moved crates in lib/ to src/, renamed crates, modified some files' text (#660)

moved crates in lib/ to src/, renamed crates, modified some files' text (#660)
This commit is contained in:
lazypassion
2019-01-28 18:56:54 -05:00
committed by Dan Gohman
parent 54959cf5bb
commit 747ad3c4c5
508 changed files with 94 additions and 92 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,202 @@
//! Cranelift IR builder library.
//!
//! Provides a straightforward way to create a Cranelift IR function and fill it with instructions
//! corresponding to your source program written in another language.
//!
//! To get started, create an [`FunctionBuilderContext`](struct.FunctionBuilderContext.html) and
//! pass it as an argument to a [`FunctionBuilder`](struct.FunctionBuilder.html).
//!
//! # Mutable variables and Cranelift IR values
//!
//! The most interesting feature of this API is that it provides a single way to deal with all your
//! variable problems. Indeed, the [`FunctionBuilder`](struct.FunctionBuilder.html) struct has a
//! type `Variable` that should be an index of your source language variables. Then, through
//! calling the functions
//! [`declare_var`](struct.FunctionBuilder.html#method.declare_var),
//! [`def_var`](struct.FunctionBuilder.html#method.def_var) and
//! [`use_var`](struct.FunctionBuilder.html#method.use_var), the
//! [`FunctionBuilder`](struct.FunctionBuilder.html) will create for you all the Cranelift IR
//! values corresponding to your variables.
//!
//! This API has been designed to help you translate your mutable variables into
//! [`SSA`](https://en.wikipedia.org/wiki/Static_single_assignment_form) form.
//! [`use_var`](struct.FunctionBuilder.html#method.use_var) will returns the Cranelift IR value
//! that corresponds to your mutable variable at a precise point in the program. However, you know
//! beforehand that one of your variables is defined only once, for instance if it is the result
//! of an intermediate expression in an expression-based language, then you can translate it
//! directly by the Cranelift IR value returned by the instruction builder. Using the
//! [`use_var`](struct.FunctionBuilder.html#method.use_var) API for such an immutable variable
//! would also work but with a slight additional overhead (the SSA algorithm does not know
//! beforehand if a variable is immutable or not).
//!
//! The moral is that you should use these three functions to handle all your mutable variables,
//! even those that are not present in the source code but artefacts of the translation. It is up
//! to you to keep a mapping between the mutable variables of your language and their `Variable`
//! index that is used by Cranelift. Caution: as the `Variable` is used by Cranelift to index an
//! array containing information about your mutable variables, when you create a new `Variable`
//! with [`Variable::new(var_index)`] you should make sure that `var_index` is provided by a
//! counter incremented by 1 each time you encounter a new mutable variable.
//!
//! # Example
//!
//! Here is a pseudo-program we want to transform into Cranelift IR:
//!
//! ```clif
//! function(x) {
//! x, y, z : i32
//! block0:
//! y = 2;
//! z = x + y;
//! jump block1
//! block1:
//! z = z + y;
//! brnz y, block2;
//! z = z - x;
//! return y
//! block2:
//! y = y - x
//! jump block1
//! }
//! ```
//!
//! Here is how you build the corresponding Cranelift IR function using `FunctionBuilderContext`:
//!
//! ```rust
//! extern crate cranelift_codegen;
//! extern crate cranelift_frontend;
//!
//! use cranelift_codegen::entity::EntityRef;
//! use cranelift_codegen::ir::types::*;
//! use cranelift_codegen::ir::{AbiParam, ExternalName, Function, InstBuilder, Signature};
//! use cranelift_codegen::isa::CallConv;
//! use cranelift_codegen::settings;
//! use cranelift_codegen::verifier::verify_function;
//! use cranelift_frontend::{FunctionBuilder, FunctionBuilderContext, Variable};
//!
//! fn main() {
//! let mut sig = Signature::new(CallConv::SystemV);
//! sig.returns.push(AbiParam::new(I32));
//! sig.params.push(AbiParam::new(I32));
//! let mut fn_builder_ctx = FunctionBuilderContext::new();
//! let mut func = Function::with_name_signature(ExternalName::user(0, 0), sig);
//! {
//! let mut builder = FunctionBuilder::new(&mut func, &mut fn_builder_ctx);
//!
//! let block0 = builder.create_ebb();
//! let block1 = builder.create_ebb();
//! let block2 = builder.create_ebb();
//! let x = Variable::new(0);
//! let y = Variable::new(1);
//! let z = Variable::new(2);
//! builder.declare_var(x, I32);
//! builder.declare_var(y, I32);
//! builder.declare_var(z, I32);
//! builder.append_ebb_params_for_function_params(block0);
//!
//! builder.switch_to_block(block0);
//! builder.seal_block(block0);
//! {
//! let tmp = builder.ebb_params(block0)[0]; // the first function parameter
//! builder.def_var(x, tmp);
//! }
//! {
//! let tmp = builder.ins().iconst(I32, 2);
//! builder.def_var(y, tmp);
//! }
//! {
//! let arg1 = builder.use_var(x);
//! let arg2 = builder.use_var(y);
//! let tmp = builder.ins().iadd(arg1, arg2);
//! builder.def_var(z, tmp);
//! }
//! builder.ins().jump(block1, &[]);
//!
//! builder.switch_to_block(block1);
//! {
//! let arg1 = builder.use_var(y);
//! let arg2 = builder.use_var(z);
//! let tmp = builder.ins().iadd(arg1, arg2);
//! builder.def_var(z, tmp);
//! }
//! {
//! let arg = builder.use_var(y);
//! builder.ins().brnz(arg, block2, &[]);
//! }
//! {
//! let arg1 = builder.use_var(z);
//! let arg2 = builder.use_var(x);
//! let tmp = builder.ins().isub(arg1, arg2);
//! builder.def_var(z, tmp);
//! }
//! {
//! let arg = builder.use_var(y);
//! builder.ins().return_(&[arg]);
//! }
//!
//! builder.switch_to_block(block2);
//! builder.seal_block(block2);
//!
//! {
//! let arg1 = builder.use_var(y);
//! let arg2 = builder.use_var(x);
//! let tmp = builder.ins().isub(arg1, arg2);
//! builder.def_var(y, tmp);
//! }
//! builder.ins().jump(block1, &[]);
//! builder.seal_block(block1);
//!
//! builder.finalize();
//! }
//!
//! let flags = settings::Flags::new(settings::builder());
//! let res = verify_function(&func, &flags);
//! println!("{}", func.display(None));
//! if let Err(errors) = res {
//! panic!("{}", errors);
//! }
//! }
//! ```
#![deny(missing_docs, trivial_numeric_casts, unused_extern_crates)]
#![warn(unused_import_braces)]
#![cfg_attr(feature = "std", deny(unstable_features))]
#![cfg_attr(feature = "cargo-clippy", allow(clippy::new_without_default))]
#![cfg_attr(
feature = "cargo-clippy",
warn(
clippy::float_arithmetic,
clippy::mut_mut,
clippy::nonminimal_bool,
clippy::option_map_unwrap_or,
clippy::option_map_unwrap_or_else,
clippy::print_stdout,
clippy::unicode_not_nfc,
clippy::use_self
)
)]
#![no_std]
#![cfg_attr(not(feature = "std"), feature(alloc))]
#[cfg(not(feature = "std"))]
#[macro_use]
extern crate alloc as std;
#[cfg(feature = "std")]
#[macro_use]
extern crate std;
#[cfg(not(feature = "std"))]
use hashmap_core::HashMap;
#[cfg(feature = "std")]
use std::collections::HashMap;
pub use crate::frontend::{FunctionBuilder, FunctionBuilderContext};
pub use crate::switch::Switch;
pub use crate::variable::Variable;
mod frontend;
mod ssa;
mod switch;
mod variable;
/// Version number of this crate.
pub const VERSION: &str = env!("CARGO_PKG_VERSION");

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,366 @@
use super::HashMap;
use crate::frontend::FunctionBuilder;
use cranelift_codegen::ir::condcodes::IntCC;
use cranelift_codegen::ir::*;
use log::debug;
use std::vec::Vec;
type EntryIndex = u64;
/// Unlike with `br_table`, `Switch` cases may be sparse or non-0-based.
/// They emit efficient code using branches, jump tables, or a combination of both.
#[derive(Debug, Default)]
pub struct Switch {
cases: HashMap<EntryIndex, Ebb>,
}
impl Switch {
/// Create a new empty switch
pub fn new() -> Self {
Self {
cases: HashMap::new(),
}
}
/// Set a switch entry
pub fn set_entry(&mut self, index: EntryIndex, ebb: Ebb) {
let prev = self.cases.insert(index, ebb);
assert!(
prev.is_none(),
"Tried to set the same entry {} twice",
index
);
}
fn collect_contiguous_case_ranges(self) -> Vec<ContiguousCaseRange> {
debug!("build_contiguous_case_ranges before: {:#?}", self.cases);
let mut cases = self.cases.into_iter().collect::<Vec<(_, _)>>();
cases.sort_by_key(|&(index, _)| index);
let mut contiguous_case_ranges: Vec<ContiguousCaseRange> = vec![];
let mut last_index = None;
for (index, ebb) in cases {
match last_index {
None => contiguous_case_ranges.push(ContiguousCaseRange::new(index)),
Some(last_index) => {
if index > last_index + 1 {
contiguous_case_ranges.push(ContiguousCaseRange::new(index));
}
}
}
contiguous_case_ranges.last_mut().unwrap().ebbs.push(ebb);
last_index = Some(index);
}
debug!(
"build_contiguous_case_ranges after: {:#?}",
contiguous_case_ranges
);
contiguous_case_ranges
}
fn build_search_tree(
bx: &mut FunctionBuilder,
val: Value,
otherwise: Ebb,
contiguous_case_ranges: Vec<ContiguousCaseRange>,
) -> Vec<(EntryIndex, Ebb, Vec<Ebb>)> {
let mut cases_and_jt_ebbs = Vec::new();
// Avoid allocation in the common case
if contiguous_case_ranges.len() <= 3 {
Self::build_search_branches(
bx,
val,
otherwise,
contiguous_case_ranges,
&mut cases_and_jt_ebbs,
);
return cases_and_jt_ebbs;
}
let mut stack: Vec<(Option<Ebb>, Vec<ContiguousCaseRange>)> = Vec::new();
stack.push((None, contiguous_case_ranges));
while let Some((ebb, contiguous_case_ranges)) = stack.pop() {
if let Some(ebb) = ebb {
bx.switch_to_block(ebb);
}
if contiguous_case_ranges.len() <= 3 {
Self::build_search_branches(
bx,
val,
otherwise,
contiguous_case_ranges,
&mut cases_and_jt_ebbs,
);
} else {
let split_point = contiguous_case_ranges.len() / 2;
let mut left = contiguous_case_ranges;
let right = left.split_off(split_point);
let left_ebb = bx.create_ebb();
let right_ebb = bx.create_ebb();
let should_take_right_side = bx.ins().icmp_imm(
IntCC::UnsignedGreaterThanOrEqual,
val,
right[0].first_index as i64,
);
bx.ins().brnz(should_take_right_side, right_ebb, &[]);
bx.ins().jump(left_ebb, &[]);
stack.push((Some(left_ebb), left));
stack.push((Some(right_ebb), right));
}
}
cases_and_jt_ebbs
}
fn build_search_branches(
bx: &mut FunctionBuilder,
val: Value,
otherwise: Ebb,
contiguous_case_ranges: Vec<ContiguousCaseRange>,
cases_and_jt_ebbs: &mut Vec<(EntryIndex, Ebb, Vec<Ebb>)>,
) {
for ContiguousCaseRange { first_index, ebbs } in contiguous_case_ranges.into_iter().rev() {
if ebbs.len() == 1 {
let is_good_val = bx.ins().icmp_imm(IntCC::Equal, val, first_index as i64);
bx.ins().brnz(is_good_val, ebbs[0], &[]);
} else {
let jt_ebb = bx.create_ebb();
let is_good_val =
bx.ins()
.icmp_imm(IntCC::UnsignedGreaterThanOrEqual, val, first_index as i64);
bx.ins().brnz(is_good_val, jt_ebb, &[]);
cases_and_jt_ebbs.push((first_index, jt_ebb, ebbs));
}
}
bx.ins().jump(otherwise, &[]);
}
fn build_jump_tables(
bx: &mut FunctionBuilder,
val: Value,
otherwise: Ebb,
cases_and_jt_ebbs: Vec<(EntryIndex, Ebb, Vec<Ebb>)>,
) {
for (first_index, jt_ebb, ebbs) in cases_and_jt_ebbs.into_iter().rev() {
let mut jt_data = JumpTableData::new();
for ebb in ebbs {
jt_data.push_entry(ebb);
}
let jump_table = bx.create_jump_table(jt_data);
bx.switch_to_block(jt_ebb);
let discr = bx.ins().iadd_imm(val, (first_index as i64).wrapping_neg());
bx.ins().br_table(discr, otherwise, jump_table);
}
}
/// Build the switch
///
/// # Arguments
///
/// * The function builder to emit to
/// * The value to switch on
/// * The default ebb
pub fn emit(self, bx: &mut FunctionBuilder, val: Value, otherwise: Ebb) {
// FIXME icmp(_imm) doesn't have encodings for i8 and i16 on x86(_64) yet
let val = match bx.func.dfg.value_type(val) {
types::I8 | types::I16 => bx.ins().uextend(types::I32, val),
_ => val,
};
let contiguous_case_ranges = self.collect_contiguous_case_ranges();
let cases_and_jt_ebbs = Self::build_search_tree(bx, val, otherwise, contiguous_case_ranges);
Self::build_jump_tables(bx, val, otherwise, cases_and_jt_ebbs);
}
}
#[derive(Debug)]
struct ContiguousCaseRange {
first_index: EntryIndex,
ebbs: Vec<Ebb>,
}
impl ContiguousCaseRange {
fn new(first_index: EntryIndex) -> Self {
Self {
first_index,
ebbs: Vec::new(),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::frontend::FunctionBuilderContext;
use cranelift_codegen::ir::Function;
use std::string::ToString;
macro_rules! setup {
($default:expr, [$($index:expr,)*]) => {{
let mut func = Function::new();
let mut func_ctx = FunctionBuilderContext::new();
{
let mut bx = FunctionBuilder::new(&mut func, &mut func_ctx);
let ebb = bx.create_ebb();
bx.switch_to_block(ebb);
let val = bx.ins().iconst(types::I8, 0);
let mut switch = Switch::new();
$(
let ebb = bx.create_ebb();
switch.set_entry($index, ebb);
)*
switch.emit(&mut bx, val, Ebb::with_number($default).unwrap());
}
func
.to_string()
.trim_start_matches("function u0:0() fast {\n")
.trim_end_matches("\n}\n")
.to_string()
}};
}
#[test]
fn switch_zero() {
let func = setup!(0, [0,]);
assert_eq!(
func,
"ebb0:
v0 = iconst.i8 0
v1 = uextend.i32 v0
v2 = icmp_imm eq v1, 0
brnz v2, ebb1
jump ebb0"
);
}
#[test]
fn switch_single() {
let func = setup!(0, [1,]);
assert_eq!(
func,
"ebb0:
v0 = iconst.i8 0
v1 = uextend.i32 v0
v2 = icmp_imm eq v1, 1
brnz v2, ebb1
jump ebb0"
);
}
#[test]
fn switch_bool() {
let func = setup!(0, [0, 1,]);
assert_eq!(
func,
" jt0 = jump_table [ebb1, ebb2]
ebb0:
v0 = iconst.i8 0
v1 = uextend.i32 v0
v2 = icmp_imm uge v1, 0
brnz v2, ebb3
jump ebb0
ebb3:
v3 = iadd_imm.i32 v1, 0
br_table v3, ebb0, jt0"
);
}
#[test]
fn switch_two_gap() {
let func = setup!(0, [0, 2,]);
assert_eq!(
func,
"ebb0:
v0 = iconst.i8 0
v1 = uextend.i32 v0
v2 = icmp_imm eq v1, 2
brnz v2, ebb2
v3 = icmp_imm eq v1, 0
brnz v3, ebb1
jump ebb0"
);
}
#[test]
fn switch_many() {
let func = setup!(0, [0, 1, 5, 7, 10, 11, 12,]);
assert_eq!(
func,
" jt0 = jump_table [ebb1, ebb2]
jt1 = jump_table [ebb5, ebb6, ebb7]
ebb0:
v0 = iconst.i8 0
v1 = uextend.i32 v0
v2 = icmp_imm uge v1, 7
brnz v2, ebb9
jump ebb8
ebb9:
v3 = icmp_imm.i32 uge v1, 10
brnz v3, ebb10
v4 = icmp_imm.i32 eq v1, 7
brnz v4, ebb4
jump ebb0
ebb8:
v5 = icmp_imm.i32 eq v1, 5
brnz v5, ebb3
v6 = icmp_imm.i32 uge v1, 0
brnz v6, ebb11
jump ebb0
ebb11:
v7 = iadd_imm.i32 v1, 0
br_table v7, ebb0, jt0
ebb10:
v8 = iadd_imm.i32 v1, -10
br_table v8, ebb0, jt1"
);
}
#[test]
fn switch_min_index_value() {
let func = setup!(0, [::core::i64::MIN as u64, 1,]);
assert_eq!(
func,
"ebb0:
v0 = iconst.i8 0
v1 = uextend.i32 v0
v2 = icmp_imm eq v1, 0x8000_0000_0000_0000
brnz v2, ebb1
v3 = icmp_imm eq v1, 1
brnz v3, ebb2
jump ebb0"
);
}
#[test]
fn switch_max_index_value() {
let func = setup!(0, [::core::i64::MAX as u64, 1,]);
assert_eq!(
func,
"ebb0:
v0 = iconst.i8 0
v1 = uextend.i32 v0
v2 = icmp_imm eq v1, 0x7fff_ffff_ffff_ffff
brnz v2, ebb1
v3 = icmp_imm eq v1, 1
brnz v3, ebb2
jump ebb0"
)
}
}

View File

@@ -0,0 +1,32 @@
//! A basic `Variable` implementation.
//!
//! `FunctionBuilderContext`, `FunctionBuilder`, and related types have a `Variable`
//! type parameter, to allow frontends that identify variables with
//! their own index types to use them directly. Frontends which don't
//! can use the `Variable` defined here.
use core::u32;
use cranelift_codegen::entity::EntityRef;
///! An opaque reference to a variable.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct Variable(u32);
impl Variable {
/// Create a new Variable with the given index.
pub fn with_u32(index: u32) -> Self {
debug_assert!(index < u32::MAX);
Variable(index)
}
}
impl EntityRef for Variable {
fn new(index: usize) -> Self {
debug_assert!(index < (u32::MAX as usize));
Variable(index as u32)
}
fn index(self) -> usize {
self.0 as usize
}
}