More code reorganization.
This commit is contained in:
113
lib/execute/src/execute.rs
Normal file
113
lib/execute/src/execute.rs
Normal file
@@ -0,0 +1,113 @@
|
||||
use cranelift_codegen::binemit::Reloc;
|
||||
use cranelift_codegen::isa::TargetIsa;
|
||||
use instance::Instance;
|
||||
use region::protect;
|
||||
use region::Protection;
|
||||
use std::mem::transmute;
|
||||
use std::ptr::write_unaligned;
|
||||
use wasmtime_runtime::{compile_module, Compilation, Module, ModuleTranslation, Relocation};
|
||||
|
||||
/// Executes a module that has been translated with the `standalone::Runtime` runtime implementation.
|
||||
pub fn compile_and_link_module<'data, 'module>(
|
||||
isa: &TargetIsa,
|
||||
translation: &ModuleTranslation<'data, 'module>,
|
||||
) -> Result<Compilation, String> {
|
||||
debug_assert!(
|
||||
translation.module.start_func.is_none()
|
||||
|| translation.module.start_func.unwrap() >= translation.module.imported_funcs.len(),
|
||||
"imported start functions not supported yet"
|
||||
);
|
||||
|
||||
let (mut compilation, relocations) = compile_module(&translation, isa)?;
|
||||
|
||||
// Apply relocations, now that we have virtual addresses for everything.
|
||||
relocate(&mut compilation, &relocations);
|
||||
|
||||
Ok(compilation)
|
||||
}
|
||||
|
||||
/// Performs the relocations inside the function bytecode, provided the necessary metadata
|
||||
fn relocate(compilation: &mut Compilation, relocations: &[Vec<Relocation>]) {
|
||||
// The relocations are relative to the relocation's address plus four bytes
|
||||
// TODO: Support architectures other than x64, and other reloc kinds.
|
||||
for (i, function_relocs) in relocations.iter().enumerate() {
|
||||
for r in function_relocs {
|
||||
let target_func_address: isize = compilation.functions[r.func_index].as_ptr() as isize;
|
||||
let body = &mut compilation.functions[i];
|
||||
match r.reloc {
|
||||
Reloc::Abs8 => unsafe {
|
||||
let reloc_address = body.as_mut_ptr().offset(r.offset as isize) as i64;
|
||||
let reloc_addend = r.addend as i64;
|
||||
let reloc_abs = target_func_address as i64 + reloc_addend;
|
||||
write_unaligned(reloc_address as *mut i64, reloc_abs);
|
||||
},
|
||||
Reloc::X86PCRel4 => unsafe {
|
||||
let reloc_address = body.as_mut_ptr().offset(r.offset as isize) as isize;
|
||||
let reloc_addend = r.addend as isize;
|
||||
// TODO: Handle overflow.
|
||||
let reloc_delta_i32 =
|
||||
(target_func_address - reloc_address + reloc_addend) as i32;
|
||||
write_unaligned(reloc_address as *mut i32, reloc_delta_i32);
|
||||
},
|
||||
_ => panic!("unsupported reloc kind"),
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Create the VmCtx data structure for the JIT'd code to use. This must
|
||||
/// match the VmCtx layout in the runtime.
|
||||
fn make_vmctx(instance: &mut Instance) -> Vec<*mut u8> {
|
||||
let mut memories = Vec::new();
|
||||
let mut vmctx = Vec::new();
|
||||
vmctx.push(instance.globals.as_mut_ptr());
|
||||
for mem in &mut instance.memories {
|
||||
memories.push(mem.as_mut_ptr());
|
||||
}
|
||||
vmctx.push(memories.as_mut_ptr() as *mut u8);
|
||||
vmctx
|
||||
}
|
||||
|
||||
/// Jumps to the code region of memory and execute the start function of the module.
|
||||
pub fn execute(
|
||||
module: &Module,
|
||||
compilation: &Compilation,
|
||||
instance: &mut Instance,
|
||||
) -> Result<(), String> {
|
||||
let start_index = module
|
||||
.start_func
|
||||
.ok_or_else(|| String::from("No start function defined, aborting execution"))?;
|
||||
// TODO: Put all the function bodies into a page-aligned memory region, and
|
||||
// then make them ReadExecute rather than ReadWriteExecute.
|
||||
for code_buf in &compilation.functions {
|
||||
match unsafe {
|
||||
protect(
|
||||
code_buf.as_ptr(),
|
||||
code_buf.len(),
|
||||
Protection::ReadWriteExecute,
|
||||
)
|
||||
} {
|
||||
Ok(()) => (),
|
||||
Err(err) => {
|
||||
return Err(format!(
|
||||
"failed to give executable permission to code: {}",
|
||||
err
|
||||
))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let code_buf = &compilation.functions[start_index];
|
||||
|
||||
let vmctx = make_vmctx(instance);
|
||||
|
||||
// Rather than writing inline assembly to jump to the code region, we use the fact that
|
||||
// the Rust ABI for calling a function with no arguments and no return matches the one of
|
||||
// the generated code.Thanks to this, we can transmute the code region into a first-class
|
||||
// Rust function and call it.
|
||||
unsafe {
|
||||
let start_func = transmute::<_, fn(*const *mut u8)>(code_buf.as_ptr());
|
||||
start_func(vmctx.as_ptr());
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
98
lib/execute/src/instance.rs
Normal file
98
lib/execute/src/instance.rs
Normal file
@@ -0,0 +1,98 @@
|
||||
//! An `Instance` contains all the runtime state used by execution of a wasm
|
||||
//! module.
|
||||
|
||||
use cranelift_codegen::ir;
|
||||
use cranelift_wasm::GlobalIndex;
|
||||
use wasmtime_runtime::{DataInitializer, Module, TableElements};
|
||||
|
||||
const PAGE_SIZE: usize = 65536;
|
||||
|
||||
/// An Instance of a WebAssemby module.
|
||||
#[derive(Debug)]
|
||||
pub struct Instance {
|
||||
/// WebAssembly table data.
|
||||
pub tables: Vec<Vec<usize>>,
|
||||
|
||||
/// WebAssembly linear memory data.
|
||||
pub memories: Vec<Vec<u8>>,
|
||||
|
||||
/// WebAssembly global variable data.
|
||||
pub globals: Vec<u8>,
|
||||
}
|
||||
|
||||
impl Instance {
|
||||
/// Create a new `Instance`.
|
||||
pub fn new(module: &Module, data_initializers: &[DataInitializer]) -> Self {
|
||||
let mut result = Self {
|
||||
tables: Vec::new(),
|
||||
memories: Vec::new(),
|
||||
globals: Vec::new(),
|
||||
};
|
||||
result.instantiate_tables(module, &module.table_elements);
|
||||
result.instantiate_memories(module, data_initializers);
|
||||
result.instantiate_globals(module);
|
||||
result
|
||||
}
|
||||
|
||||
/// Allocate memory in `self` for just the tables of the current module.
|
||||
fn instantiate_tables(&mut self, module: &Module, table_initializers: &[TableElements]) {
|
||||
debug_assert!(self.tables.is_empty());
|
||||
self.tables.reserve_exact(module.tables.len());
|
||||
for table in &module.tables {
|
||||
let len = table.size;
|
||||
let mut v = Vec::with_capacity(len);
|
||||
v.resize(len, 0);
|
||||
self.tables.push(v);
|
||||
}
|
||||
for init in table_initializers {
|
||||
debug_assert!(init.base.is_none(), "globalvar base not supported yet");
|
||||
let to_init =
|
||||
&mut self.tables[init.table_index][init.offset..init.offset + init.elements.len()];
|
||||
to_init.copy_from_slice(&init.elements);
|
||||
}
|
||||
}
|
||||
|
||||
/// Allocate memory in `instance` for just the memories of the current module.
|
||||
fn instantiate_memories(&mut self, module: &Module, data_initializers: &[DataInitializer]) {
|
||||
debug_assert!(self.memories.is_empty());
|
||||
// Allocate the underlying memory and initialize it to all zeros.
|
||||
self.memories.reserve_exact(module.memories.len());
|
||||
for memory in &module.memories {
|
||||
let len = memory.pages_count * PAGE_SIZE;
|
||||
let mut v = Vec::with_capacity(len);
|
||||
v.resize(len, 0);
|
||||
self.memories.push(v);
|
||||
}
|
||||
for init in data_initializers {
|
||||
debug_assert!(init.base.is_none(), "globalvar base not supported yet");
|
||||
let to_init =
|
||||
&mut self.memories[init.memory_index][init.offset..init.offset + init.data.len()];
|
||||
to_init.copy_from_slice(init.data);
|
||||
}
|
||||
}
|
||||
|
||||
/// Allocate memory in `instance` for just the globals of the current module,
|
||||
/// without any initializers applied yet.
|
||||
fn instantiate_globals(&mut self, module: &Module) {
|
||||
debug_assert!(self.globals.is_empty());
|
||||
// Allocate the underlying memory and initialize it to all zeros.
|
||||
let globals_data_size = module.globals.len() * 8;
|
||||
self.globals.resize(globals_data_size, 0);
|
||||
}
|
||||
|
||||
/// Returns a slice of the contents of allocated linear memory.
|
||||
pub fn inspect_memory(&self, memory_index: usize, address: usize, len: usize) -> &[u8] {
|
||||
&self
|
||||
.memories
|
||||
.get(memory_index)
|
||||
.unwrap_or_else(|| panic!("no memory for index {}", memory_index))
|
||||
[address..address + len]
|
||||
}
|
||||
|
||||
/// Shows the value of a global variable.
|
||||
pub fn inspect_global(&self, global_index: GlobalIndex, ty: ir::Type) -> &[u8] {
|
||||
let offset = global_index * 8;
|
||||
let len = ty.bytes() as usize;
|
||||
&self.globals[offset..offset + len]
|
||||
}
|
||||
}
|
||||
@@ -7,115 +7,8 @@ extern crate cranelift_wasm;
|
||||
extern crate region;
|
||||
extern crate wasmtime_runtime;
|
||||
|
||||
use cranelift_codegen::binemit::Reloc;
|
||||
use cranelift_codegen::isa::TargetIsa;
|
||||
use region::protect;
|
||||
use region::Protection;
|
||||
use std::mem::transmute;
|
||||
use std::ptr::write_unaligned;
|
||||
use wasmtime_runtime::{Compilation, Relocation, compile_module};
|
||||
mod execute;
|
||||
mod instance;
|
||||
|
||||
/// Executes a module that has been translated with the `standalone::Runtime` runtime implementation.
|
||||
pub fn compile_and_link_module<'data, 'module>(
|
||||
isa: &TargetIsa,
|
||||
translation: &wasmtime_runtime::ModuleTranslation<'data, 'module>,
|
||||
) -> Result<wasmtime_runtime::Compilation<'module>, String> {
|
||||
debug_assert!(
|
||||
translation.module.start_func.is_none()
|
||||
|| translation.module.start_func.unwrap() >= translation.module.imported_funcs.len(),
|
||||
"imported start functions not supported yet"
|
||||
);
|
||||
|
||||
let (mut compilation, relocations) = compile_module(&translation, isa)?;
|
||||
|
||||
// Apply relocations, now that we have virtual addresses for everything.
|
||||
relocate(&mut compilation, &relocations);
|
||||
|
||||
Ok(compilation)
|
||||
}
|
||||
|
||||
/// Performs the relocations inside the function bytecode, provided the necessary metadata
|
||||
fn relocate(compilation: &mut Compilation, relocations: &[Vec<Relocation>]) {
|
||||
// The relocations are relative to the relocation's address plus four bytes
|
||||
// TODO: Support architectures other than x64, and other reloc kinds.
|
||||
for (i, function_relocs) in relocations.iter().enumerate() {
|
||||
for ref r in function_relocs {
|
||||
let target_func_address: isize = compilation.functions[r.func_index].as_ptr() as isize;
|
||||
let body = &mut compilation.functions[i];
|
||||
match r.reloc {
|
||||
Reloc::Abs8 => unsafe {
|
||||
let reloc_address = body.as_mut_ptr().offset(r.offset as isize) as i64;
|
||||
let reloc_addend = r.addend as i64;
|
||||
let reloc_abs = target_func_address as i64 + reloc_addend;
|
||||
write_unaligned(reloc_address as *mut i64, reloc_abs);
|
||||
},
|
||||
Reloc::X86PCRel4 => unsafe {
|
||||
let reloc_address = body.as_mut_ptr().offset(r.offset as isize) as isize;
|
||||
let reloc_addend = r.addend as isize;
|
||||
// TODO: Handle overflow.
|
||||
let reloc_delta_i32 =
|
||||
(target_func_address - reloc_address + reloc_addend) as i32;
|
||||
write_unaligned(reloc_address as *mut i32, reloc_delta_i32);
|
||||
},
|
||||
_ => panic!("unsupported reloc kind"),
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Create the VmCtx data structure for the JIT'd code to use. This must
|
||||
/// match the VmCtx layout in the runtime.
|
||||
fn make_vmctx(instance: &mut wasmtime_runtime::Instance) -> Vec<*mut u8> {
|
||||
let mut memories = Vec::new();
|
||||
let mut vmctx = Vec::new();
|
||||
vmctx.push(instance.globals.as_mut_ptr());
|
||||
for mem in &mut instance.memories {
|
||||
memories.push(mem.as_mut_ptr());
|
||||
}
|
||||
vmctx.push(memories.as_mut_ptr() as *mut u8);
|
||||
vmctx
|
||||
}
|
||||
|
||||
/// Jumps to the code region of memory and execute the start function of the module.
|
||||
pub fn execute(
|
||||
compilation: &wasmtime_runtime::Compilation,
|
||||
instance: &mut wasmtime_runtime::Instance,
|
||||
) -> Result<(), String> {
|
||||
let start_index = compilation
|
||||
.module
|
||||
.start_func
|
||||
.ok_or_else(|| String::from("No start function defined, aborting execution"))?;
|
||||
// TODO: Put all the function bodies into a page-aligned memory region, and
|
||||
// then make them ReadExecute rather than ReadWriteExecute.
|
||||
for code_buf in &compilation.functions {
|
||||
match unsafe {
|
||||
protect(
|
||||
code_buf.as_ptr(),
|
||||
code_buf.len(),
|
||||
Protection::ReadWriteExecute,
|
||||
)
|
||||
} {
|
||||
Ok(()) => (),
|
||||
Err(err) => {
|
||||
return Err(format!(
|
||||
"failed to give executable permission to code: {}",
|
||||
err
|
||||
))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let code_buf = &compilation.functions[start_index];
|
||||
|
||||
let vmctx = make_vmctx(instance);
|
||||
|
||||
// Rather than writing inline assembly to jump to the code region, we use the fact that
|
||||
// the Rust ABI for calling a function with no arguments and no return matches the one of
|
||||
// the generated code.Thanks to this, we can transmute the code region into a first-class
|
||||
// Rust function and call it.
|
||||
unsafe {
|
||||
let start_func = transmute::<_, fn(*const *mut u8)>(code_buf.as_ptr());
|
||||
start_func(vmctx.as_ptr());
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
pub use execute::{compile_and_link_module, execute};
|
||||
pub use instance::Instance;
|
||||
|
||||
Reference in New Issue
Block a user