Add a branch relaxation pass for #72.

Compute exact EBB header offsets and check that branches are in range.

Not implemented yet: Relax branches that are not in range.

Invoke the relax_branches() pass from the 'test binemit' file tests so
they can verify the proper encoding of branch instructions too.
This commit is contained in:
Jakob Stoklund Olesen
2017-04-05 14:54:17 -07:00
parent 598c81c12e
commit 81251c3005
6 changed files with 224 additions and 42 deletions

View File

@@ -3,6 +3,10 @@
//! The `binemit` module contains code for translating Cretonne's intermediate representation into
//! binary machine code.
mod relaxation;
pub use self::relaxation::relax_branches;
use ir::{Ebb, FuncRef, JumpTable, Function, Inst};
/// Offset in bytes from the beginning of the function.

View File

@@ -0,0 +1,110 @@
//! Branch relaxation and offset computation.
//!
//! # EBB header offsets
//!
//! Before we can generate binary machine code for branch instructions, we need to know the final
//! offsets of all the EBB headers in the function. This information is encoded in the
//! `func.offsets` table.
//!
//! # Branch relaxation
//!
//! Branch relaxation is the process of ensuring that all branches in the function have enough
//! range to encode their destination. It is common to have multiple branch encodings in an ISA.
//! For example, Intel branches can have either an 8-bit or a 32-bit displacement.
//!
//! On RISC architectures, it can happen that conditional branches have a shorter range than
//! unconditional branches:
//!
//! ```cton
//! brz v1, ebb17
//! ```
//!
//! can be transformed into:
//!
//! ```cton
//! brnz v1, ebb23
//! jump ebb17
//! ebb23:
//! ```
use binemit::CodeOffset;
use entity_map::EntityMap;
use ir::{Function, DataFlowGraph, Cursor, Inst};
use isa::{TargetIsa, EncInfo, Encoding};
/// Relax branches and compute the final layout of EBB headers in `func`.
///
/// Fill in the `func.offsets` table so the function is ready for binary emission.
pub fn relax_branches(func: &mut Function, isa: &TargetIsa) {
let encinfo = isa.encoding_info();
// Clear all offsets so we can recognize EBBs that haven't been visited yet.
func.offsets.clear();
func.offsets.resize(func.dfg.num_ebbs());
// The relaxation algorithm iterates to convergence.
let mut go_again = true;
while go_again {
go_again = false;
// Visit all instructions in layout order
let mut offset = 0;
let mut pos = Cursor::new(&mut func.layout);
while let Some(ebb) = pos.next_ebb() {
// Record the offset for `ebb` and make sure we iterate until offsets are stable.
if func.offsets[ebb] != offset {
assert!(func.offsets[ebb] < offset,
"Code shrinking during relaxation");
func.offsets[ebb] = offset;
go_again = true;
}
while let Some(inst) = pos.next_inst() {
let enc = func.encodings.get(inst).cloned().unwrap_or_default();
let size = encinfo.bytes(enc);
// See if this might be a branch that is out of range.
if let Some(range) = encinfo.branch_range(enc) {
if let Some(dest) = func.dfg[inst].branch_destination() {
let dest_offset = func.offsets[dest];
if !range.contains(offset, dest_offset) {
// This is an out-of-range branch.
// Relax it unless the destination offset has not been computed yet.
if dest_offset != 0 || Some(dest) == pos.layout.entry_block() {
offset += relax_branch(&mut func.dfg,
&mut func.encodings,
&encinfo,
&mut pos,
offset,
dest_offset);
continue;
}
}
}
}
offset += size;
}
}
}
}
/// Relax the branch instruction at `pos` so it can cover the range `offset - dest_offset`.
///
/// Return the size of the replacement instructions up to and including the location where `pos` is
/// left.
fn relax_branch(dfg: &mut DataFlowGraph,
encodings: &mut EntityMap<Inst, Encoding>,
encinfo: &EncInfo,
pos: &mut Cursor,
offset: CodeOffset,
dest_offset: CodeOffset)
-> CodeOffset {
let inst = pos.current_inst().unwrap();
dbg!("Relaxing [{}] {} for {:#x}-{:#x} range",
encinfo.display(encodings[inst]),
dfg.display_inst(inst),
offset,
dest_offset);
unimplemented!();
}