moved crates in lib/ to src/, renamed crates, modified some files' text (#660)

moved crates in lib/ to src/, renamed crates, modified some files' text (#660)
This commit is contained in:
lazypassion
2019-01-28 18:56:54 -05:00
committed by Dan Gohman
parent 54959cf5bb
commit 747ad3c4c5
508 changed files with 94 additions and 92 deletions

View File

@@ -0,0 +1,52 @@
//! Define the `Location`, `ParseError`, and `ParseResult` types.
#![macro_use]
use std::fmt;
/// The location of a `Token` or `Error`.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Default)]
pub struct Location {
/// Line number. Command-line arguments are line 0 and source file
/// lines start from 1.
pub line_number: usize,
}
/// A parse error is returned when the parse failed.
#[derive(Debug)]
pub struct ParseError {
/// Location of the error.
pub location: Location,
/// Error message.
pub message: String,
}
impl fmt::Display for ParseError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if self.location.line_number == 0 {
write!(f, "command-line arguments: {}", self.message)
} else {
write!(f, "{}: {}", self.location.line_number, self.message)
}
}
}
/// Result of a parser operation. The `ParseError` variant includes a location.
pub type ParseResult<T> = Result<T, ParseError>;
// Create an `Err` variant of `ParseResult<X>` from a location and `format!` args.
macro_rules! err {
( $loc:expr, $msg:expr ) => {
Err($crate::ParseError {
location: $loc.clone(),
message: $msg.to_string(),
})
};
( $loc:expr, $fmt:expr, $( $arg:expr ),+ ) => {
Err($crate::ParseError {
location: $loc.clone(),
message: format!( $fmt, $( $arg ),+ ),
})
};
}

View File

@@ -0,0 +1,65 @@
//! Parsed representation of `set` and `isa` commands.
//!
//! A test case file can contain `set` commands that set ISA-independent settings, and it can
//! contain `isa` commands that select an ISA and applies ISA-specific settings.
//!
//! If a test case file contains `isa` commands, the tests will only be run against the specified
//! ISAs. If the file contains no `isa` commands, the tests will be run against all supported ISAs.
use crate::error::{Location, ParseResult};
use crate::testcommand::TestOption;
use cranelift_codegen::isa::TargetIsa;
use cranelift_codegen::settings::{Configurable, Flags, SetError};
/// The ISA specifications in a `.clif` file.
pub enum IsaSpec {
/// The parsed file does not contain any `isa` commands, but it may contain `set` commands
/// which are reflected in the finished `Flags` object.
None(Flags),
/// The parsed file does contains `isa` commands.
/// Each `isa` command is used to configure a `TargetIsa` trait object.
Some(Vec<Box<TargetIsa>>),
}
impl IsaSpec {
/// If the `IsaSpec` contains exactly 1 `TargetIsa` we return a reference to it
pub fn unique_isa(&self) -> Option<&TargetIsa> {
if let IsaSpec::Some(ref isa_vec) = *self {
if isa_vec.len() == 1 {
return Some(&*isa_vec[0]);
}
}
None
}
}
/// Parse an iterator of command line options and apply them to `config`.
pub fn parse_options<'a, I>(iter: I, config: &mut Configurable, loc: Location) -> ParseResult<()>
where
I: Iterator<Item = &'a str>,
{
for opt in iter.map(TestOption::new) {
match opt {
TestOption::Flag(name) => match config.enable(name) {
Ok(_) => {}
Err(SetError::BadName(name)) => return err!(loc, "unknown flag '{}'", name),
Err(_) => return err!(loc, "not a boolean flag: '{}'", opt),
},
TestOption::Value(name, value) => match config.set(name, value) {
Ok(_) => {}
Err(SetError::BadName(name)) => return err!(loc, "unknown setting '{}'", name),
Err(SetError::BadType) => return err!(loc, "invalid setting type: '{}'", opt),
Err(SetError::BadValue(expected)) => {
return err!(
loc,
"invalid setting value for '{}', expected {}",
opt,
expected
);
}
},
}
}
Ok(())
}

View File

@@ -0,0 +1,646 @@
//! Lexical analysis for .clif files.
use crate::error::Location;
use cranelift_codegen::ir::types;
use cranelift_codegen::ir::{Ebb, Value};
#[allow(unused_imports, deprecated)]
use std::ascii::AsciiExt;
use std::str::CharIndices;
use std::u16;
/// A Token returned from the `Lexer`.
///
/// Some variants may contains references to the original source text, so the `Token` has the same
/// lifetime as the source.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub enum Token<'a> {
Comment(&'a str),
LPar, // '('
RPar, // ')'
LBrace, // '{'
RBrace, // '}'
LBracket, // '['
RBracket, // ']'
Minus, // '-'
Plus, // '+'
Comma, // ','
Dot, // '.'
Colon, // ':'
Equal, // '='
Arrow, // '->'
Float(&'a str), // Floating point immediate
Integer(&'a str), // Integer immediate
Type(types::Type), // i32, f32, b32x4, ...
Value(Value), // v12, v7
Ebb(Ebb), // ebb3
StackSlot(u32), // ss3
GlobalValue(u32), // gv3
Heap(u32), // heap2
Table(u32), // table2
JumpTable(u32), // jt2
FuncRef(u32), // fn2
SigRef(u32), // sig2
UserRef(u32), // u345
Name(&'a str), // %9arbitrary_alphanum, %x3, %0, %function ...
HexSequence(&'a str), // #89AF
Identifier(&'a str), // Unrecognized identifier (opcode, enumerator, ...)
SourceLoc(&'a str), // @00c7
}
/// A `Token` with an associated location.
#[derive(Debug, PartialEq, Eq)]
pub struct LocatedToken<'a> {
pub token: Token<'a>,
pub location: Location,
}
/// Wrap up a `Token` with the given location.
fn token(token: Token, loc: Location) -> Result<LocatedToken, LocatedError> {
Ok(LocatedToken {
token,
location: loc,
})
}
/// An error from the lexical analysis.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum LexError {
InvalidChar,
}
/// A `LexError` with an associated Location.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct LocatedError {
pub error: LexError,
pub location: Location,
}
/// Wrap up a `LexError` with the given location.
fn error<'a>(error: LexError, loc: Location) -> Result<LocatedToken<'a>, LocatedError> {
Err(LocatedError {
error,
location: loc,
})
}
/// Get the number of decimal digits at the end of `s`.
fn trailing_digits(s: &str) -> usize {
// It's faster to iterate backwards over bytes, and we're only counting ASCII digits.
s.as_bytes()
.iter()
.rev()
.take_while(|&&b| b'0' <= b && b <= b'9')
.count()
}
/// Pre-parse a supposed entity name by splitting it into two parts: A head of lowercase ASCII
/// letters and numeric tail.
pub fn split_entity_name(name: &str) -> Option<(&str, u32)> {
let (head, tail) = name.split_at(name.len() - trailing_digits(name));
if tail.len() > 1 && tail.starts_with('0') {
None
} else {
tail.parse().ok().map(|n| (head, n))
}
}
/// Lexical analysis.
///
/// A `Lexer` reads text from a `&str` and provides a sequence of tokens.
///
/// Also keep track of a line number for error reporting.
///
pub struct Lexer<'a> {
// Complete source being processed.
source: &'a str,
// Iterator into `source`.
chars: CharIndices<'a>,
// Next character to be processed, or `None` at the end.
lookahead: Option<char>,
// Index into `source` of lookahead character.
pos: usize,
// Current line number.
line_number: usize,
}
impl<'a> Lexer<'a> {
pub fn new(s: &'a str) -> Self {
let mut lex = Self {
source: s,
chars: s.char_indices(),
lookahead: None,
pos: 0,
line_number: 1,
};
// Advance to the first char.
lex.next_ch();
lex
}
// Advance to the next character.
// Return the next lookahead character, or None when the end is encountered.
// Always update cur_ch to reflect
fn next_ch(&mut self) -> Option<char> {
if self.lookahead == Some('\n') {
self.line_number += 1;
}
match self.chars.next() {
Some((idx, ch)) => {
self.pos = idx;
self.lookahead = Some(ch);
}
None => {
self.pos = self.source.len();
self.lookahead = None;
}
}
self.lookahead
}
// Get the location corresponding to `lookahead`.
fn loc(&self) -> Location {
Location {
line_number: self.line_number,
}
}
// Starting from `lookahead`, are we looking at `prefix`?
fn looking_at(&self, prefix: &str) -> bool {
self.source[self.pos..].starts_with(prefix)
}
// Starting from `lookahead`, are we looking at a number?
fn looking_at_numeric(&self) -> bool {
if let Some(c) = self.lookahead {
if c.is_digit(10) {
return true;
}
match c {
'-' => return true,
'+' => return true,
'.' => return true,
_ => {}
}
if self.looking_at("NaN") || self.looking_at("Inf") || self.looking_at("sNaN") {
return true;
}
}
false
}
// Scan a single-char token.
fn scan_char(&mut self, tok: Token<'a>) -> Result<LocatedToken<'a>, LocatedError> {
assert_ne!(self.lookahead, None);
let loc = self.loc();
self.next_ch();
token(tok, loc)
}
// Scan a multi-char token.
fn scan_chars(
&mut self,
count: usize,
tok: Token<'a>,
) -> Result<LocatedToken<'a>, LocatedError> {
let loc = self.loc();
for _ in 0..count {
assert_ne!(self.lookahead, None);
self.next_ch();
}
token(tok, loc)
}
/// Get the rest of the current line.
/// The next token returned by `next()` will be from the following lines.
pub fn rest_of_line(&mut self) -> &'a str {
let begin = self.pos;
loop {
match self.next_ch() {
None | Some('\n') => return &self.source[begin..self.pos],
_ => {}
}
}
}
// Scan a comment extending to the end of the current line.
fn scan_comment(&mut self) -> Result<LocatedToken<'a>, LocatedError> {
let loc = self.loc();
let text = self.rest_of_line();
token(Token::Comment(text), loc)
}
// Scan a number token which can represent either an integer or floating point number.
//
// Accept the following forms:
//
// - `10`: Integer
// - `-10`: Integer
// - `0xff_00`: Integer
// - `0.0`: Float
// - `0x1.f`: Float
// - `-0x2.4`: Float
// - `0x0.4p-34`: Float
//
// This function does not filter out all invalid numbers. It depends in the context-sensitive
// decoding of the text for that. For example, the number of allowed digits in an `Ieee32` and
// an `Ieee64` constant are different.
fn scan_number(&mut self) -> Result<LocatedToken<'a>, LocatedError> {
let begin = self.pos;
let loc = self.loc();
let mut is_float = false;
// Skip a leading sign.
match self.lookahead {
Some('-') => {
self.next_ch();
if !self.looking_at_numeric() {
// If the next characters won't parse as a number, we return Token::Minus
return token(Token::Minus, loc);
}
}
Some('+') => {
self.next_ch();
if !self.looking_at_numeric() {
// If the next characters won't parse as a number, we return Token::Minus
return token(Token::Plus, loc);
}
}
_ => {}
}
// Check for NaNs with payloads.
if self.looking_at("NaN:") || self.looking_at("sNaN:") {
// Skip the `NaN:` prefix, the loop below won't accept it.
// We expect a hexadecimal number to follow the colon.
while self.next_ch() != Some(':') {}
is_float = true;
} else if self.looking_at("NaN") || self.looking_at("Inf") {
// This is Inf or a default quiet NaN.
is_float = true;
}
// Look for the end of this number. Detect the radix point if there is one.
loop {
match self.next_ch() {
Some('-') | Some('_') => {}
Some('.') => is_float = true,
Some(ch) if ch.is_alphanumeric() => {}
_ => break,
}
}
let text = &self.source[begin..self.pos];
if is_float {
token(Token::Float(text), loc)
} else {
token(Token::Integer(text), loc)
}
}
// Scan a 'word', which is an identifier-like sequence of characters beginning with '_' or an
// alphabetic char, followed by zero or more alphanumeric or '_' characters.
fn scan_word(&mut self) -> Result<LocatedToken<'a>, LocatedError> {
let begin = self.pos;
let loc = self.loc();
assert!(self.lookahead == Some('_') || self.lookahead.unwrap().is_alphabetic());
loop {
match self.next_ch() {
Some('_') => {}
Some(ch) if ch.is_alphanumeric() => {}
_ => break,
}
}
let text = &self.source[begin..self.pos];
// Look for numbered well-known entities like ebb15, v45, ...
token(
split_entity_name(text)
.and_then(|(prefix, number)| {
Self::numbered_entity(prefix, number)
.or_else(|| Self::value_type(text, prefix, number))
})
.unwrap_or_else(|| match text {
"iflags" => Token::Type(types::IFLAGS),
"fflags" => Token::Type(types::FFLAGS),
_ => Token::Identifier(text),
}),
loc,
)
}
// If prefix is a well-known entity prefix and suffix is a valid entity number, return the
// decoded token.
fn numbered_entity(prefix: &str, number: u32) -> Option<Token<'a>> {
match prefix {
"v" => Value::with_number(number).map(Token::Value),
"ebb" => Ebb::with_number(number).map(Token::Ebb),
"ss" => Some(Token::StackSlot(number)),
"gv" => Some(Token::GlobalValue(number)),
"heap" => Some(Token::Heap(number)),
"table" => Some(Token::Table(number)),
"jt" => Some(Token::JumpTable(number)),
"fn" => Some(Token::FuncRef(number)),
"sig" => Some(Token::SigRef(number)),
"u" => Some(Token::UserRef(number)),
_ => None,
}
}
// Recognize a scalar or vector type.
fn value_type(text: &str, prefix: &str, number: u32) -> Option<Token<'a>> {
let is_vector = prefix.ends_with('x');
let scalar = if is_vector {
&prefix[0..prefix.len() - 1]
} else {
text
};
let base_type = match scalar {
"i8" => types::I8,
"i16" => types::I16,
"i32" => types::I32,
"i64" => types::I64,
"f32" => types::F32,
"f64" => types::F64,
"b1" => types::B1,
"b8" => types::B8,
"b16" => types::B16,
"b32" => types::B32,
"b64" => types::B64,
_ => return None,
};
if is_vector {
if number <= u32::from(u16::MAX) {
base_type.by(number as u16).map(Token::Type)
} else {
None
}
} else {
Some(Token::Type(base_type))
}
}
fn scan_name(&mut self) -> Result<LocatedToken<'a>, LocatedError> {
let loc = self.loc();
let begin = self.pos + 1;
assert_eq!(self.lookahead, Some('%'));
while let Some(c) = self.next_ch() {
if !(c.is_ascii() && c.is_alphanumeric() || c == '_') {
break;
}
}
let end = self.pos;
token(Token::Name(&self.source[begin..end]), loc)
}
fn scan_hex_sequence(&mut self) -> Result<LocatedToken<'a>, LocatedError> {
let loc = self.loc();
let begin = self.pos + 1;
assert_eq!(self.lookahead, Some('#'));
while let Some(c) = self.next_ch() {
if !char::is_digit(c, 16) {
break;
}
}
let end = self.pos;
token(Token::HexSequence(&self.source[begin..end]), loc)
}
fn scan_srcloc(&mut self) -> Result<LocatedToken<'a>, LocatedError> {
let loc = self.loc();
let begin = self.pos + 1;
assert_eq!(self.lookahead, Some('@'));
while let Some(c) = self.next_ch() {
if !char::is_digit(c, 16) {
break;
}
}
let end = self.pos;
token(Token::SourceLoc(&self.source[begin..end]), loc)
}
/// Get the next token or a lexical error.
///
/// Return None when the end of the source is encountered.
pub fn next(&mut self) -> Option<Result<LocatedToken<'a>, LocatedError>> {
loop {
let loc = self.loc();
return match self.lookahead {
None => None,
Some(';') => Some(self.scan_comment()),
Some('(') => Some(self.scan_char(Token::LPar)),
Some(')') => Some(self.scan_char(Token::RPar)),
Some('{') => Some(self.scan_char(Token::LBrace)),
Some('}') => Some(self.scan_char(Token::RBrace)),
Some('[') => Some(self.scan_char(Token::LBracket)),
Some(']') => Some(self.scan_char(Token::RBracket)),
Some(',') => Some(self.scan_char(Token::Comma)),
Some('.') => Some(self.scan_char(Token::Dot)),
Some(':') => Some(self.scan_char(Token::Colon)),
Some('=') => Some(self.scan_char(Token::Equal)),
Some('+') => Some(self.scan_number()),
Some('-') => {
if self.looking_at("->") {
Some(self.scan_chars(2, Token::Arrow))
} else {
Some(self.scan_number())
}
}
Some(ch) if ch.is_digit(10) => Some(self.scan_number()),
Some(ch) if ch.is_alphabetic() => Some(self.scan_word()),
Some('%') => Some(self.scan_name()),
Some('#') => Some(self.scan_hex_sequence()),
Some('@') => Some(self.scan_srcloc()),
Some(ch) if ch.is_whitespace() => {
self.next_ch();
continue;
}
_ => {
// Skip invalid char, return error.
self.next_ch();
Some(error(LexError::InvalidChar, loc))
}
};
}
}
}
#[cfg(test)]
mod tests {
use super::trailing_digits;
use super::*;
use crate::error::Location;
use cranelift_codegen::ir::types;
use cranelift_codegen::ir::{Ebb, Value};
#[test]
fn digits() {
assert_eq!(trailing_digits(""), 0);
assert_eq!(trailing_digits("x"), 0);
assert_eq!(trailing_digits("0x"), 0);
assert_eq!(trailing_digits("x1"), 1);
assert_eq!(trailing_digits("1x1"), 1);
assert_eq!(trailing_digits("1x01"), 2);
}
#[test]
fn entity_name() {
assert_eq!(split_entity_name(""), None);
assert_eq!(split_entity_name("x"), None);
assert_eq!(split_entity_name("x+"), None);
assert_eq!(split_entity_name("x+1"), Some(("x+", 1)));
assert_eq!(split_entity_name("x-1"), Some(("x-", 1)));
assert_eq!(split_entity_name("1"), Some(("", 1)));
assert_eq!(split_entity_name("x1"), Some(("x", 1)));
assert_eq!(split_entity_name("xy0"), Some(("xy", 0)));
// Reject this non-canonical form.
assert_eq!(split_entity_name("inst01"), None);
}
fn token<'a>(token: Token<'a>, line: usize) -> Option<Result<LocatedToken<'a>, LocatedError>> {
Some(super::token(token, Location { line_number: line }))
}
fn error<'a>(error: LexError, line: usize) -> Option<Result<LocatedToken<'a>, LocatedError>> {
Some(super::error(error, Location { line_number: line }))
}
#[test]
fn make_lexer() {
let mut l1 = Lexer::new("");
let mut l2 = Lexer::new(" ");
let mut l3 = Lexer::new("\n ");
assert_eq!(l1.next(), None);
assert_eq!(l2.next(), None);
assert_eq!(l3.next(), None);
}
#[test]
fn lex_comment() {
let mut lex = Lexer::new("; hello");
assert_eq!(lex.next(), token(Token::Comment("; hello"), 1));
assert_eq!(lex.next(), None);
lex = Lexer::new("\n ;hello\n;foo");
assert_eq!(lex.next(), token(Token::Comment(";hello"), 2));
assert_eq!(lex.next(), token(Token::Comment(";foo"), 3));
assert_eq!(lex.next(), None);
// Scan a comment after an invalid char.
let mut lex = Lexer::new("$; hello");
assert_eq!(lex.next(), error(LexError::InvalidChar, 1));
assert_eq!(lex.next(), token(Token::Comment("; hello"), 1));
assert_eq!(lex.next(), None);
}
#[test]
fn lex_chars() {
let mut lex = Lexer::new("(); hello\n = :{, }.");
assert_eq!(lex.next(), token(Token::LPar, 1));
assert_eq!(lex.next(), token(Token::RPar, 1));
assert_eq!(lex.next(), token(Token::Comment("; hello"), 1));
assert_eq!(lex.next(), token(Token::Equal, 2));
assert_eq!(lex.next(), token(Token::Colon, 2));
assert_eq!(lex.next(), token(Token::LBrace, 2));
assert_eq!(lex.next(), token(Token::Comma, 2));
assert_eq!(lex.next(), token(Token::RBrace, 2));
assert_eq!(lex.next(), token(Token::Dot, 2));
assert_eq!(lex.next(), None);
}
#[test]
fn lex_numbers() {
let mut lex = Lexer::new(" 0 2_000 -1,0xf -0x0 0.0 0x0.4p-34 +5");
assert_eq!(lex.next(), token(Token::Integer("0"), 1));
assert_eq!(lex.next(), token(Token::Integer("2_000"), 1));
assert_eq!(lex.next(), token(Token::Integer("-1"), 1));
assert_eq!(lex.next(), token(Token::Comma, 1));
assert_eq!(lex.next(), token(Token::Integer("0xf"), 1));
assert_eq!(lex.next(), token(Token::Integer("-0x0"), 1));
assert_eq!(lex.next(), token(Token::Float("0.0"), 1));
assert_eq!(lex.next(), token(Token::Float("0x0.4p-34"), 1));
assert_eq!(lex.next(), token(Token::Integer("+5"), 1));
assert_eq!(lex.next(), None);
}
#[test]
fn lex_identifiers() {
let mut lex = Lexer::new(
"v0 v00 vx01 ebb1234567890 ebb5234567890 v1x vx1 vxvx4 \
function0 function b1 i32x4 f32x5 \
iflags fflags iflagss",
);
assert_eq!(
lex.next(),
token(Token::Value(Value::with_number(0).unwrap()), 1)
);
assert_eq!(lex.next(), token(Token::Identifier("v00"), 1));
assert_eq!(lex.next(), token(Token::Identifier("vx01"), 1));
assert_eq!(
lex.next(),
token(Token::Ebb(Ebb::with_number(1234567890).unwrap()), 1)
);
assert_eq!(lex.next(), token(Token::Identifier("ebb5234567890"), 1));
assert_eq!(lex.next(), token(Token::Identifier("v1x"), 1));
assert_eq!(lex.next(), token(Token::Identifier("vx1"), 1));
assert_eq!(lex.next(), token(Token::Identifier("vxvx4"), 1));
assert_eq!(lex.next(), token(Token::Identifier("function0"), 1));
assert_eq!(lex.next(), token(Token::Identifier("function"), 1));
assert_eq!(lex.next(), token(Token::Type(types::B1), 1));
assert_eq!(lex.next(), token(Token::Type(types::I32X4), 1));
assert_eq!(lex.next(), token(Token::Identifier("f32x5"), 1));
assert_eq!(lex.next(), token(Token::Type(types::IFLAGS), 1));
assert_eq!(lex.next(), token(Token::Type(types::FFLAGS), 1));
assert_eq!(lex.next(), token(Token::Identifier("iflagss"), 1));
assert_eq!(lex.next(), None);
}
#[test]
fn lex_hex_sequences() {
let mut lex = Lexer::new("#0 #DEADbeef123 #789");
assert_eq!(lex.next(), token(Token::HexSequence("0"), 1));
assert_eq!(lex.next(), token(Token::HexSequence("DEADbeef123"), 1));
assert_eq!(lex.next(), token(Token::HexSequence("789"), 1));
}
#[test]
fn lex_names() {
let mut lex = Lexer::new("%0 %x3 %function %123_abc %ss0 %v3 %ebb11 %_");
assert_eq!(lex.next(), token(Token::Name("0"), 1));
assert_eq!(lex.next(), token(Token::Name("x3"), 1));
assert_eq!(lex.next(), token(Token::Name("function"), 1));
assert_eq!(lex.next(), token(Token::Name("123_abc"), 1));
assert_eq!(lex.next(), token(Token::Name("ss0"), 1));
assert_eq!(lex.next(), token(Token::Name("v3"), 1));
assert_eq!(lex.next(), token(Token::Name("ebb11"), 1));
assert_eq!(lex.next(), token(Token::Name("_"), 1));
}
#[test]
fn lex_userrefs() {
let mut lex = Lexer::new("u0 u1 u234567890 u9:8765");
assert_eq!(lex.next(), token(Token::UserRef(0), 1));
assert_eq!(lex.next(), token(Token::UserRef(1), 1));
assert_eq!(lex.next(), token(Token::UserRef(234567890), 1));
assert_eq!(lex.next(), token(Token::UserRef(9), 1));
assert_eq!(lex.next(), token(Token::Colon, 1));
assert_eq!(lex.next(), token(Token::Integer("8765"), 1));
assert_eq!(lex.next(), None);
}
}

View File

@@ -0,0 +1,42 @@
//! Cranelift file reader library.
//!
//! The `cranelift_reader` library supports reading .clif files. This functionality is needed for
//! testing Cranelift, but is not essential for a JIT compiler.
#![deny(
missing_docs,
trivial_numeric_casts,
unused_extern_crates,
unstable_features
)]
#![warn(unused_import_braces)]
#![cfg_attr(feature = "clippy", plugin(clippy(conf_file = "../../clippy.toml")))]
#![cfg_attr(feature = "cargo-clippy", allow(clippy::new_without_default))]
#![cfg_attr(
feature = "cargo-clippy",
warn(
clippy::float_arithmetic,
clippy::mut_mut,
clippy::nonminimal_bool,
clippy::option_map_unwrap_or,
clippy::option_map_unwrap_or_else,
clippy::print_stdout,
clippy::unicode_not_nfc,
clippy::use_self
)
)]
pub use crate::error::{Location, ParseError, ParseResult};
pub use crate::isaspec::{parse_options, IsaSpec};
pub use crate::parser::{parse_functions, parse_test};
pub use crate::sourcemap::SourceMap;
pub use crate::testcommand::{TestCommand, TestOption};
pub use crate::testfile::{Comment, Details, TestFile};
mod error;
mod isaspec;
mod lexer;
mod parser;
mod sourcemap;
mod testcommand;
mod testfile;

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,240 @@
//! Source map associating entities with their source locations.
//!
//! When the parser reads in a source file, it records the locations of the
//! definitions of entities like instructions, EBBs, and values.
//!
//! The `SourceMap` struct defined in this module makes this mapping available
//! to parser clients.
use crate::error::{Location, ParseResult};
use crate::lexer::split_entity_name;
use cranelift_codegen::ir::entities::AnyEntity;
use cranelift_codegen::ir::{
Ebb, FuncRef, GlobalValue, Heap, JumpTable, SigRef, StackSlot, Table, Value,
};
use std::collections::HashMap;
/// Mapping from entity names to source locations.
#[derive(Debug, Default)]
pub struct SourceMap {
// Store locations for entities, including instructions.
locations: HashMap<AnyEntity, Location>,
}
/// Read-only interface which is exposed outside the parser crate.
impl SourceMap {
/// Look up a value entity.
pub fn contains_value(&self, v: Value) -> bool {
self.locations.contains_key(&v.into())
}
/// Look up a EBB entity.
pub fn contains_ebb(&self, ebb: Ebb) -> bool {
self.locations.contains_key(&ebb.into())
}
/// Look up a stack slot entity.
pub fn contains_ss(&self, ss: StackSlot) -> bool {
self.locations.contains_key(&ss.into())
}
/// Look up a global value entity.
pub fn contains_gv(&self, gv: GlobalValue) -> bool {
self.locations.contains_key(&gv.into())
}
/// Look up a heap entity.
pub fn contains_heap(&self, heap: Heap) -> bool {
self.locations.contains_key(&heap.into())
}
/// Look up a table entity.
pub fn contains_table(&self, table: Table) -> bool {
self.locations.contains_key(&table.into())
}
/// Look up a signature entity.
pub fn contains_sig(&self, sig: SigRef) -> bool {
self.locations.contains_key(&sig.into())
}
/// Look up a function entity.
pub fn contains_fn(&self, fn_: FuncRef) -> bool {
self.locations.contains_key(&fn_.into())
}
/// Look up a jump table entity.
pub fn contains_jt(&self, jt: JumpTable) -> bool {
self.locations.contains_key(&jt.into())
}
/// Look up an entity by source name.
/// Returns the entity reference corresponding to `name`, if it exists.
pub fn lookup_str(&self, name: &str) -> Option<AnyEntity> {
split_entity_name(name).and_then(|(ent, num)| match ent {
"v" => Value::with_number(num).and_then(|v| {
if !self.contains_value(v) {
None
} else {
Some(v.into())
}
}),
"ebb" => Ebb::with_number(num).and_then(|ebb| {
if !self.contains_ebb(ebb) {
None
} else {
Some(ebb.into())
}
}),
"ss" => StackSlot::with_number(num).and_then(|ss| {
if !self.contains_ss(ss) {
None
} else {
Some(ss.into())
}
}),
"gv" => GlobalValue::with_number(num).and_then(|gv| {
if !self.contains_gv(gv) {
None
} else {
Some(gv.into())
}
}),
"heap" => Heap::with_number(num).and_then(|heap| {
if !self.contains_heap(heap) {
None
} else {
Some(heap.into())
}
}),
"table" => Table::with_number(num).and_then(|table| {
if !self.contains_table(table) {
None
} else {
Some(table.into())
}
}),
"sig" => SigRef::with_number(num).and_then(|sig| {
if !self.contains_sig(sig) {
None
} else {
Some(sig.into())
}
}),
"fn" => FuncRef::with_number(num).and_then(|fn_| {
if !self.contains_fn(fn_) {
None
} else {
Some(fn_.into())
}
}),
"jt" => JumpTable::with_number(num).and_then(|jt| {
if !self.contains_jt(jt) {
None
} else {
Some(jt.into())
}
}),
_ => None,
})
}
/// Get the source location where an entity was defined.
pub fn location(&self, entity: AnyEntity) -> Option<Location> {
self.locations.get(&entity).cloned()
}
}
impl SourceMap {
/// Create a new empty `SourceMap`.
pub fn new() -> Self {
Self {
locations: HashMap::new(),
}
}
/// Define the value `entity`.
pub fn def_value(&mut self, entity: Value, loc: Location) -> ParseResult<()> {
self.def_entity(entity.into(), loc)
}
/// Define the ebb `entity`.
pub fn def_ebb(&mut self, entity: Ebb, loc: Location) -> ParseResult<()> {
self.def_entity(entity.into(), loc)
}
/// Define the stack slot `entity`.
pub fn def_ss(&mut self, entity: StackSlot, loc: Location) -> ParseResult<()> {
self.def_entity(entity.into(), loc)
}
/// Define the global value `entity`.
pub fn def_gv(&mut self, entity: GlobalValue, loc: Location) -> ParseResult<()> {
self.def_entity(entity.into(), loc)
}
/// Define the heap `entity`.
pub fn def_heap(&mut self, entity: Heap, loc: Location) -> ParseResult<()> {
self.def_entity(entity.into(), loc)
}
/// Define the table `entity`.
pub fn def_table(&mut self, entity: Table, loc: Location) -> ParseResult<()> {
self.def_entity(entity.into(), loc)
}
/// Define the signature `entity`.
pub fn def_sig(&mut self, entity: SigRef, loc: Location) -> ParseResult<()> {
self.def_entity(entity.into(), loc)
}
/// Define the external function `entity`.
pub fn def_fn(&mut self, entity: FuncRef, loc: Location) -> ParseResult<()> {
self.def_entity(entity.into(), loc)
}
/// Define the jump table `entity`.
pub fn def_jt(&mut self, entity: JumpTable, loc: Location) -> ParseResult<()> {
self.def_entity(entity.into(), loc)
}
/// Define an entity. This can be used for instructions whose numbers never
/// appear in source, or implicitly defined signatures.
pub fn def_entity(&mut self, entity: AnyEntity, loc: Location) -> ParseResult<()> {
if self.locations.insert(entity, loc).is_some() {
err!(loc, "duplicate entity: {}", entity)
} else {
Ok(())
}
}
}
#[cfg(test)]
mod tests {
use crate::parse_test;
#[test]
fn details() {
let tf = parse_test(
"function %detail() {
ss10 = incoming_arg 13
jt10 = jump_table [ebb0]
ebb0(v4: i32, v7: i32):
v10 = iadd v4, v7
}",
None,
None,
)
.unwrap();
let map = &tf.functions[0].1.map;
assert_eq!(map.lookup_str("v0"), None);
assert_eq!(map.lookup_str("ss1"), None);
assert_eq!(map.lookup_str("ss10").unwrap().to_string(), "ss10");
assert_eq!(map.lookup_str("jt10").unwrap().to_string(), "jt10");
assert_eq!(map.lookup_str("ebb0").unwrap().to_string(), "ebb0");
assert_eq!(map.lookup_str("v4").unwrap().to_string(), "v4");
assert_eq!(map.lookup_str("v7").unwrap().to_string(), "v7");
assert_eq!(map.lookup_str("v10").unwrap().to_string(), "v10");
}
}

View File

@@ -0,0 +1,103 @@
//! Test commands.
//!
//! A `.clif` file can begin with one or more *test commands* which specify what is to be tested.
//! The general syntax is:
//!
//! <pre>
//! test <i>&lt;command&gt;</i> </i>[options]</i>...
//! </pre>
//!
//! The options are either a single identifier flag, or setting values like `identifier=value`.
//!
//! The parser does not understand the test commands or which options are valid. It simply parses
//! the general format into a `TestCommand` data structure.
use std::fmt::{self, Display, Formatter};
/// A command appearing in a test file.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct TestCommand<'a> {
/// The command name as a string.
pub command: &'a str,
/// The options following the command name.
pub options: Vec<TestOption<'a>>,
}
/// An option on a test command.
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum TestOption<'a> {
/// Single identifier flag: `foo`.
Flag(&'a str),
/// A value assigned to an identifier: `foo=bar`.
Value(&'a str, &'a str),
}
impl<'a> TestCommand<'a> {
/// Create a new TestCommand by parsing `s`.
/// The returned command contains references into `s`.
pub fn new(s: &'a str) -> Self {
let mut parts = s.split_whitespace();
let cmd = parts.next().unwrap_or("");
Self {
command: cmd,
options: parts
.filter(|s| !s.is_empty())
.map(TestOption::new)
.collect(),
}
}
}
impl<'a> Display for TestCommand<'a> {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "{}", self.command)?;
for opt in &self.options {
write!(f, " {}", opt)?;
}
writeln!(f)
}
}
impl<'a> TestOption<'a> {
/// Create a new TestOption by parsing `s`.
/// The returned option contains references into `s`.
pub fn new(s: &'a str) -> Self {
match s.find('=') {
None => TestOption::Flag(s),
Some(p) => TestOption::Value(&s[0..p], &s[p + 1..]),
}
}
}
impl<'a> Display for TestOption<'a> {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
match *self {
TestOption::Flag(s) => write!(f, "{}", s),
TestOption::Value(s, v) => write!(f, "{}={}", s, v),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn parse_option() {
assert_eq!(TestOption::new(""), TestOption::Flag(""));
assert_eq!(TestOption::new("foo"), TestOption::Flag("foo"));
assert_eq!(TestOption::new("foo=bar"), TestOption::Value("foo", "bar"));
}
#[test]
fn parse_command() {
assert_eq!(&TestCommand::new("").to_string(), "\n");
assert_eq!(&TestCommand::new("cat").to_string(), "cat\n");
assert_eq!(&TestCommand::new("cat ").to_string(), "cat\n");
assert_eq!(&TestCommand::new("cat 1 ").to_string(), "cat 1\n");
assert_eq!(
&TestCommand::new("cat one=4 two t").to_string(),
"cat one=4 two t\n"
);
}
}

View File

@@ -0,0 +1,57 @@
//! Data structures representing a parsed test file.
//!
//! A test file is a `.clif` file which contains test commands and settings for running a
//! file-based test case.
//!
use crate::error::Location;
use crate::isaspec::IsaSpec;
use crate::sourcemap::SourceMap;
use crate::testcommand::TestCommand;
use cranelift_codegen::ir::entities::AnyEntity;
use cranelift_codegen::ir::Function;
/// A parsed test case.
///
/// This is the result of parsing a `.clif` file which contains a number of test commands and ISA
/// specs followed by the functions that should be tested.
pub struct TestFile<'a> {
/// `test foo ...` lines.
pub commands: Vec<TestCommand<'a>>,
/// `isa bar ...` lines.
pub isa_spec: IsaSpec,
/// Comments appearing before the first function.
/// These are all tagged as 'Function' scope for lack of a better entity.
pub preamble_comments: Vec<Comment<'a>>,
/// Parsed functions and additional details about each function.
pub functions: Vec<(Function, Details<'a>)>,
}
/// Additional details about a function parsed from a text string.
/// These are useful for detecting test commands embedded in comments etc.
/// The details to not affect the semantics of the function.
#[derive(Debug)]
pub struct Details<'a> {
/// Location of the `function` keyword that begins this function.
pub location: Location,
/// Annotation comments that appeared inside or after the function.
pub comments: Vec<Comment<'a>>,
/// Mapping of entity numbers to source locations.
pub map: SourceMap,
}
/// A comment in a parsed function.
///
/// The comment belongs to the immediately preceding entity, whether that is an EBB header, and
/// instruction, or one of the preamble declarations.
///
/// Comments appearing inside the function but before the preamble, as well as comments appearing
/// after the function are tagged as `AnyEntity::Function`.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Comment<'a> {
/// The entity this comment is attached to.
/// Comments always follow their entity.
pub entity: AnyEntity,
/// Text of the comment, including the leading `;`.
pub text: &'a str,
}