externref: Address review feedback

This commit is contained in:
Nick Fitzgerald
2020-06-12 17:22:54 -07:00
parent 618c278e41
commit 7e167cae10
20 changed files with 422 additions and 589 deletions

View File

@@ -105,11 +105,11 @@ use std::cell::{Cell, RefCell, UnsafeCell};
use std::cmp::Ordering;
use std::collections::BTreeMap;
use std::collections::HashSet;
use std::hash::Hasher;
use std::hash::{Hash, Hasher};
use std::mem;
use std::ops::Deref;
use std::ptr::{self, NonNull};
use std::sync::{Arc, RwLock};
use std::rc::Rc;
use wasmtime_environ::{ir::Stackmap, StackMapInformation};
/// An external reference to some opaque data.
@@ -337,37 +337,6 @@ impl VMExternRef {
}
}
// /// Turn this `VMExternRef` into a raw, untyped pointer.
// ///
// /// This forgets `self` and does *not* decrement the reference count on the
// /// pointed-to data.
// ///
// /// This `VMExternRef` may be recovered with `VMExternRef::from_raw`.
// pub fn into_raw(self) -> *mut u8 {
// let ptr = self.as_raw();
// mem::forget(self);
// ptr
// }
// /// Recreate a `VMExternRef` from a pointer returned from a previous call to
// /// `VMExternRef::into_raw`.
// ///
// /// # Safety
// ///
// /// Wildly unsafe to use with anything other than the result of a previous
// /// `into_raw` call!
// ///
// /// This method does *not* increment the reference count on the pointed-to
// /// data, so `from_raw` must be called at most *once* on the result of a
// /// previous `into_raw` call. (Ideally, every `into_raw` is later followed
// /// by a `from_raw`, but it is technically memory safe to never call
// /// `from_raw` after `into_raw`: it will leak the pointed-to value, which is
// /// memory safe).
// pub unsafe fn from_raw(ptr: *mut u8) -> Self {
// debug_assert!(!ptr.is_null());
// VMExternRef(NonNull::new_unchecked(ptr).cast())
// }
/// Turn this `VMExternRef` into a raw, untyped pointer.
///
/// Unlike `into_raw`, this does not consume and forget `self`. It is *not*
@@ -379,7 +348,6 @@ impl VMExternRef {
/// `clone_from_raw` is called.
pub fn as_raw(&self) -> *mut u8 {
let ptr = self.0.cast::<u8>().as_ptr();
mem::forget(self);
ptr
}
@@ -401,8 +369,8 @@ impl VMExternRef {
x
}
/// Get the reference count for this `VMExternRef`.
pub fn get_reference_count(&self) -> usize {
/// Get the strong reference count for this `VMExternRef`.
pub fn strong_count(&self) -> usize {
self.extern_data().get_ref_count()
}
@@ -461,6 +429,31 @@ impl Deref for VMExternRef {
}
}
/// A wrapper around a `VMExternRef` that implements `Eq` and `Hash` with
/// pointer semantics.
///
/// We use this so that we can morally put `VMExternRef`s inside of `HashSet`s
/// even though they don't implement `Eq` and `Hash` to avoid foot guns.
#[derive(Clone)]
struct VMExternRefWithTraits(VMExternRef);
impl Hash for VMExternRefWithTraits {
fn hash<H>(&self, hasher: &mut H)
where
H: Hasher,
{
VMExternRef::hash(&self.0, hasher)
}
}
impl PartialEq for VMExternRefWithTraits {
fn eq(&self, other: &Self) -> bool {
VMExternRef::eq(&self.0, &other.0)
}
}
impl Eq for VMExternRefWithTraits {}
type TableElem = UnsafeCell<Option<VMExternRef>>;
/// A table that over-approximizes the set of `VMExternRef`s that any Wasm
@@ -470,35 +463,37 @@ type TableElem = UnsafeCell<Option<VMExternRef>>;
/// entries. Deduplication happens at GC time.
#[repr(C)]
pub struct VMExternRefActivationsTable {
/// Bump-allocation finger within the current chunk.
/// Bump-allocation finger within the `chunk`.
///
/// NB: this is an `UnsafeCell` because it is read from and written to by
/// compiled Wasm code.
/// NB: this is an `UnsafeCell` because it is written to by compiled Wasm
/// code.
next: UnsafeCell<NonNull<TableElem>>,
/// Pointer to just after the current chunk.
/// Pointer to just after the `chunk`.
///
/// This is *not* within the current chunk and therefore is not a valid
/// place to insert a reference!
///
/// This is only updated from host code.
end: Cell<NonNull<TableElem>>,
end: NonNull<TableElem>,
/// The chunks within which we are bump allocating.
/// Bump allocation chunk that stores fast-path insertions.
chunk: Box<[TableElem]>,
/// When unioned with `chunk`, this is an over-approximation of the GC roots
/// on the stack, inside Wasm frames.
///
/// This is only updated from host code.
chunks: RefCell<Vec<Box<[TableElem]>>>,
/// This is used by slow-path insertion, and when a GC cycle finishes, is
/// re-initialized to the just-discovered precise set of stack roots (which
/// immediately becomes an over-approximation again as soon as Wasm runs and
/// potentially drops references).
over_approximated_stack_roots: RefCell<HashSet<VMExternRefWithTraits>>,
/// The precise set of on-stack, inside-Wasm GC roots that we discover via
/// walking the stack and interpreting stack maps.
///
/// That is, this is the precise set that the bump allocation table is
/// over-approximating.
///
/// This is *only* used inside the `gc` function, and is empty otherwise. It
/// is just part of this struct so that we can reuse the allocation, rather
/// than create a new hash set every GC.
precise_stack_roots: RefCell<HashSet<NonNull<VMExternData>>>,
precise_stack_roots: RefCell<HashSet<VMExternRefWithTraits>>,
/// A pointer to a `u8` on the youngest host stack frame before we called
/// into Wasm for the first time. When walking the stack in garbage
@@ -510,119 +505,107 @@ pub struct VMExternRefActivationsTable {
}
impl VMExternRefActivationsTable {
const INITIAL_CHUNK_SIZE: usize = 4096 / mem::size_of::<usize>();
const CHUNK_SIZE: usize = 4096 / mem::size_of::<usize>();
/// Create a new `VMExternRefActivationsTable`.
pub fn new() -> Self {
let chunk = Self::new_chunk(Self::INITIAL_CHUNK_SIZE);
let chunk = Self::new_chunk(Self::CHUNK_SIZE);
let next = chunk.as_ptr() as *mut TableElem;
let end = unsafe { next.add(chunk.len()) };
VMExternRefActivationsTable {
next: UnsafeCell::new(NonNull::new(next).unwrap()),
end: Cell::new(NonNull::new(end).unwrap()),
chunks: RefCell::new(vec![chunk]),
precise_stack_roots: RefCell::new(HashSet::with_capacity(Self::INITIAL_CHUNK_SIZE)),
end: NonNull::new(end).unwrap(),
chunk,
over_approximated_stack_roots: RefCell::new(HashSet::with_capacity(Self::CHUNK_SIZE)),
precise_stack_roots: RefCell::new(HashSet::with_capacity(Self::CHUNK_SIZE)),
stack_canary: Cell::new(None),
}
}
fn new_chunk(size: usize) -> Box<[UnsafeCell<Option<VMExternRef>>]> {
assert!(size >= Self::INITIAL_CHUNK_SIZE);
let mut chunk = Vec::with_capacity(size);
for _ in 0..size {
chunk.push(UnsafeCell::new(None));
}
chunk.into_boxed_slice()
assert!(size >= Self::CHUNK_SIZE);
(0..size).map(|_| UnsafeCell::new(None)).collect()
}
/// Try and insert a `VMExternRef` into this table.
///
/// This is a fast path that only succeeds when the current chunk has the
/// This is a fast path that only succeeds when the bump chunk has the
/// capacity for the requested insertion.
///
/// If the insertion fails, then the `VMExternRef` is given back. Callers
/// may attempt a GC to free up space and try again, or may call
/// `insert_slow_path` to allocate a new bump chunk for this insertion.
/// `insert_slow_path` to infallibly insert the reference (potentially
/// allocating additional space in the table to hold it).
#[inline]
pub fn try_insert(&self, externref: VMExternRef) -> Result<(), VMExternRef> {
unsafe {
let next = *self.next.get();
let end = self.end.get();
if next == end {
if next == self.end {
return Err(externref);
}
debug_assert!((*next.as_ref().get()).is_none());
ptr::write(next.as_ptr(), UnsafeCell::new(Some(externref)));
let next = NonNull::new_unchecked(next.as_ptr().add(1));
debug_assert!(next <= end);
debug_assert!(next <= self.end);
*self.next.get() = next;
Ok(())
}
}
/// This is a slow path for inserting a reference into the table when the
/// current bump chunk is full.
/// Insert a reference into the table, falling back on a GC to clear up
/// space if the table is already full.
///
/// This method is infallible, and will allocate an additional bump chunk if
/// necessary.
#[inline(never)]
pub fn insert_slow_path(&self, externref: VMExternRef) {
let externref = match self.try_insert(externref) {
Ok(()) => return,
Err(x) => x,
};
{
let mut chunks = self.chunks.borrow_mut();
let new_size = chunks.last().unwrap().len() * 2;
let new_chunk = Self::new_chunk(new_size);
unsafe {
let next = new_chunk.as_ptr() as *mut TableElem;
debug_assert!(!next.is_null());
*self.next.get() = NonNull::new_unchecked(next);
let end = next.add(new_chunk.len());
debug_assert!(!end.is_null());
self.end.set(NonNull::new_unchecked(end));
}
chunks.push(new_chunk);
/// # Unsafety
///
/// The same as `gc`.
#[inline]
pub unsafe fn insert_with_gc(
&self,
externref: VMExternRef,
stack_maps_registry: &StackMapRegistry,
) {
if let Err(externref) = self.try_insert(externref) {
self.gc_and_insert_slow(externref, stack_maps_registry);
}
self.try_insert(externref)
.expect("insertion should always succeed after we allocate a new chunk");
}
fn num_filled_in_last_chunk(&self, chunks: &[Box<[TableElem]>]) -> usize {
let last_chunk = chunks.last().unwrap();
#[inline(never)]
unsafe fn gc_and_insert_slow(
&self,
externref: VMExternRef,
stack_maps_registry: &StackMapRegistry,
) {
gc(stack_maps_registry, self);
// Might as well insert right into the hash set, rather than the bump
// chunk, since we are already on a slow path and we get de-duplication
// this way.
let mut roots = self.over_approximated_stack_roots.borrow_mut();
roots.insert(VMExternRefWithTraits(externref));
}
fn num_filled_in_bump_chunk(&self) -> usize {
let next = unsafe { *self.next.get() };
let end = self.end.get();
let num_unused_in_last_chunk =
((end.as_ptr() as usize) - (next.as_ptr() as usize)) / mem::size_of::<usize>();
last_chunk.len().saturating_sub(num_unused_in_last_chunk)
let bytes_unused = (self.end.as_ptr() as usize) - (next.as_ptr() as usize);
let slots_unused = bytes_unused / mem::size_of::<TableElem>();
self.chunk.len().saturating_sub(slots_unused)
}
fn elements(&self, mut f: impl FnMut(&VMExternRef)) {
// Every chunk except the last one is full, so we can simply iterate
// over all of their elements.
let chunks = self.chunks.borrow();
for chunk in chunks.iter().take(chunks.len() - 1) {
for elem in chunk.iter() {
if let Some(elem) = unsafe { &*elem.get() } {
f(elem);
}
}
let roots = self.over_approximated_stack_roots.borrow();
for elem in roots.iter() {
f(&elem.0);
}
// The last chunk is not all the way full, so we only iterate over its
// full parts.
let num_filled_in_last_chunk = self.num_filled_in_last_chunk(&chunks);
for elem in chunks.last().unwrap().iter().take(num_filled_in_last_chunk) {
if let Some(elem) = unsafe { &*elem.get() } {
// The bump chunk is not all the way full, so we only iterate over its
// filled-in slots.
let num_filled = self.num_filled_in_bump_chunk();
for slot in self.chunk.iter().take(num_filled) {
if let Some(elem) = unsafe { &*slot.get() } {
f(elem);
}
}
@@ -630,94 +613,43 @@ impl VMExternRefActivationsTable {
fn insert_precise_stack_root(&self, root: NonNull<VMExternData>) {
let mut precise_stack_roots = self.precise_stack_roots.borrow_mut();
if precise_stack_roots.insert(root) {
// If this root was not already in the set, then we need to
// increment its reference count, so that it doesn't get freed in
// `reset` when we're overwriting old bump allocation table entries
// with new ones.
unsafe {
root.as_ref().increment_ref_count();
}
}
let root = unsafe { VMExternRef::clone_from_raw(root.as_ptr() as *mut _) };
precise_stack_roots.insert(VMExternRefWithTraits(root));
}
/// Refill the bump allocation table with our precise stack roots, and sweep
/// away everything else.
fn reset(&self) {
let mut chunks = self.chunks.borrow_mut();
let mut precise_roots = self.precise_stack_roots.borrow_mut();
if precise_roots.is_empty() {
// Get rid of all but our first bump chunk, and set our `next` and
// `end` bump allocation fingers into it.
unsafe {
let chunk = chunks.first().unwrap();
let next = chunk.as_ptr() as *mut TableElem;
debug_assert!(!next.is_null());
*self.next.get() = NonNull::new_unchecked(next);
let end = next.add(chunk.len());
debug_assert!(!end.is_null());
self.end.set(NonNull::new_unchecked(end));
}
chunks.truncate(1);
} else {
// Drain our precise stack roots into the bump allocation table.
//
// This overwrites old entries, which drops them and decrements their
// reference counts. Safety relies on the reference count increment in
// `insert_precise_stack_root` to avoid over-eagerly dropping references
// that are in `self.precise_stack_roots` but haven't been inserted into
// the bump allocation table yet.
let mut precise_roots = precise_roots.drain();
'outer: for (chunk_index, chunk) in chunks.iter().enumerate() {
for (slot_index, slot) in chunk.iter().enumerate() {
if let Some(root) = precise_roots.next() {
unsafe {
// NB: there is no reference count increment here
// because everything in `self.precise_stack_roots`
// already had its reference count incremented for us,
// and this is logically a move out from there, rather
// than a clone.
*slot.get() = Some(VMExternRef(root));
}
} else {
// We've inserted all of our precise, on-stack roots back
// into the bump allocation table. Update our `next` and
// `end` bump pointer members for the new current chunk, and
// free any excess chunks.
let start = chunk.as_ptr() as *mut TableElem;
unsafe {
let next = start.add(slot_index + 1);
debug_assert!(!next.is_null());
*self.next.get() = NonNull::new_unchecked(next);
let end = start.add(chunk.len());
debug_assert!(!end.is_null());
self.end.set(NonNull::new_unchecked(end));
}
chunks.truncate(chunk_index + 1);
break 'outer;
}
}
}
debug_assert!(
precise_roots.next().is_none(),
"should always have enough capacity in the bump allocations table \
to hold all of our precise, on-stack roots"
);
}
// Finally, sweep away excess capacity within our new last/current
// chunk, so that old, no-longer-live roots get dropped.
let num_filled_in_last_chunk = self.num_filled_in_last_chunk(&chunks);
for slot in chunks.last().unwrap().iter().skip(num_filled_in_last_chunk) {
/// Sweep the bump allocation table after we've discovered our precise stack
/// roots.
fn sweep(&self) {
// Sweep our bump chunk.
let num_filled = self.num_filled_in_bump_chunk();
for slot in self.chunk.iter().take(num_filled) {
unsafe {
*slot.get() = None;
}
}
debug_assert!(
self.chunk
.iter()
.all(|slot| unsafe { (*slot.get()).as_ref().is_none() }),
"after sweeping the bump chunk, all slots should be `None`"
);
// Reset our `next` bump allocation finger.
unsafe {
let next = self.chunk.as_ptr() as *mut TableElem;
debug_assert!(!next.is_null());
*self.next.get() = NonNull::new_unchecked(next);
}
// The current `precise_roots` becomes our new over-appoximated set for
// the next GC cycle.
let mut precise_roots = self.precise_stack_roots.borrow_mut();
let mut over_approximated = self.over_approximated_stack_roots.borrow_mut();
mem::swap(&mut *precise_roots, &mut *over_approximated);
// And finally, the new `precise_roots` should be cleared and remain
// empty until the next GC cycle.
precise_roots.clear();
}
/// Set the stack canary around a call into Wasm.
@@ -739,7 +671,7 @@ impl VMExternRefActivationsTable {
/// ```no_run
/// use wasmtime_runtime::*;
///
/// #let get_table_from_somewhere = || unimplemented!();
/// # let get_table_from_somewhere = || unimplemented!();
/// let table: &VMExternRefActivationsTable = get_table_from_somewhere();
///
/// // Set the canary before a Wasm call. The canary should always be a
@@ -748,7 +680,7 @@ impl VMExternRefActivationsTable {
/// let auto_reset_canary = table.set_stack_canary(&canary);
///
/// // Do the call into Wasm.
/// #let call_into_wasm = || unimplemented!();
/// # let call_into_wasm = || unimplemented!();
/// call_into_wasm();
///
/// // Only drop the value returned by `set_stack_canary` after the Wasm
@@ -791,7 +723,7 @@ impl VMExternRefActivationsTable {
/// A registry of stack maps for currently active Wasm modules.
#[derive(Default)]
pub struct StackMapRegistry {
inner: RwLock<StackMapRegistryInner>,
inner: RefCell<StackMapRegistryInner>,
}
#[derive(Default)]
@@ -804,13 +736,13 @@ struct StackMapRegistryInner {
#[derive(Debug)]
struct ModuleStackMaps {
/// The range of PCs that this module covers. Different modules should
/// always have distinct ranges.
/// The range of PCs that this module covers. Different modules must always
/// have distinct ranges.
range: std::ops::Range<usize>,
/// A map from a PC in this module (that is a GC safepoint) to its
/// associated stack map.
pc_to_stack_map: Vec<(usize, Arc<Stackmap>)>,
pc_to_stack_map: Vec<(usize, Rc<Stackmap>)>,
}
impl StackMapRegistry {
@@ -820,22 +752,10 @@ impl StackMapRegistry {
/// in memory (that is, where the JIT actually allocated and emitted the
/// function's code at), and the stack maps and code offsets within that
/// range for each of its GC safepoints.
///
/// The return value is an RAII registration for the stack maps. The
/// registration should not be dropped until its associated module is
/// dropped. Dropping the registration will unregister its stack
/// maps.
///
/// # Safety
///
/// Dropping the returned registration before the module is dropped, or when
/// there are still active frames from the module on the stack, means we
/// will no longer be able to find GC roots for the module's frames anymore,
/// which could lead to freeing still-in-use objects and use-after-free!
pub unsafe fn register_stack_maps<'a>(
self: &Arc<Self>,
pub fn register_stack_maps<'a>(
&self,
stack_maps: impl IntoIterator<Item = (std::ops::Range<usize>, &'a [StackMapInformation])>,
) -> Option<StackMapRegistration> {
) {
let mut min = usize::max_value();
let mut max = 0;
let mut pc_to_stack_map = vec![];
@@ -850,14 +770,14 @@ impl StackMapRegistry {
assert!((info.code_offset as usize) < len);
pc_to_stack_map.push((
range.start + (info.code_offset as usize),
Arc::new(info.stack_map.clone()),
Rc::new(info.stack_map.clone()),
));
}
}
if pc_to_stack_map.is_empty() {
// Nothing to register.
return None;
return;
}
let module_stack_maps = ModuleStackMaps {
@@ -865,7 +785,17 @@ impl StackMapRegistry {
pc_to_stack_map,
};
let mut inner = self.inner.write().unwrap();
let mut inner = self.inner.borrow_mut();
// Check if we've already registered this module.
if let Some(existing_module) = inner.ranges.get(&max) {
assert_eq!(existing_module.range, module_stack_maps.range);
debug_assert_eq!(
existing_module.pc_to_stack_map,
module_stack_maps.pc_to_stack_map,
);
return;
}
// Assert that this chunk of ranges doesn't collide with any other known
// chunks.
@@ -878,16 +808,11 @@ impl StackMapRegistry {
let old = inner.ranges.insert(max, module_stack_maps);
assert!(old.is_none());
Some(StackMapRegistration {
key: max,
registry: self.clone(),
})
}
/// Lookup the stack map for the given PC, if any.
pub fn lookup_stack_map(&self, pc: usize) -> Option<Arc<Stackmap>> {
let inner = self.inner.read().unwrap();
pub fn lookup_stack_map(&self, pc: usize) -> Option<Rc<Stackmap>> {
let inner = self.inner.borrow();
let stack_maps = inner.module_stack_maps(pc)?;
// Do a binary search to find the stack map for the given PC.
@@ -968,64 +893,36 @@ impl StackMapRegistryInner {
}
}
/// The registration for a module's stack maps.
///
/// Unsafe to drop earlier than its module is dropped. See
/// `StackMapRegistry::register_stack_maps` for details.
pub struct StackMapRegistration {
key: usize,
registry: Arc<StackMapRegistry>,
}
impl Drop for StackMapRegistration {
fn drop(&mut self) {
if let Ok(mut inner) = self.registry.inner.write() {
inner.ranges.remove(&self.key);
}
}
}
#[cfg(debug_assertions)]
#[derive(Debug, Default)]
struct DebugOnly<T> {
inner: T,
}
#[cfg(debug_assertions)]
impl<T> std::ops::Deref for DebugOnly<T> {
type Target = T;
fn deref(&self) -> &T {
&self.inner
if cfg!(debug_assertions) {
&self.inner
} else {
panic!(
"only deref `DebugOnly` when `cfg(debug_assertions)` or \
inside a `debug_assert!(..)`"
)
}
}
}
#[cfg(debug_assertions)]
impl<T> std::ops::DerefMut for DebugOnly<T> {
fn deref_mut(&mut self) -> &mut T {
&mut self.inner
}
}
#[cfg(not(debug_assertions))]
#[derive(Debug, Default)]
struct DebugOnly<T> {
_phantom: PhantomData<T>,
}
#[cfg(not(debug_assertions))]
impl<T> std::ops::Deref for DebugOnly<T> {
type Target = T;
fn deref(&self) -> &T {
panic!("only deref `DebugOnly` inside `debug_assert!`s")
}
}
#[cfg(not(debug_assertions))]
impl<T> std::ops::DerefMut for DebugOnly<T> {
fn deref_mut(&mut self) -> &mut T {
panic!("only deref `DebugOnly` inside `debug_assert!`s")
if cfg!(debug_assertions) {
&mut self.inner
} else {
panic!(
"only deref `DebugOnly` when `cfg(debug_assertions)` or \
inside a `debug_assert!(..)`"
)
}
}
}
@@ -1037,6 +934,9 @@ impl<T> std::ops::DerefMut for DebugOnly<T> {
/// least the oldest host-->Wasm stack frame transition on this thread's stack
/// (it is idempotent to call it more than once) and keep its return value alive
/// across the duration of that host-->Wasm call.
///
/// Additionally, you must have registered the stack maps for every Wasm module
/// that has frames on the stack with the given `stack_maps_registry`.
pub unsafe fn gc(
stack_maps_registry: &StackMapRegistry,
externref_activations_table: &VMExternRefActivationsTable,
@@ -1068,7 +968,7 @@ pub unsafe fn gc(
true
});
}
externref_activations_table.reset();
externref_activations_table.sweep();
log::debug!("end GC");
return;
}
@@ -1086,7 +986,7 @@ pub unsafe fn gc(
// * resetting our bump-allocated table's over-approximation to the
// newly-discovered precise set.
// The SP of the previous frame we processed.
// The SP of the previous (younger) frame we processed.
let mut last_sp = None;
// Whether we have found our stack canary or not yet.
@@ -1109,6 +1009,8 @@ pub unsafe fn gc(
let sp = frame.sp() as usize;
if let Some(stack_map) = stack_maps_registry.lookup_stack_map(pc) {
debug_assert!(sp != 0, "we should always get a valid SP for Wasm frames");
for i in 0..(stack_map.mapped_words() as usize) {
if stack_map.get_bit(i) {
// Stack maps have one bit per word in the frame, and the
@@ -1144,14 +1046,16 @@ pub unsafe fn gc(
!found_canary
});
// Only reset the table if we found the stack canary, and therefore know
// that we discovered all the on-stack, inside-a-Wasm-frame roots. If we did
// *not* find the stack canary, then `libunwind` failed to walk the whole
// stack, and we might be missing roots. Reseting the table would free those
// missing roots while they are still in use, leading to use-after-free.
// Only sweep and reset the table if we found the stack canary, and
// therefore know that we discovered all the on-stack, inside-a-Wasm-frame
// roots. If we did *not* find the stack canary, then `libunwind` failed to
// walk the whole stack, and we might be missing roots. Reseting the table
// would free those missing roots while they are still in use, leading to
// use-after-free.
if found_canary {
externref_activations_table.reset();
externref_activations_table.sweep();
} else {
log::warn!("did not find stack canary; skipping GC sweep");
let mut roots = externref_activations_table.precise_stack_roots.borrow_mut();
roots.clear();
}
@@ -1221,7 +1125,10 @@ mod tests {
num_defined_memories: 0,
num_defined_globals: 0,
};
assert_eq!(offsets.vm_extern_ref_activation_table_next(), actual_offset);
assert_eq!(
offsets.vm_extern_ref_activation_table_next() as usize,
actual_offset
);
}
#[test]
@@ -1244,21 +1151,9 @@ mod tests {
num_defined_memories: 0,
num_defined_globals: 0,
};
assert_eq!(offsets.vm_extern_ref_activation_table_end(), actual_offset);
}
fn assert_is_send<T: Send>() {}
fn assert_is_sync<T: Send>() {}
#[test]
fn stack_map_registry_is_send_sync() {
assert_is_send::<StackMapRegistry>();
assert_is_sync::<StackMapRegistry>();
}
#[test]
fn stack_map_registration_is_send_sync() {
assert_is_send::<StackMapRegistration>();
assert_is_sync::<StackMapRegistration>();
assert_eq!(
offsets.vm_extern_ref_activation_table_end() as usize,
actual_offset
);
}
}

View File

@@ -21,7 +21,6 @@ use std::any::Any;
use std::cell::RefCell;
use std::collections::HashMap;
use std::convert::TryFrom;
use std::rc::Rc;
use std::sync::Arc;
use std::{mem, ptr, slice};
use thiserror::Error;
@@ -74,19 +73,6 @@ pub(crate) struct Instance {
/// interrupted.
pub(crate) interrupts: Arc<VMInterrupts>,
/// A handle to the (over-approximized) set of `externref`s that Wasm code
/// is using.
///
/// The `vmctx` also holds a raw pointer to the table and relies on this
/// member to keep it alive.
pub(crate) externref_activations_table: Rc<VMExternRefActivationsTable>,
/// A handle to the stack map registry for this thread.
///
/// The `vmctx` also holds a raw pointer to the registry and relies on this
/// member to keep it alive.
pub(crate) stack_map_registry: Arc<StackMapRegistry>,
/// Additional context used by compiled wasm code. This field is last, and
/// represents a dynamically-sized array that extends beyond the nominal
/// end of the struct (similar to a flexible array member).
@@ -799,6 +785,10 @@ impl InstanceHandle {
/// internally if you'd like to do so. If possible it's recommended to use
/// the `wasmtime` crate API rather than this type since that is vetted for
/// safety.
///
/// It is your responsibility to ensure that the given raw
/// `externref_activations_table` and `stack_map_registry` outlive this
/// instance.
pub unsafe fn new(
module: Arc<Module>,
code: Arc<dyn Any>,
@@ -809,9 +799,12 @@ impl InstanceHandle {
vmshared_signatures: BoxedSlice<SignatureIndex, VMSharedSignatureIndex>,
host_state: Box<dyn Any>,
interrupts: Arc<VMInterrupts>,
externref_activations_table: Rc<VMExternRefActivationsTable>,
stack_map_registry: Arc<StackMapRegistry>,
externref_activations_table: *mut VMExternRefActivationsTable,
stack_map_registry: *mut StackMapRegistry,
) -> Result<Self, InstantiationError> {
debug_assert!(!externref_activations_table.is_null());
debug_assert!(!stack_map_registry.is_null());
let tables = create_tables(&module);
let memories = create_memories(&module, mem_creator.unwrap_or(&DefaultMemoryCreator {}))?;
@@ -846,8 +839,6 @@ impl InstanceHandle {
trampolines,
host_state,
interrupts,
externref_activations_table,
stack_map_registry,
vmctx: VMContext {},
};
let layout = instance.alloc_layout();
@@ -907,9 +898,8 @@ impl InstanceHandle {
VMBuiltinFunctionsArray::initialized(),
);
*instance.interrupts() = &*instance.interrupts;
*instance.externref_activations_table() =
&*instance.externref_activations_table as *const _ as *mut _;
*instance.stack_map_registry() = &*instance.stack_map_registry as *const _ as *mut _;
*instance.externref_activations_table() = externref_activations_table;
*instance.stack_map_registry() = stack_map_registry;
// Perform infallible initialization in this constructor, while fallible
// initialization is deferred to the `initialize` method.

View File

@@ -182,7 +182,7 @@ impl Mmap {
// Commit the accessible size.
let ptr = self.ptr as *const u8;
unsafe { region::protect(ptr.add(start), len, region::Protection::ReadWrite) }
unsafe { region::protect(ptr.add(start), len, region::Protection::READ_WRITE) }
.map_err(|e| e.to_string())
}