debug: Support big-endian architectures

This fixes some hard-coded assumptions in the debug crate that
the native ELF files being accessed are little-endian; specifically
in create_gdbjit_image as well as in emit_dwarf.

In addition, data in WebAssembly memory always uses little-endian
byte order.  Therefore, if the native architecture is big-endian,
all references to base types need to be marked as little-endian
using the DW_AT_endianity attribute, so that the debugger will
be able to correctly access them.
This commit is contained in:
Ulrich Weigand
2021-04-21 14:14:59 +02:00
parent 1243cea455
commit 801358333d
4 changed files with 79 additions and 39 deletions

View File

@@ -3,6 +3,7 @@
#![allow(clippy::cast_ptr_alignment)]
use anyhow::{bail, ensure, Error};
use object::endian::{BigEndian, Endian, Endianness, LittleEndian};
use object::{RelocationEncoding, RelocationKind};
use std::collections::HashMap;
@@ -18,13 +19,20 @@ pub fn create_gdbjit_image(
defined_funcs_offset: usize,
funcs: &[*const u8],
) -> Result<Vec<u8>, Error> {
ensure_supported_elf_format(&mut bytes)?;
let e = ensure_supported_elf_format(&mut bytes)?;
// patch relocs
relocate_dwarf_sections(&mut bytes, defined_funcs_offset, funcs)?;
// elf is still missing details...
convert_object_elf_to_loadable_file(&mut bytes, code_region);
match e {
Endianness::Little => {
convert_object_elf_to_loadable_file::<LittleEndian>(&mut bytes, code_region)
}
Endianness::Big => {
convert_object_elf_to_loadable_file::<BigEndian>(&mut bytes, code_region)
}
}
// let mut file = ::std::fs::File::create(::std::path::Path::new("test.o")).expect("file");
// ::std::io::Write::write_all(&mut file, &bytes).expect("write");
@@ -83,18 +91,33 @@ fn relocate_dwarf_sections(
Ok(())
}
fn ensure_supported_elf_format(bytes: &mut Vec<u8>) -> Result<(), Error> {
fn ensure_supported_elf_format(bytes: &mut Vec<u8>) -> Result<Endianness, Error> {
use object::elf::*;
use object::endian::LittleEndian;
use object::read::elf::*;
use object::Bytes;
use std::mem::size_of;
let e = LittleEndian;
let header: &FileHeader64<LittleEndian> =
unsafe { &*(bytes.as_mut_ptr() as *const FileHeader64<_>) };
ensure!(
header.e_ident.class == ELFCLASS64 && header.e_ident.data == ELFDATA2LSB,
"bits and endianess in .ELF",
);
let kind = match object::FileKind::parse(bytes) {
Ok(file) => file,
Err(err) => {
bail!("Failed to parse file: {}", err);
}
};
let header = match kind {
object::FileKind::Elf64 => {
match object::elf::FileHeader64::<Endianness>::parse(Bytes(bytes)) {
Ok(header) => header,
Err(err) => {
bail!("Unsupported ELF file: {}", err);
}
}
}
_ => {
bail!("only 64-bit ELF files currently supported")
}
};
let e = header.endian().unwrap();
match header.e_machine.get(e) {
EM_X86_64 => (),
machine => {
@@ -106,23 +129,25 @@ fn ensure_supported_elf_format(bytes: &mut Vec<u8>) -> Result<(), Error> {
"program header table is empty"
);
let e_shentsize = header.e_shentsize.get(e);
ensure!(
e_shentsize as usize == size_of::<SectionHeader64<LittleEndian>>(),
"size of sh"
);
Ok(())
let req_shentsize = match e {
Endianness::Little => size_of::<SectionHeader64<LittleEndian>>(),
Endianness::Big => size_of::<SectionHeader64<BigEndian>>(),
};
ensure!(e_shentsize as usize == req_shentsize, "size of sh");
Ok(e)
}
fn convert_object_elf_to_loadable_file(bytes: &mut Vec<u8>, code_region: (*const u8, usize)) {
fn convert_object_elf_to_loadable_file<E: Endian>(
bytes: &mut Vec<u8>,
code_region: (*const u8, usize),
) {
use object::elf::*;
use object::endian::LittleEndian;
use std::ffi::CStr;
use std::mem::size_of;
use std::os::raw::c_char;
let e = LittleEndian;
let header: &FileHeader64<LittleEndian> =
unsafe { &*(bytes.as_mut_ptr() as *const FileHeader64<_>) };
let e = E::default();
let header: &FileHeader64<E> = unsafe { &*(bytes.as_mut_ptr() as *const FileHeader64<_>) };
let e_shentsize = header.e_shentsize.get(e);
let e_shoff = header.e_shoff.get(e);
@@ -130,7 +155,7 @@ fn convert_object_elf_to_loadable_file(bytes: &mut Vec<u8>, code_region: (*const
let mut shstrtab_off = 0;
for i in 0..e_shnum {
let off = e_shoff as isize + i as isize * e_shentsize as isize;
let section: &SectionHeader64<LittleEndian> =
let section: &SectionHeader64<E> =
unsafe { &*(bytes.as_ptr().offset(off) as *const SectionHeader64<_>) };
if section.sh_type.get(e) != SHT_STRTAB {
continue;
@@ -140,7 +165,7 @@ fn convert_object_elf_to_loadable_file(bytes: &mut Vec<u8>, code_region: (*const
let mut segment: Option<_> = None;
for i in 0..e_shnum {
let off = e_shoff as isize + i as isize * e_shentsize as isize;
let section: &mut SectionHeader64<LittleEndian> =
let section: &mut SectionHeader64<E> =
unsafe { &mut *(bytes.as_mut_ptr().offset(off) as *mut SectionHeader64<_>) };
if section.sh_type.get(e) != SHT_PROGBITS {
continue;
@@ -171,12 +196,12 @@ fn convert_object_elf_to_loadable_file(bytes: &mut Vec<u8>, code_region: (*const
// LLDB wants segment with virtual address set, placing them at the end of ELF.
let ph_off = bytes.len();
let e_phentsize = size_of::<ProgramHeader64<LittleEndian>>();
let e_phentsize = size_of::<ProgramHeader64<E>>();
let e_phnum = 1;
bytes.resize(ph_off + e_phentsize * e_phnum, 0);
if let Some((sh_offset, sh_size)) = segment {
let (v_offset, size) = code_region;
let program: &mut ProgramHeader64<LittleEndian> =
let program: &mut ProgramHeader64<E> =
unsafe { &mut *(bytes.as_ptr().add(ph_off) as *mut ProgramHeader64<_>) };
program.p_type.set(e, PT_LOAD);
program.p_offset.set(e, sh_offset);
@@ -189,7 +214,7 @@ fn convert_object_elf_to_loadable_file(bytes: &mut Vec<u8>, code_region: (*const
}
// It is somewhat loadable ELF file at this moment.
let header: &mut FileHeader64<LittleEndian> =
let header: &mut FileHeader64<E> =
unsafe { &mut *(bytes.as_mut_ptr() as *mut FileHeader64<_>) };
header.e_type.set(e, ET_DYN);
header.e_phoff.set(e, ph_off as u64);