that is used to represent the
basic block subcomponent of an Ebb that is a predecessor to an Ebb.

Eventually we will be able to remove this struct, but for now it
makes sense to give it a non-conflicting name so that we can start
to transition Ebb to represent a basic block.

I have not updated any comments that refer to BasicBlock, as
eventually we will remove BlockPredecessor and replace with Block,
which is a basic block, so the comments will become correct.

* Manually rename SSABuilder block types to avoid conflict

SSABuilder has its own Block and BlockData types. These along with
associated identifier will cause conflicts in a later commit, so
they are renamed to be more verbose here.

* Automatically rename 'Ebb' to 'Block' in *.rs

* Automatically rename 'EBB' to 'block' in *.rs

* Automatically rename 'ebb' to 'block' in *.rs

* Automatically rename 'extended basic block' to 'basic block' in *.rs

* Automatically rename 'an basic block' to 'a basic block' in *.rs

* Manually update comment for `Block`

`Block`'s wikipedia article required an update.

* Automatically rename 'an `Block`' to 'a `Block`' in *.rs

* Automatically rename 'extended_basic_block' to 'basic_block' in *.rs

* Automatically rename 'ebb' to 'block' in *.clif

* Manually rename clif constant that contains 'ebb' as substring to avoid conflict

* Automatically rename filecheck uses of 'EBB' to 'BB'

'regex: EBB' -> 'regex: BB'
'$EBB' -> '$BB'

* Automatically rename 'EBB' 'Ebb' to 'block' in *.clif

* Automatically rename 'an block' to 'a block' in *.clif

* Fix broken testcase when function name length increases

Test function names are limited to 16 characters. This causes
the new longer name to be truncated and fail a filecheck test. An
outdated comment was also fixed.
This commit is contained in:
Ryan Hunt
2020-02-07 10:46:47 -06:00
committed by GitHub
parent a136d1cb00
commit 832666c45e
370 changed files with 8090 additions and 7988 deletions

View File

@@ -22,7 +22,7 @@ use crate::cursor::{Cursor, FuncCursor};
use crate::flowgraph::ControlFlowGraph;
use crate::ir::instructions::CallInfo;
use crate::ir::{
AbiParam, ArgumentLoc, ArgumentPurpose, DataFlowGraph, Ebb, Function, Inst, InstBuilder,
AbiParam, ArgumentLoc, ArgumentPurpose, Block, DataFlowGraph, Function, Inst, InstBuilder,
MemFlags, SigRef, Signature, StackSlotData, StackSlotKind, Type, Value, ValueLoc,
};
use crate::isa::TargetIsa;
@@ -84,12 +84,12 @@ fn legalize_signature(
/// Legalize the entry block parameters after `func`'s signature has been legalized.
///
/// The legalized signature may contain more parameters than the original signature, and the
/// parameter types have been changed. This function goes through the parameters of the entry EBB
/// parameter types have been changed. This function goes through the parameters of the entry block
/// and replaces them with parameters of the right type for the ABI.
///
/// The original entry EBB parameters are computed from the new ABI parameters by code inserted at
/// The original entry block parameters are computed from the new ABI parameters by code inserted at
/// the top of the entry block.
fn legalize_entry_params(func: &mut Function, entry: Ebb) {
fn legalize_entry_params(func: &mut Function, entry: Block) {
let mut has_sret = false;
let mut has_link = false;
let mut has_vmctx = false;
@@ -104,19 +104,19 @@ fn legalize_entry_params(func: &mut Function, entry: Ebb) {
// Keep track of the argument types in the ABI-legalized signature.
let mut abi_arg = 0;
// Process the EBB parameters one at a time, possibly replacing one argument with multiple new
// ones. We do this by detaching the entry EBB parameters first.
let ebb_params = pos.func.dfg.detach_ebb_params(entry);
// Process the block parameters one at a time, possibly replacing one argument with multiple new
// ones. We do this by detaching the entry block parameters first.
let block_params = pos.func.dfg.detach_block_params(entry);
let mut old_arg = 0;
while let Some(arg) = ebb_params.get(old_arg, &pos.func.dfg.value_lists) {
while let Some(arg) = block_params.get(old_arg, &pos.func.dfg.value_lists) {
old_arg += 1;
let abi_type = pos.func.signature.params[abi_arg];
let arg_type = pos.func.dfg.value_type(arg);
if arg_type == abi_type.value_type {
// No value translation is necessary, this argument matches the ABI type.
// Just use the original EBB argument value. This is the most common case.
pos.func.dfg.attach_ebb_param(entry, arg);
// Just use the original block argument value. This is the most common case.
pos.func.dfg.attach_block_param(entry, arg);
match abi_type.purpose {
ArgumentPurpose::Normal => {}
ArgumentPurpose::FramePointer => {}
@@ -151,13 +151,13 @@ fn legalize_entry_params(func: &mut Function, entry: Ebb) {
);
if ty == abi_type.value_type {
abi_arg += 1;
Ok(func.dfg.append_ebb_param(entry, ty))
Ok(func.dfg.append_block_param(entry, ty))
} else {
Err(abi_type)
}
};
let converted = convert_from_abi(&mut pos, arg_type, Some(arg), &mut get_arg);
// The old `arg` is no longer an attached EBB argument, but there are probably still
// The old `arg` is no longer an attached block argument, but there are probably still
// uses of the value.
debug_assert_eq!(pos.func.dfg.resolve_aliases(arg), converted);
}
@@ -201,7 +201,7 @@ fn legalize_entry_params(func: &mut Function, entry: Ebb) {
// Just create entry block values to match here. We will use them in `handle_return_abi()`
// below.
pos.func.dfg.append_ebb_param(entry, arg.value_type);
pos.func.dfg.append_block_param(entry, arg.value_type);
}
}
@@ -851,7 +851,7 @@ pub fn handle_return_abi(inst: Inst, func: &mut Function, cfg: &ControlFlowGraph
let val = pos
.func
.dfg
.ebb_params(pos.func.layout.entry_block().unwrap())[idx];
.block_params(pos.func.layout.entry_block().unwrap())[idx];
debug_assert_eq!(pos.func.dfg.value_type(val), arg.value_type);
vlist.push(val, &mut pos.func.dfg.value_lists);
@@ -958,8 +958,13 @@ fn round_up_to_multiple_of_pow2(n: u32, to: u32) -> u32 {
///
/// Values that are passed into the function on the stack must be assigned to an `IncomingArg`
/// stack slot already during legalization.
fn spill_entry_params(func: &mut Function, entry: Ebb) {
for (abi, &arg) in func.signature.params.iter().zip(func.dfg.ebb_params(entry)) {
fn spill_entry_params(func: &mut Function, entry: Block) {
for (abi, &arg) in func
.signature
.params
.iter()
.zip(func.dfg.block_params(entry))
{
if let ArgumentLoc::Stack(offset) = abi.location {
let ss = func.stack_slots.make_incoming_arg(abi.value_type, offset);
func.locations[arg] = ValueLoc::Stack(ss);

View File

@@ -120,12 +120,12 @@ fn static_addr(
pos.ins().trap(ir::TrapCode::HeapOutOfBounds);
pos.func.dfg.replace(inst).iconst(addr_ty, 0);
// Split Ebb, as the trap is a terminator instruction.
let curr_ebb = pos.current_ebb().expect("Cursor is not in an ebb");
let new_ebb = pos.func.dfg.make_ebb();
pos.insert_ebb(new_ebb);
cfg.recompute_ebb(pos.func, curr_ebb);
cfg.recompute_ebb(pos.func, new_ebb);
// Split Block, as the trap is a terminator instruction.
let curr_block = pos.current_block().expect("Cursor is not in an block");
let new_block = pos.func.dfg.make_block();
pos.insert_block(new_block);
cfg.recompute_block(pos.func, curr_block);
cfg.recompute_block(pos.func, new_block);
return;
}

View File

@@ -87,7 +87,7 @@ fn legalize_inst(
return LegalizeInstResult::SplitLegalizePending;
}
}
ir::ValueDef::Param(_ebb, _num) => {}
ir::ValueDef::Param(_block, _num) => {}
}
let res = pos.func.dfg.inst_results(inst).to_vec();
@@ -148,10 +148,10 @@ pub fn legalize_function(func: &mut ir::Function, cfg: &mut ControlFlowGraph, is
let mut pos = FuncCursor::new(func);
let func_begin = pos.position();
// Split ebb params before trying to legalize instructions, so that the newly introduced
// Split block params before trying to legalize instructions, so that the newly introduced
// isplit instructions get legalized.
while let Some(ebb) = pos.next_ebb() {
split::split_ebb_params(pos.func, cfg, ebb);
while let Some(block) = pos.next_block() {
split::split_block_params(pos.func, cfg, block);
}
pos.set_position(func_begin);
@@ -159,9 +159,9 @@ pub fn legalize_function(func: &mut ir::Function, cfg: &mut ControlFlowGraph, is
// This must be a set to prevent trying to legalize `isplit` and `vsplit` twice in certain cases.
let mut pending_splits = BTreeSet::new();
// Process EBBs in layout order. Some legalization actions may split the current EBB or append
// new ones to the end. We need to make sure we visit those new EBBs too.
while let Some(_ebb) = pos.next_ebb() {
// Process blocks in layout order. Some legalization actions may split the current block or append
// new ones to the end. We need to make sure we visit those new blocks too.
while let Some(_block) = pos.next_block() {
// Keep track of the cursor position before the instruction being processed, so we can
// double back when replacing instructions.
let mut prev_pos = pos.position();
@@ -225,48 +225,48 @@ fn expand_cond_trap(
_ => panic!("Expected cond trap: {}", func.dfg.display_inst(inst, None)),
};
// Split the EBB after `inst`:
// Split the block after `inst`:
//
// trapnz arg
// ..
//
// Becomes:
//
// brz arg, new_ebb_resume
// jump new_ebb_trap
// brz arg, new_block_resume
// jump new_block_trap
//
// new_ebb_trap:
// new_block_trap:
// trap
//
// new_ebb_resume:
// new_block_resume:
// ..
let old_ebb = func.layout.pp_ebb(inst);
let new_ebb_trap = func.dfg.make_ebb();
let new_ebb_resume = func.dfg.make_ebb();
let old_block = func.layout.pp_block(inst);
let new_block_trap = func.dfg.make_block();
let new_block_resume = func.dfg.make_block();
// Replace trap instruction by the inverted condition.
if trapz {
func.dfg.replace(inst).brnz(arg, new_ebb_resume, &[]);
func.dfg.replace(inst).brnz(arg, new_block_resume, &[]);
} else {
func.dfg.replace(inst).brz(arg, new_ebb_resume, &[]);
func.dfg.replace(inst).brz(arg, new_block_resume, &[]);
}
// Add jump instruction after the inverted branch.
let mut pos = FuncCursor::new(func).after_inst(inst);
pos.use_srcloc(inst);
pos.ins().jump(new_ebb_trap, &[]);
pos.ins().jump(new_block_trap, &[]);
// Insert the new label and the unconditional trap terminator.
pos.insert_ebb(new_ebb_trap);
pos.insert_block(new_block_trap);
pos.ins().trap(code);
// Insert the new label and resume the execution when the trap fails.
pos.insert_ebb(new_ebb_resume);
pos.insert_block(new_block_resume);
// Finally update the CFG.
cfg.recompute_ebb(pos.func, old_ebb);
cfg.recompute_ebb(pos.func, new_ebb_resume);
cfg.recompute_ebb(pos.func, new_ebb_trap);
cfg.recompute_block(pos.func, old_block);
cfg.recompute_block(pos.func, new_block_resume);
cfg.recompute_block(pos.func, new_block_trap);
}
/// Jump tables.
@@ -292,7 +292,7 @@ fn expand_br_table_jt(
) {
use crate::ir::condcodes::IntCC;
let (arg, default_ebb, table) = match func.dfg[inst] {
let (arg, default_block, table) = match func.dfg[inst] {
ir::InstructionData::BranchTable {
opcode: ir::Opcode::BrTable,
arg,
@@ -304,22 +304,22 @@ fn expand_br_table_jt(
// Rewrite:
//
// br_table $idx, default_ebb, $jt
// br_table $idx, default_block, $jt
//
// To:
//
// $oob = ifcmp_imm $idx, len($jt)
// brif uge $oob, default_ebb
// jump fallthrough_ebb
// brif uge $oob, default_block
// jump fallthrough_block
//
// fallthrough_ebb:
// fallthrough_block:
// $base = jump_table_base.i64 $jt
// $rel_addr = jump_table_entry.i64 $idx, $base, 4, $jt
// $addr = iadd $base, $rel_addr
// indirect_jump_table_br $addr, $jt
let ebb = func.layout.pp_ebb(inst);
let jump_table_ebb = func.dfg.make_ebb();
let block = func.layout.pp_block(inst);
let jump_table_block = func.dfg.make_block();
let mut pos = FuncCursor::new(func).at_inst(inst);
pos.use_srcloc(inst);
@@ -330,9 +330,9 @@ fn expand_br_table_jt(
.ins()
.icmp_imm(IntCC::UnsignedGreaterThanOrEqual, arg, table_size);
pos.ins().brnz(oob, default_ebb, &[]);
pos.ins().jump(jump_table_ebb, &[]);
pos.insert_ebb(jump_table_ebb);
pos.ins().brnz(oob, default_block, &[]);
pos.ins().jump(jump_table_block, &[]);
pos.insert_block(jump_table_block);
let addr_ty = isa.pointer_type();
@@ -351,8 +351,8 @@ fn expand_br_table_jt(
pos.ins().indirect_jump_table_br(addr, table);
pos.remove_inst();
cfg.recompute_ebb(pos.func, ebb);
cfg.recompute_ebb(pos.func, jump_table_ebb);
cfg.recompute_block(pos.func, block);
cfg.recompute_block(pos.func, jump_table_block);
}
/// Expand br_table to series of conditionals.
@@ -364,7 +364,7 @@ fn expand_br_table_conds(
) {
use crate::ir::condcodes::IntCC;
let (arg, default_ebb, table) = match func.dfg[inst] {
let (arg, default_block, table) = match func.dfg[inst] {
ir::InstructionData::BranchTable {
opcode: ir::Opcode::BrTable,
arg,
@@ -374,15 +374,15 @@ fn expand_br_table_conds(
_ => panic!("Expected br_table: {}", func.dfg.display_inst(inst, None)),
};
let ebb = func.layout.pp_ebb(inst);
let block = func.layout.pp_block(inst);
// This is a poor man's jump table using just a sequence of conditional branches.
let table_size = func.jump_tables[table].len();
let mut cond_failed_ebb = vec![];
let mut cond_failed_block = vec![];
if table_size >= 1 {
cond_failed_ebb = alloc::vec::Vec::with_capacity(table_size - 1);
cond_failed_block = alloc::vec::Vec::with_capacity(table_size - 1);
for _ in 0..table_size - 1 {
cond_failed_ebb.push(func.dfg.make_ebb());
cond_failed_block.push(func.dfg.make_block());
}
}
@@ -397,19 +397,19 @@ fn expand_br_table_conds(
pos.ins().brnz(t, dest, &[]);
// Jump to the next case.
if i < table_size - 1 {
let ebb = cond_failed_ebb[i];
pos.ins().jump(ebb, &[]);
pos.insert_ebb(ebb);
let block = cond_failed_block[i];
pos.ins().jump(block, &[]);
pos.insert_block(block);
}
}
// `br_table` jumps to the default destination if nothing matches
pos.ins().jump(default_ebb, &[]);
pos.ins().jump(default_block, &[]);
pos.remove_inst();
cfg.recompute_ebb(pos.func, ebb);
for failed_ebb in cond_failed_ebb.into_iter() {
cfg.recompute_ebb(pos.func, failed_ebb);
cfg.recompute_block(pos.func, block);
for failed_block in cond_failed_block.into_iter() {
cfg.recompute_block(pos.func, failed_block);
}
}
@@ -433,23 +433,23 @@ fn expand_select(
// Replace `result = select ctrl, tval, fval` with:
//
// brnz ctrl, new_ebb(tval)
// jump new_ebb(fval)
// new_ebb(result):
let old_ebb = func.layout.pp_ebb(inst);
// brnz ctrl, new_block(tval)
// jump new_block(fval)
// new_block(result):
let old_block = func.layout.pp_block(inst);
let result = func.dfg.first_result(inst);
func.dfg.clear_results(inst);
let new_ebb = func.dfg.make_ebb();
func.dfg.attach_ebb_param(new_ebb, result);
let new_block = func.dfg.make_block();
func.dfg.attach_block_param(new_block, result);
func.dfg.replace(inst).brnz(ctrl, new_ebb, &[tval]);
func.dfg.replace(inst).brnz(ctrl, new_block, &[tval]);
let mut pos = FuncCursor::new(func).after_inst(inst);
pos.use_srcloc(inst);
pos.ins().jump(new_ebb, &[fval]);
pos.insert_ebb(new_ebb);
pos.ins().jump(new_block, &[fval]);
pos.insert_block(new_block);
cfg.recompute_ebb(pos.func, new_ebb);
cfg.recompute_ebb(pos.func, old_ebb);
cfg.recompute_block(pos.func, new_block);
cfg.recompute_block(pos.func, old_block);
}
fn expand_br_icmp(
@@ -458,7 +458,7 @@ fn expand_br_icmp(
cfg: &mut ControlFlowGraph,
_isa: &dyn TargetIsa,
) {
let (cond, a, b, destination, ebb_args) = match func.dfg[inst] {
let (cond, a, b, destination, block_args) = match func.dfg[inst] {
ir::InstructionData::BranchIcmp {
cond,
destination,
@@ -474,16 +474,16 @@ fn expand_br_icmp(
_ => panic!("Expected br_icmp {}", func.dfg.display_inst(inst, None)),
};
let old_ebb = func.layout.pp_ebb(inst);
let old_block = func.layout.pp_block(inst);
func.dfg.clear_results(inst);
let icmp_res = func.dfg.replace(inst).icmp(cond, a, b);
let mut pos = FuncCursor::new(func).after_inst(inst);
pos.use_srcloc(inst);
pos.ins().brnz(icmp_res, destination, &ebb_args);
pos.ins().brnz(icmp_res, destination, &block_args);
cfg.recompute_ebb(pos.func, destination);
cfg.recompute_ebb(pos.func, old_ebb);
cfg.recompute_block(pos.func, destination);
cfg.recompute_block(pos.func, old_block);
}
/// Expand illegal `f32const` and `f64const` instructions.

View File

@@ -54,19 +54,19 @@
//! This means that the `iconcat` instructions defining `v1` and `v4` end up with no uses, so they
//! can be trivially deleted by a dead code elimination pass.
//!
//! # EBB arguments
//! # block arguments
//!
//! If all instructions that produce an `i64` value are legalized as above, we will eventually end
//! up with no `i64` values anywhere, except for EBB arguments. We can work around this by
//! iteratively splitting EBB arguments too. That should leave us with no illegal value types
//! up with no `i64` values anywhere, except for block arguments. We can work around this by
//! iteratively splitting block arguments too. That should leave us with no illegal value types
//! anywhere.
//!
//! It is possible to have circular dependencies of EBB arguments that are never used by any real
//! It is possible to have circular dependencies of block arguments that are never used by any real
//! instructions. These loops will remain in the program.
use crate::cursor::{Cursor, CursorPosition, FuncCursor};
use crate::flowgraph::{BasicBlock, ControlFlowGraph};
use crate::ir::{self, Ebb, Inst, InstBuilder, InstructionData, Opcode, Type, Value, ValueDef};
use crate::flowgraph::{BlockPredecessor, ControlFlowGraph};
use crate::ir::{self, Block, Inst, InstBuilder, InstructionData, Opcode, Type, Value, ValueDef};
use alloc::vec::Vec;
use core::iter;
use smallvec::SmallVec;
@@ -95,7 +95,7 @@ pub fn vsplit(
split_any(func, cfg, pos, srcloc, value, Opcode::Vconcat)
}
/// After splitting an EBB argument, we need to go back and fix up all of the predecessor
/// After splitting an block argument, we need to go back and fix up all of the predecessor
/// instructions. This is potentially a recursive operation, but we don't implement it recursively
/// since that could use up too muck stack.
///
@@ -104,11 +104,11 @@ struct Repair {
concat: Opcode,
// The argument type after splitting.
split_type: Type,
// The destination EBB whose arguments have been split.
ebb: Ebb,
// Number of the original EBB argument which has been replaced by the low part.
// The destination block whose arguments have been split.
block: Block,
// Number of the original block argument which has been replaced by the low part.
num: usize,
// Number of the new EBB argument which represents the high part after the split.
// Number of the new block argument which represents the high part after the split.
hi_num: usize,
}
@@ -130,9 +130,9 @@ fn split_any(
result
}
pub fn split_ebb_params(func: &mut ir::Function, cfg: &ControlFlowGraph, ebb: Ebb) {
let pos = &mut FuncCursor::new(func).at_top(ebb);
let ebb_params = pos.func.dfg.ebb_params(ebb);
pub fn split_block_params(func: &mut ir::Function, cfg: &ControlFlowGraph, block: Block) {
let pos = &mut FuncCursor::new(func).at_top(block);
let block_params = pos.func.dfg.block_params(block);
// Add further splittable types here.
fn type_requires_splitting(ty: Type) -> bool {
@@ -140,31 +140,31 @@ pub fn split_ebb_params(func: &mut ir::Function, cfg: &ControlFlowGraph, ebb: Eb
}
// A shortcut. If none of the param types require splitting, exit now. This helps because
// the loop below necessarily has to copy the ebb params into a new vector, so it's better to
// the loop below necessarily has to copy the block params into a new vector, so it's better to
// avoid doing so when possible.
if !ebb_params
if !block_params
.iter()
.any(|ebb_param| type_requires_splitting(pos.func.dfg.value_type(*ebb_param)))
.any(|block_param| type_requires_splitting(pos.func.dfg.value_type(*block_param)))
{
return;
}
let mut repairs = Vec::new();
for (num, ebb_param) in ebb_params.to_vec().into_iter().enumerate() {
if !type_requires_splitting(pos.func.dfg.value_type(ebb_param)) {
for (num, block_param) in block_params.to_vec().into_iter().enumerate() {
if !type_requires_splitting(pos.func.dfg.value_type(block_param)) {
continue;
}
split_ebb_param(pos, ebb, num, ebb_param, Opcode::Iconcat, &mut repairs);
split_block_param(pos, block, num, block_param, Opcode::Iconcat, &mut repairs);
}
perform_repairs(pos, cfg, repairs);
}
fn perform_repairs(pos: &mut FuncCursor, cfg: &ControlFlowGraph, mut repairs: Vec<Repair>) {
// We have split the value requested, and now we may need to fix some EBB predecessors.
// We have split the value requested, and now we may need to fix some block predecessors.
while let Some(repair) = repairs.pop() {
for BasicBlock { inst, .. } in cfg.pred_iter(repair.ebb) {
for BlockPredecessor { inst, .. } in cfg.pred_iter(repair.block) {
let branch_opc = pos.func.dfg[inst].opcode();
debug_assert!(
branch_opc.is_branch(),
@@ -176,7 +176,7 @@ fn perform_repairs(pos: &mut FuncCursor, cfg: &ControlFlowGraph, mut repairs: Ve
.take_value_list()
.expect("Branches must have value lists.");
let num_args = args.len(&pos.func.dfg.value_lists);
// Get the old value passed to the EBB argument we're repairing.
// Get the old value passed to the block argument we're repairing.
let old_arg = args
.get(num_fixed_args + repair.num, &pos.func.dfg.value_lists)
.expect("Too few branch arguments");
@@ -190,13 +190,13 @@ fn perform_repairs(pos: &mut FuncCursor, cfg: &ControlFlowGraph, mut repairs: Ve
// Split the old argument, possibly causing more repairs to be scheduled.
pos.goto_inst(inst);
let inst_ebb = pos.func.layout.inst_ebb(inst).expect("inst in ebb");
let inst_block = pos.func.layout.inst_block(inst).expect("inst in block");
// Insert split values prior to the terminal branch group.
let canonical = pos
.func
.layout
.canonical_branch_inst(&pos.func.dfg, inst_ebb);
.canonical_branch_inst(&pos.func.dfg, inst_block);
if let Some(first_branch) = canonical {
pos.goto_inst(first_branch);
}
@@ -209,7 +209,7 @@ fn perform_repairs(pos: &mut FuncCursor, cfg: &ControlFlowGraph, mut repairs: Ve
.unwrap() = lo;
// The `hi` part goes at the end. Since multiple repairs may have been scheduled to the
// same EBB, there could be multiple arguments missing.
// same block, there could be multiple arguments missing.
if num_args > num_fixed_args + repair.hi_num {
*args
.get_mut(
@@ -259,11 +259,11 @@ fn split_value(
}
}
}
ValueDef::Param(ebb, num) => {
// This is an EBB parameter.
ValueDef::Param(block, num) => {
// This is an block parameter.
// We can split the parameter value unless this is the entry block.
if pos.func.layout.entry_block() != Some(ebb) {
reuse = Some(split_ebb_param(pos, ebb, num, value, concat, repairs));
if pos.func.layout.entry_block() != Some(block) {
reuse = Some(split_block_param(pos, block, num, value, concat, repairs));
}
}
}
@@ -273,7 +273,7 @@ fn split_value(
pair
} else {
// No, we'll just have to insert the requested split instruction at `pos`. Note that `pos`
// has not been moved by the EBB argument code above when `reuse` is `None`.
// has not been moved by the block argument code above when `reuse` is `None`.
match concat {
Opcode::Iconcat => pos.ins().isplit(value),
Opcode::Vconcat => pos.ins().vsplit(value),
@@ -282,9 +282,9 @@ fn split_value(
}
}
fn split_ebb_param(
fn split_block_param(
pos: &mut FuncCursor,
ebb: Ebb,
block: Block,
param_num: usize,
value: Value,
concat: Opcode,
@@ -300,14 +300,14 @@ fn split_ebb_param(
};
// Since the `repairs` stack potentially contains other parameter numbers for
// `ebb`, avoid shifting and renumbering EBB parameters. It could invalidate other
// `block`, avoid shifting and renumbering block parameters. It could invalidate other
// `repairs` entries.
//
// Replace the original `value` with the low part, and append the high part at the
// end of the argument list.
let lo = pos.func.dfg.replace_ebb_param(value, split_type);
let hi_num = pos.func.dfg.num_ebb_params(ebb);
let hi = pos.func.dfg.append_ebb_param(ebb, split_type);
let lo = pos.func.dfg.replace_block_param(value, split_type);
let hi_num = pos.func.dfg.num_block_params(block);
let hi = pos.func.dfg.append_block_param(block, split_type);
// Now the original value is dangling. Insert a concatenation instruction that can
// compute it from the two new parameters. This also serves as a record of what we
@@ -315,14 +315,14 @@ fn split_ebb_param(
//
// Note that it is safe to move `pos` here since `reuse` was set above, so we don't
// need to insert a split instruction before returning.
pos.goto_first_inst(ebb);
pos.goto_first_inst(block);
pos.ins()
.with_result(value)
.Binary(concat, split_type, lo, hi);
// Finally, splitting the EBB parameter is not enough. We also have to repair all
// Finally, splitting the block parameter is not enough. We also have to repair all
// of the predecessor instructions that branch here.
add_repair(concat, split_type, ebb, param_num, hi_num, repairs);
add_repair(concat, split_type, block, param_num, hi_num, repairs);
(lo, hi)
}
@@ -331,7 +331,7 @@ fn split_ebb_param(
fn add_repair(
concat: Opcode,
split_type: Type,
ebb: Ebb,
block: Block,
num: usize,
hi_num: usize,
repairs: &mut Vec<Repair>,
@@ -339,7 +339,7 @@ fn add_repair(
repairs.push(Repair {
concat,
split_type,
ebb,
block,
num,
hi_num,
});