Mass rename Ebb and relatives to Block (#1365)

* Manually rename BasicBlock to BlockPredecessor

BasicBlock is a pair of (Ebb, Inst) that is used to represent the
basic block subcomponent of an Ebb that is a predecessor to an Ebb.

Eventually we will be able to remove this struct, but for now it
makes sense to give it a non-conflicting name so that we can start
to transition Ebb to represent a basic block.

I have not updated any comments that refer to BasicBlock, as
eventually we will remove BlockPredecessor and replace with Block,
which is a basic block, so the comments will become correct.

* Manually rename SSABuilder block types to avoid conflict

SSABuilder has its own Block and BlockData types. These along with
associated identifier will cause conflicts in a later commit, so
they are renamed to be more verbose here.

* Automatically rename 'Ebb' to 'Block' in *.rs

* Automatically rename 'EBB' to 'block' in *.rs

* Automatically rename 'ebb' to 'block' in *.rs

* Automatically rename 'extended basic block' to 'basic block' in *.rs

* Automatically rename 'an basic block' to 'a basic block' in *.rs

* Manually update comment for `Block`

`Block`'s wikipedia article required an update.

* Automatically rename 'an `Block`' to 'a `Block`' in *.rs

* Automatically rename 'extended_basic_block' to 'basic_block' in *.rs

* Automatically rename 'ebb' to 'block' in *.clif

* Manually rename clif constant that contains 'ebb' as substring to avoid conflict

* Automatically rename filecheck uses of 'EBB' to 'BB'

'regex: EBB' -> 'regex: BB'
'$EBB' -> '$BB'

* Automatically rename 'EBB' 'Ebb' to 'block' in *.clif

* Automatically rename 'an block' to 'a block' in *.clif

* Fix broken testcase when function name length increases

Test function names are limited to 16 characters. This causes
the new longer name to be truncated and fail a filecheck test. An
outdated comment was also fixed.
This commit is contained in:
Ryan Hunt
2020-02-07 10:46:47 -06:00
committed by GitHub
parent a136d1cb00
commit 832666c45e
370 changed files with 8090 additions and 7988 deletions

View File

@@ -253,7 +253,7 @@ fn expand_sdivrem(
_ => panic!("Need sdiv/srem: {}", func.dfg.display_inst(inst, None)),
};
let old_ebb = func.layout.pp_ebb(inst);
let old_block = func.layout.pp_block(inst);
let result = func.dfg.first_result(inst);
let ty = func.dfg.value_type(result);
@@ -297,17 +297,17 @@ fn expand_sdivrem(
return;
}
// EBB handling the nominal case.
let nominal = pos.func.dfg.make_ebb();
// block handling the nominal case.
let nominal = pos.func.dfg.make_block();
// EBB handling the -1 divisor case.
let minus_one = pos.func.dfg.make_ebb();
// block handling the -1 divisor case.
let minus_one = pos.func.dfg.make_block();
// Final EBB with one argument representing the final result value.
let done = pos.func.dfg.make_ebb();
// Final block with one argument representing the final result value.
let done = pos.func.dfg.make_block();
// Move the `inst` result value onto the `done` EBB.
pos.func.dfg.attach_ebb_param(done, result);
// Move the `inst` result value onto the `done` block.
pos.func.dfg.attach_block_param(done, result);
// Start by checking for a -1 divisor which needs to be handled specially.
let is_m1 = pos.ins().ifcmp_imm(y, -1);
@@ -316,14 +316,14 @@ fn expand_sdivrem(
// Now it is safe to execute the `x86_sdivmodx` instruction which will still trap on division
// by zero.
pos.insert_ebb(nominal);
pos.insert_block(nominal);
let xhi = pos.ins().sshr_imm(x, i64::from(ty.lane_bits()) - 1);
let (quot, rem) = pos.ins().x86_sdivmodx(x, xhi, y);
let divres = if is_srem { rem } else { quot };
pos.ins().jump(done, &[divres]);
// Now deal with the -1 divisor case.
pos.insert_ebb(minus_one);
pos.insert_block(minus_one);
let m1_result = if is_srem {
// x % -1 = 0.
pos.ins().iconst(ty, 0)
@@ -342,12 +342,12 @@ fn expand_sdivrem(
// Finally insert a label for the completion.
pos.next_inst();
pos.insert_ebb(done);
pos.insert_block(done);
cfg.recompute_ebb(pos.func, old_ebb);
cfg.recompute_ebb(pos.func, nominal);
cfg.recompute_ebb(pos.func, minus_one);
cfg.recompute_ebb(pos.func, done);
cfg.recompute_block(pos.func, old_block);
cfg.recompute_block(pos.func, nominal);
cfg.recompute_block(pos.func, minus_one);
cfg.recompute_block(pos.func, done);
}
/// Expand the `udiv` and `urem` instructions using `x86_udivmodx`.
@@ -421,7 +421,7 @@ fn expand_minmax(
} => (args[0], args[1], ir::Opcode::X86Fmax, ir::Opcode::Band),
_ => panic!("Expected fmin/fmax: {}", func.dfg.display_inst(inst, None)),
};
let old_ebb = func.layout.pp_ebb(inst);
let old_block = func.layout.pp_block(inst);
// We need to handle the following conditions, depending on how x and y compare:
//
@@ -430,20 +430,20 @@ fn expand_minmax(
// fmin(0.0, -0.0) -> -0.0 and fmax(0.0, -0.0) -> 0.0.
// 3. UN: We need to produce a quiet NaN that is canonical if the inputs are canonical.
// EBB handling case 1) where operands are ordered but not equal.
let one_ebb = func.dfg.make_ebb();
// block handling case 1) where operands are ordered but not equal.
let one_block = func.dfg.make_block();
// EBB handling case 3) where one operand is NaN.
let uno_ebb = func.dfg.make_ebb();
// block handling case 3) where one operand is NaN.
let uno_block = func.dfg.make_block();
// EBB that handles the unordered or equal cases 2) and 3).
let ueq_ebb = func.dfg.make_ebb();
// block that handles the unordered or equal cases 2) and 3).
let ueq_block = func.dfg.make_block();
// EBB handling case 2) where operands are ordered and equal.
let eq_ebb = func.dfg.make_ebb();
// block handling case 2) where operands are ordered and equal.
let eq_block = func.dfg.make_block();
// Final EBB with one argument representing the final result value.
let done = func.dfg.make_ebb();
// Final block with one argument representing the final result value.
let done = func.dfg.make_block();
// The basic blocks are laid out to minimize branching for the common cases:
//
@@ -451,21 +451,21 @@ fn expand_minmax(
// 2) One branch taken.
// 3) Two branches taken, one jump.
// Move the `inst` result value onto the `done` EBB.
// Move the `inst` result value onto the `done` block.
let result = func.dfg.first_result(inst);
let ty = func.dfg.value_type(result);
func.dfg.clear_results(inst);
func.dfg.attach_ebb_param(done, result);
func.dfg.attach_block_param(done, result);
// Test for case 1) ordered and not equal.
let mut pos = FuncCursor::new(func).at_inst(inst);
pos.use_srcloc(inst);
let cmp_ueq = pos.ins().fcmp(FloatCC::UnorderedOrEqual, x, y);
pos.ins().brnz(cmp_ueq, ueq_ebb, &[]);
pos.ins().jump(one_ebb, &[]);
pos.ins().brnz(cmp_ueq, ueq_block, &[]);
pos.ins().jump(one_block, &[]);
// Handle the common ordered, not equal (LT|GT) case.
pos.insert_ebb(one_ebb);
pos.insert_block(one_block);
let one_inst = pos.ins().Binary(x86_opc, ty, x, y).0;
let one_result = pos.func.dfg.first_result(one_inst);
pos.ins().jump(done, &[one_result]);
@@ -473,21 +473,21 @@ fn expand_minmax(
// Case 3) Unordered.
// We know that at least one operand is a NaN that needs to be propagated. We simply use an
// `fadd` instruction which has the same NaN propagation semantics.
pos.insert_ebb(uno_ebb);
pos.insert_block(uno_block);
let uno_result = pos.ins().fadd(x, y);
pos.ins().jump(done, &[uno_result]);
// Case 2) or 3).
pos.insert_ebb(ueq_ebb);
pos.insert_block(ueq_block);
// Test for case 3) (UN) one value is NaN.
// TODO: When we get support for flag values, we can reuse the above comparison.
let cmp_uno = pos.ins().fcmp(FloatCC::Unordered, x, y);
pos.ins().brnz(cmp_uno, uno_ebb, &[]);
pos.ins().jump(eq_ebb, &[]);
pos.ins().brnz(cmp_uno, uno_block, &[]);
pos.ins().jump(eq_block, &[]);
// We are now in case 2) where x and y compare EQ.
// We need a bitwise operation to get the sign right.
pos.insert_ebb(eq_ebb);
pos.insert_block(eq_block);
let bw_inst = pos.ins().Binary(bitwise_opc, ty, x, y).0;
let bw_result = pos.func.dfg.first_result(bw_inst);
// This should become a fall-through for this second most common case.
@@ -496,14 +496,14 @@ fn expand_minmax(
// Finally insert a label for the completion.
pos.next_inst();
pos.insert_ebb(done);
pos.insert_block(done);
cfg.recompute_ebb(pos.func, old_ebb);
cfg.recompute_ebb(pos.func, one_ebb);
cfg.recompute_ebb(pos.func, uno_ebb);
cfg.recompute_ebb(pos.func, ueq_ebb);
cfg.recompute_ebb(pos.func, eq_ebb);
cfg.recompute_ebb(pos.func, done);
cfg.recompute_block(pos.func, old_block);
cfg.recompute_block(pos.func, one_block);
cfg.recompute_block(pos.func, uno_block);
cfg.recompute_block(pos.func, ueq_block);
cfg.recompute_block(pos.func, eq_block);
cfg.recompute_block(pos.func, done);
}
/// x86 has no unsigned-to-float conversions. We handle the easy case of zero-extending i32 to
@@ -540,33 +540,33 @@ fn expand_fcvt_from_uint(
_ => unimplemented!(),
}
let old_ebb = pos.func.layout.pp_ebb(inst);
let old_block = pos.func.layout.pp_block(inst);
// EBB handling the case where x >= 0.
let poszero_ebb = pos.func.dfg.make_ebb();
// block handling the case where x >= 0.
let poszero_block = pos.func.dfg.make_block();
// EBB handling the case where x < 0.
let neg_ebb = pos.func.dfg.make_ebb();
// block handling the case where x < 0.
let neg_block = pos.func.dfg.make_block();
// Final EBB with one argument representing the final result value.
let done = pos.func.dfg.make_ebb();
// Final block with one argument representing the final result value.
let done = pos.func.dfg.make_block();
// Move the `inst` result value onto the `done` EBB.
// Move the `inst` result value onto the `done` block.
pos.func.dfg.clear_results(inst);
pos.func.dfg.attach_ebb_param(done, result);
pos.func.dfg.attach_block_param(done, result);
// If x as a signed int is not negative, we can use the existing `fcvt_from_sint` instruction.
let is_neg = pos.ins().icmp_imm(IntCC::SignedLessThan, x, 0);
pos.ins().brnz(is_neg, neg_ebb, &[]);
pos.ins().jump(poszero_ebb, &[]);
pos.ins().brnz(is_neg, neg_block, &[]);
pos.ins().jump(poszero_block, &[]);
// Easy case: just use a signed conversion.
pos.insert_ebb(poszero_ebb);
pos.insert_block(poszero_block);
let posres = pos.ins().fcvt_from_sint(ty, x);
pos.ins().jump(done, &[posres]);
// Now handle the negative case.
pos.insert_ebb(neg_ebb);
pos.insert_block(neg_block);
// Divide x by two to get it in range for the signed conversion, keep the LSB, and scale it
// back up on the FP side.
@@ -581,12 +581,12 @@ fn expand_fcvt_from_uint(
// Finally insert a label for the completion.
pos.next_inst();
pos.insert_ebb(done);
pos.insert_block(done);
cfg.recompute_ebb(pos.func, old_ebb);
cfg.recompute_ebb(pos.func, poszero_ebb);
cfg.recompute_ebb(pos.func, neg_ebb);
cfg.recompute_ebb(pos.func, done);
cfg.recompute_block(pos.func, old_block);
cfg.recompute_block(pos.func, poszero_block);
cfg.recompute_block(pos.func, neg_block);
cfg.recompute_block(pos.func, done);
}
fn expand_fcvt_to_sint(
@@ -604,16 +604,16 @@ fn expand_fcvt_to_sint(
} => arg,
_ => panic!("Need fcvt_to_sint: {}", func.dfg.display_inst(inst, None)),
};
let old_ebb = func.layout.pp_ebb(inst);
let old_block = func.layout.pp_block(inst);
let xty = func.dfg.value_type(x);
let result = func.dfg.first_result(inst);
let ty = func.dfg.value_type(result);
// Final EBB after the bad value checks.
let done = func.dfg.make_ebb();
// Final block after the bad value checks.
let done = func.dfg.make_block();
// EBB for checking failure cases.
let maybe_trap_ebb = func.dfg.make_ebb();
// block for checking failure cases.
let maybe_trap_block = func.dfg.make_block();
// The `x86_cvtt2si` performs the desired conversion, but it doesn't trap on NaN or overflow.
// It produces an INT_MIN result instead.
@@ -626,7 +626,7 @@ fn expand_fcvt_to_sint(
.ins()
.icmp_imm(IntCC::NotEqual, result, 1 << (ty.lane_bits() - 1));
pos.ins().brnz(is_done, done, &[]);
pos.ins().jump(maybe_trap_ebb, &[]);
pos.ins().jump(maybe_trap_block, &[]);
// We now have the following possibilities:
//
@@ -634,7 +634,7 @@ fn expand_fcvt_to_sint(
// 2. The input was NaN -> trap bad_toint
// 3. The input was out of range -> trap int_ovf
//
pos.insert_ebb(maybe_trap_ebb);
pos.insert_block(maybe_trap_block);
// Check for NaN.
let is_nan = pos.ins().fcmp(FloatCC::Unordered, x, x);
@@ -683,11 +683,11 @@ fn expand_fcvt_to_sint(
pos.ins().trapnz(overflow, ir::TrapCode::IntegerOverflow);
pos.ins().jump(done, &[]);
pos.insert_ebb(done);
pos.insert_block(done);
cfg.recompute_ebb(pos.func, old_ebb);
cfg.recompute_ebb(pos.func, maybe_trap_ebb);
cfg.recompute_ebb(pos.func, done);
cfg.recompute_block(pos.func, old_block);
cfg.recompute_block(pos.func, maybe_trap_block);
cfg.recompute_block(pos.func, done);
}
fn expand_fcvt_to_sint_sat(
@@ -709,18 +709,18 @@ fn expand_fcvt_to_sint_sat(
),
};
let old_ebb = func.layout.pp_ebb(inst);
let old_block = func.layout.pp_block(inst);
let xty = func.dfg.value_type(x);
let result = func.dfg.first_result(inst);
let ty = func.dfg.value_type(result);
// Final EBB after the bad value checks.
let done_ebb = func.dfg.make_ebb();
let intmin_ebb = func.dfg.make_ebb();
let minsat_ebb = func.dfg.make_ebb();
let maxsat_ebb = func.dfg.make_ebb();
// Final block after the bad value checks.
let done_block = func.dfg.make_block();
let intmin_block = func.dfg.make_block();
let minsat_block = func.dfg.make_block();
let maxsat_block = func.dfg.make_block();
func.dfg.clear_results(inst);
func.dfg.attach_ebb_param(done_ebb, result);
func.dfg.attach_block_param(done_block, result);
let mut pos = FuncCursor::new(func).at_inst(inst);
pos.use_srcloc(inst);
@@ -732,25 +732,25 @@ fn expand_fcvt_to_sint_sat(
let is_done = pos
.ins()
.icmp_imm(IntCC::NotEqual, cvtt2si, 1 << (ty.lane_bits() - 1));
pos.ins().brnz(is_done, done_ebb, &[cvtt2si]);
pos.ins().jump(intmin_ebb, &[]);
pos.ins().brnz(is_done, done_block, &[cvtt2si]);
pos.ins().jump(intmin_block, &[]);
// We now have the following possibilities:
//
// 1. INT_MIN was actually the correct conversion result.
// 2. The input was NaN -> replace the result value with 0.
// 3. The input was out of range -> saturate the result to the min/max value.
pos.insert_ebb(intmin_ebb);
pos.insert_block(intmin_block);
// Check for NaN, which is truncated to 0.
let zero = pos.ins().iconst(ty, 0);
let is_nan = pos.ins().fcmp(FloatCC::Unordered, x, x);
pos.ins().brnz(is_nan, done_ebb, &[zero]);
pos.ins().jump(minsat_ebb, &[]);
pos.ins().brnz(is_nan, done_block, &[zero]);
pos.ins().jump(minsat_block, &[]);
// Check for case 1: INT_MIN is the correct result.
// Determine the smallest floating point number that would convert to INT_MIN.
pos.insert_ebb(minsat_ebb);
pos.insert_block(minsat_block);
let mut overflow_cc = FloatCC::LessThan;
let output_bits = ty.lane_bits();
let flimit = match xty {
@@ -786,11 +786,11 @@ fn expand_fcvt_to_sint_sat(
_ => panic!("Don't know the min value for {}", ty),
};
let min_value = pos.ins().iconst(ty, min_imm);
pos.ins().brnz(overflow, done_ebb, &[min_value]);
pos.ins().jump(maxsat_ebb, &[]);
pos.ins().brnz(overflow, done_block, &[min_value]);
pos.ins().jump(maxsat_block, &[]);
// Finally, we could have a positive value that is too large.
pos.insert_ebb(maxsat_ebb);
pos.insert_block(maxsat_block);
let fzero = match xty {
ir::types::F32 => pos.ins().f32const(Ieee32::with_bits(0)),
ir::types::F64 => pos.ins().f64const(Ieee64::with_bits(0)),
@@ -805,20 +805,20 @@ fn expand_fcvt_to_sint_sat(
let max_value = pos.ins().iconst(ty, max_imm);
let overflow = pos.ins().fcmp(FloatCC::GreaterThanOrEqual, x, fzero);
pos.ins().brnz(overflow, done_ebb, &[max_value]);
pos.ins().brnz(overflow, done_block, &[max_value]);
// Recycle the original instruction.
pos.func.dfg.replace(inst).jump(done_ebb, &[cvtt2si]);
pos.func.dfg.replace(inst).jump(done_block, &[cvtt2si]);
// Finally insert a label for the completion.
pos.next_inst();
pos.insert_ebb(done_ebb);
pos.insert_block(done_block);
cfg.recompute_ebb(pos.func, old_ebb);
cfg.recompute_ebb(pos.func, intmin_ebb);
cfg.recompute_ebb(pos.func, minsat_ebb);
cfg.recompute_ebb(pos.func, maxsat_ebb);
cfg.recompute_ebb(pos.func, done_ebb);
cfg.recompute_block(pos.func, old_block);
cfg.recompute_block(pos.func, intmin_block);
cfg.recompute_block(pos.func, minsat_block);
cfg.recompute_block(pos.func, maxsat_block);
cfg.recompute_block(pos.func, done_block);
}
fn expand_fcvt_to_uint(
@@ -837,26 +837,26 @@ fn expand_fcvt_to_uint(
_ => panic!("Need fcvt_to_uint: {}", func.dfg.display_inst(inst, None)),
};
let old_ebb = func.layout.pp_ebb(inst);
let old_block = func.layout.pp_block(inst);
let xty = func.dfg.value_type(x);
let result = func.dfg.first_result(inst);
let ty = func.dfg.value_type(result);
// EBB handle numbers < 2^(N-1).
let below_uint_max_ebb = func.dfg.make_ebb();
// block handle numbers < 2^(N-1).
let below_uint_max_block = func.dfg.make_block();
// EBB handle numbers < 0.
let below_zero_ebb = func.dfg.make_ebb();
// block handle numbers < 0.
let below_zero_block = func.dfg.make_block();
// EBB handling numbers >= 2^(N-1).
let large = func.dfg.make_ebb();
// block handling numbers >= 2^(N-1).
let large = func.dfg.make_block();
// Final EBB after the bad value checks.
let done = func.dfg.make_ebb();
// Final block after the bad value checks.
let done = func.dfg.make_block();
// Move the `inst` result value onto the `done` EBB.
// Move the `inst` result value onto the `done` block.
func.dfg.clear_results(inst);
func.dfg.attach_ebb_param(done, result);
func.dfg.attach_block_param(done, result);
let mut pos = FuncCursor::new(func).at_inst(inst);
pos.use_srcloc(inst);
@@ -871,11 +871,11 @@ fn expand_fcvt_to_uint(
let is_large = pos.ins().ffcmp(x, pow2nm1);
pos.ins()
.brff(FloatCC::GreaterThanOrEqual, is_large, large, &[]);
pos.ins().jump(below_uint_max_ebb, &[]);
pos.ins().jump(below_uint_max_block, &[]);
// We need to generate a specific trap code when `x` is NaN, so reuse the flags from the
// previous comparison.
pos.insert_ebb(below_uint_max_ebb);
pos.insert_block(below_uint_max_block);
pos.ins().trapff(
FloatCC::Unordered,
is_large,
@@ -887,13 +887,13 @@ fn expand_fcvt_to_uint(
let is_neg = pos.ins().ifcmp_imm(sres, 0);
pos.ins()
.brif(IntCC::SignedGreaterThanOrEqual, is_neg, done, &[sres]);
pos.ins().jump(below_zero_ebb, &[]);
pos.ins().jump(below_zero_block, &[]);
pos.insert_ebb(below_zero_ebb);
pos.insert_block(below_zero_block);
pos.ins().trap(ir::TrapCode::IntegerOverflow);
// Handle the case where x >= 2^(N-1) and not NaN.
pos.insert_ebb(large);
pos.insert_block(large);
let adjx = pos.ins().fsub(x, pow2nm1);
let lres = pos.ins().x86_cvtt2si(ty, adjx);
let is_neg = pos.ins().ifcmp_imm(lres, 0);
@@ -906,13 +906,13 @@ fn expand_fcvt_to_uint(
// Finally insert a label for the completion.
pos.next_inst();
pos.insert_ebb(done);
pos.insert_block(done);
cfg.recompute_ebb(pos.func, old_ebb);
cfg.recompute_ebb(pos.func, below_uint_max_ebb);
cfg.recompute_ebb(pos.func, below_zero_ebb);
cfg.recompute_ebb(pos.func, large);
cfg.recompute_ebb(pos.func, done);
cfg.recompute_block(pos.func, old_block);
cfg.recompute_block(pos.func, below_uint_max_block);
cfg.recompute_block(pos.func, below_zero_block);
cfg.recompute_block(pos.func, large);
cfg.recompute_block(pos.func, done);
}
fn expand_fcvt_to_uint_sat(
@@ -934,27 +934,27 @@ fn expand_fcvt_to_uint_sat(
),
};
let old_ebb = func.layout.pp_ebb(inst);
let old_block = func.layout.pp_block(inst);
let xty = func.dfg.value_type(x);
let result = func.dfg.first_result(inst);
let ty = func.dfg.value_type(result);
// EBB handle numbers < 2^(N-1).
let below_pow2nm1_or_nan_ebb = func.dfg.make_ebb();
let below_pow2nm1_ebb = func.dfg.make_ebb();
// block handle numbers < 2^(N-1).
let below_pow2nm1_or_nan_block = func.dfg.make_block();
let below_pow2nm1_block = func.dfg.make_block();
// EBB handling numbers >= 2^(N-1).
let large = func.dfg.make_ebb();
// block handling numbers >= 2^(N-1).
let large = func.dfg.make_block();
// EBB handling numbers < 2^N.
let uint_large_ebb = func.dfg.make_ebb();
// block handling numbers < 2^N.
let uint_large_block = func.dfg.make_block();
// Final EBB after the bad value checks.
let done = func.dfg.make_ebb();
// Final block after the bad value checks.
let done = func.dfg.make_block();
// Move the `inst` result value onto the `done` EBB.
// Move the `inst` result value onto the `done` block.
func.dfg.clear_results(inst);
func.dfg.attach_ebb_param(done, result);
func.dfg.attach_block_param(done, result);
let mut pos = FuncCursor::new(func).at_inst(inst);
pos.use_srcloc(inst);
@@ -970,16 +970,16 @@ fn expand_fcvt_to_uint_sat(
let is_large = pos.ins().ffcmp(x, pow2nm1);
pos.ins()
.brff(FloatCC::GreaterThanOrEqual, is_large, large, &[]);
pos.ins().jump(below_pow2nm1_or_nan_ebb, &[]);
pos.ins().jump(below_pow2nm1_or_nan_block, &[]);
// We need to generate zero when `x` is NaN, so reuse the flags from the previous comparison.
pos.insert_ebb(below_pow2nm1_or_nan_ebb);
pos.insert_block(below_pow2nm1_or_nan_block);
pos.ins().brff(FloatCC::Unordered, is_large, done, &[zero]);
pos.ins().jump(below_pow2nm1_ebb, &[]);
pos.ins().jump(below_pow2nm1_block, &[]);
// Now we know that x < 2^(N-1) and not NaN. If the result of the cvtt2si is positive, we're
// done; otherwise saturate to the minimum unsigned value, that is 0.
pos.insert_ebb(below_pow2nm1_ebb);
pos.insert_block(below_pow2nm1_block);
let sres = pos.ins().x86_cvtt2si(ty, x);
let is_neg = pos.ins().ifcmp_imm(sres, 0);
pos.ins()
@@ -987,7 +987,7 @@ fn expand_fcvt_to_uint_sat(
pos.ins().jump(done, &[zero]);
// Handle the case where x >= 2^(N-1) and not NaN.
pos.insert_ebb(large);
pos.insert_block(large);
let adjx = pos.ins().fsub(x, pow2nm1);
let lres = pos.ins().x86_cvtt2si(ty, adjx);
let max_value = pos.ins().iconst(
@@ -1001,9 +1001,9 @@ fn expand_fcvt_to_uint_sat(
let is_neg = pos.ins().ifcmp_imm(lres, 0);
pos.ins()
.brif(IntCC::SignedLessThan, is_neg, done, &[max_value]);
pos.ins().jump(uint_large_ebb, &[]);
pos.ins().jump(uint_large_block, &[]);
pos.insert_ebb(uint_large_ebb);
pos.insert_block(uint_large_block);
let lfinal = pos.ins().iadd_imm(lres, 1 << (ty.lane_bits() - 1));
// Recycle the original instruction as a jump.
@@ -1011,14 +1011,14 @@ fn expand_fcvt_to_uint_sat(
// Finally insert a label for the completion.
pos.next_inst();
pos.insert_ebb(done);
pos.insert_block(done);
cfg.recompute_ebb(pos.func, old_ebb);
cfg.recompute_ebb(pos.func, below_pow2nm1_or_nan_ebb);
cfg.recompute_ebb(pos.func, below_pow2nm1_ebb);
cfg.recompute_ebb(pos.func, large);
cfg.recompute_ebb(pos.func, uint_large_ebb);
cfg.recompute_ebb(pos.func, done);
cfg.recompute_block(pos.func, old_block);
cfg.recompute_block(pos.func, below_pow2nm1_or_nan_block);
cfg.recompute_block(pos.func, below_pow2nm1_block);
cfg.recompute_block(pos.func, large);
cfg.recompute_block(pos.func, uint_large_block);
cfg.recompute_block(pos.func, done);
}
/// Convert shuffle instructions.