moved crates in lib/ to src/, renamed crates, modified some files' text (#660)
moved crates in lib/ to src/, renamed crates, modified some files' text (#660)
This commit is contained in:
349
cranelift/codegen/src/loop_analysis.rs
Normal file
349
cranelift/codegen/src/loop_analysis.rs
Normal file
@@ -0,0 +1,349 @@
|
||||
//! A loop analysis represented as mappings of loops to their header Ebb
|
||||
//! and parent in the loop tree.
|
||||
|
||||
use crate::dominator_tree::DominatorTree;
|
||||
use crate::entity::entity_impl;
|
||||
use crate::entity::SecondaryMap;
|
||||
use crate::entity::{Keys, PrimaryMap};
|
||||
use crate::flowgraph::{BasicBlock, ControlFlowGraph};
|
||||
use crate::ir::{Ebb, Function, Layout};
|
||||
use crate::packed_option::PackedOption;
|
||||
use crate::timing;
|
||||
use std::vec::Vec;
|
||||
|
||||
/// A opaque reference to a code loop.
|
||||
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
|
||||
pub struct Loop(u32);
|
||||
entity_impl!(Loop, "loop");
|
||||
|
||||
/// Loop tree information for a single function.
|
||||
///
|
||||
/// Loops are referenced by the Loop object, and for each loop you can access its header EBB,
|
||||
/// its eventual parent in the loop tree and all the EBB belonging to the loop.
|
||||
pub struct LoopAnalysis {
|
||||
loops: PrimaryMap<Loop, LoopData>,
|
||||
ebb_loop_map: SecondaryMap<Ebb, PackedOption<Loop>>,
|
||||
valid: bool,
|
||||
}
|
||||
|
||||
struct LoopData {
|
||||
header: Ebb,
|
||||
parent: PackedOption<Loop>,
|
||||
}
|
||||
|
||||
impl LoopData {
|
||||
/// Creates a `LoopData` object with the loop header and its eventual parent in the loop tree.
|
||||
pub fn new(header: Ebb, parent: Option<Loop>) -> Self {
|
||||
Self {
|
||||
header,
|
||||
parent: parent.into(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Methods for querying the loop analysis.
|
||||
impl LoopAnalysis {
|
||||
/// Allocate a new blank loop analysis struct. Use `compute` to compute the loop analysis for
|
||||
/// a function.
|
||||
pub fn new() -> Self {
|
||||
Self {
|
||||
valid: false,
|
||||
loops: PrimaryMap::new(),
|
||||
ebb_loop_map: SecondaryMap::new(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns all the loops contained in a function.
|
||||
pub fn loops(&self) -> Keys<Loop> {
|
||||
self.loops.keys()
|
||||
}
|
||||
|
||||
/// Returns the header EBB of a particular loop.
|
||||
///
|
||||
/// The characteristic property of a loop header block is that it dominates some of its
|
||||
/// predecessors.
|
||||
pub fn loop_header(&self, lp: Loop) -> Ebb {
|
||||
self.loops[lp].header
|
||||
}
|
||||
|
||||
/// Return the eventual parent of a loop in the loop tree.
|
||||
pub fn loop_parent(&self, lp: Loop) -> Option<Loop> {
|
||||
self.loops[lp].parent.expand()
|
||||
}
|
||||
|
||||
/// Determine if an Ebb belongs to a loop by running a finger along the loop tree.
|
||||
///
|
||||
/// Returns `true` if `ebb` is in loop `lp`.
|
||||
pub fn is_in_loop(&self, ebb: Ebb, lp: Loop) -> bool {
|
||||
let ebb_loop = self.ebb_loop_map[ebb];
|
||||
match ebb_loop.expand() {
|
||||
None => false,
|
||||
Some(ebb_loop) => self.is_child_loop(ebb_loop, lp),
|
||||
}
|
||||
}
|
||||
|
||||
/// Determines if a loop is contained in another loop.
|
||||
///
|
||||
/// `is_child_loop(child,parent)` returns `true` if and only if `child` is a child loop of
|
||||
/// `parent` (or `child == parent`).
|
||||
pub fn is_child_loop(&self, child: Loop, parent: Loop) -> bool {
|
||||
let mut finger = Some(child);
|
||||
while let Some(finger_loop) = finger {
|
||||
if finger_loop == parent {
|
||||
return true;
|
||||
}
|
||||
finger = self.loop_parent(finger_loop);
|
||||
}
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
impl LoopAnalysis {
|
||||
/// Detects the loops in a function. Needs the control flow graph and the dominator tree.
|
||||
pub fn compute(&mut self, func: &Function, cfg: &ControlFlowGraph, domtree: &DominatorTree) {
|
||||
let _tt = timing::loop_analysis();
|
||||
self.loops.clear();
|
||||
self.ebb_loop_map.clear();
|
||||
self.ebb_loop_map.resize(func.dfg.num_ebbs());
|
||||
self.find_loop_headers(cfg, domtree, &func.layout);
|
||||
self.discover_loop_blocks(cfg, domtree, &func.layout);
|
||||
self.valid = true;
|
||||
}
|
||||
|
||||
/// Check if the loop analysis is in a valid state.
|
||||
///
|
||||
/// Note that this doesn't perform any kind of validity checks. It simply checks if the
|
||||
/// `compute()` method has been called since the last `clear()`. It does not check that the
|
||||
/// loop analysis is consistent with the CFG.
|
||||
pub fn is_valid(&self) -> bool {
|
||||
self.valid
|
||||
}
|
||||
|
||||
/// Clear all the data structures contained in the loop analysis. This will leave the
|
||||
/// analysis in a similar state to a context returned by `new()` except that allocated
|
||||
/// memory be retained.
|
||||
pub fn clear(&mut self) {
|
||||
self.loops.clear();
|
||||
self.ebb_loop_map.clear();
|
||||
self.valid = false;
|
||||
}
|
||||
|
||||
// Traverses the CFG in reverse postorder and create a loop object for every EBB having a
|
||||
// back edge.
|
||||
fn find_loop_headers(
|
||||
&mut self,
|
||||
cfg: &ControlFlowGraph,
|
||||
domtree: &DominatorTree,
|
||||
layout: &Layout,
|
||||
) {
|
||||
// We traverse the CFG in reverse postorder
|
||||
for &ebb in domtree.cfg_postorder().iter().rev() {
|
||||
for BasicBlock {
|
||||
inst: pred_inst, ..
|
||||
} in cfg.pred_iter(ebb)
|
||||
{
|
||||
// If the ebb dominates one of its predecessors it is a back edge
|
||||
if domtree.dominates(ebb, pred_inst, layout) {
|
||||
// This ebb is a loop header, so we create its associated loop
|
||||
let lp = self.loops.push(LoopData::new(ebb, None));
|
||||
self.ebb_loop_map[ebb] = lp.into();
|
||||
break;
|
||||
// We break because we only need one back edge to identify a loop header.
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Intended to be called after `find_loop_headers`. For each detected loop header,
|
||||
// discovers all the ebb belonging to the loop and its inner loops. After a call to this
|
||||
// function, the loop tree is fully constructed.
|
||||
fn discover_loop_blocks(
|
||||
&mut self,
|
||||
cfg: &ControlFlowGraph,
|
||||
domtree: &DominatorTree,
|
||||
layout: &Layout,
|
||||
) {
|
||||
let mut stack: Vec<Ebb> = Vec::new();
|
||||
// We handle each loop header in reverse order, corresponding to a pseudo postorder
|
||||
// traversal of the graph.
|
||||
for lp in self.loops().rev() {
|
||||
for BasicBlock {
|
||||
ebb: pred,
|
||||
inst: pred_inst,
|
||||
} in cfg.pred_iter(self.loops[lp].header)
|
||||
{
|
||||
// We follow the back edges
|
||||
if domtree.dominates(self.loops[lp].header, pred_inst, layout) {
|
||||
stack.push(pred);
|
||||
}
|
||||
}
|
||||
while let Some(node) = stack.pop() {
|
||||
let continue_dfs: Option<Ebb>;
|
||||
match self.ebb_loop_map[node].expand() {
|
||||
None => {
|
||||
// The node hasn't been visited yet, we tag it as part of the loop
|
||||
self.ebb_loop_map[node] = PackedOption::from(lp);
|
||||
continue_dfs = Some(node);
|
||||
}
|
||||
Some(node_loop) => {
|
||||
// We copy the node_loop into a mutable reference passed along the while
|
||||
let mut node_loop = node_loop;
|
||||
// The node is part of a loop, which can be lp or an inner loop
|
||||
let mut node_loop_parent_option = self.loops[node_loop].parent;
|
||||
while let Some(node_loop_parent) = node_loop_parent_option.expand() {
|
||||
if node_loop_parent == lp {
|
||||
// We have encountered lp so we stop (already visited)
|
||||
break;
|
||||
} else {
|
||||
//
|
||||
node_loop = node_loop_parent;
|
||||
// We lookup the parent loop
|
||||
node_loop_parent_option = self.loops[node_loop].parent;
|
||||
}
|
||||
}
|
||||
// Now node_loop_parent is either:
|
||||
// - None and node_loop is an new inner loop of lp
|
||||
// - Some(...) and the initial node_loop was a known inner loop of lp
|
||||
match node_loop_parent_option.expand() {
|
||||
Some(_) => continue_dfs = None,
|
||||
None => {
|
||||
if node_loop != lp {
|
||||
self.loops[node_loop].parent = lp.into();
|
||||
continue_dfs = Some(self.loops[node_loop].header)
|
||||
} else {
|
||||
// If lp is a one-block loop then we make sure we stop
|
||||
continue_dfs = None
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// Now we have handled the popped node and need to continue the DFS by adding the
|
||||
// predecessors of that node
|
||||
if let Some(continue_dfs) = continue_dfs {
|
||||
for BasicBlock { ebb: pred, .. } in cfg.pred_iter(continue_dfs) {
|
||||
stack.push(pred)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::cursor::{Cursor, FuncCursor};
|
||||
use crate::dominator_tree::DominatorTree;
|
||||
use crate::flowgraph::ControlFlowGraph;
|
||||
use crate::ir::{types, Function, InstBuilder};
|
||||
use crate::loop_analysis::{Loop, LoopAnalysis};
|
||||
use std::vec::Vec;
|
||||
|
||||
#[test]
|
||||
fn nested_loops_detection() {
|
||||
let mut func = Function::new();
|
||||
let ebb0 = func.dfg.make_ebb();
|
||||
let ebb1 = func.dfg.make_ebb();
|
||||
let ebb2 = func.dfg.make_ebb();
|
||||
let ebb3 = func.dfg.make_ebb();
|
||||
let cond = func.dfg.append_ebb_param(ebb0, types::I32);
|
||||
|
||||
{
|
||||
let mut cur = FuncCursor::new(&mut func);
|
||||
|
||||
cur.insert_ebb(ebb0);
|
||||
cur.ins().jump(ebb1, &[]);
|
||||
|
||||
cur.insert_ebb(ebb1);
|
||||
cur.ins().jump(ebb2, &[]);
|
||||
|
||||
cur.insert_ebb(ebb2);
|
||||
cur.ins().brnz(cond, ebb1, &[]);
|
||||
cur.ins().jump(ebb3, &[]);
|
||||
|
||||
cur.insert_ebb(ebb3);
|
||||
cur.ins().brnz(cond, ebb0, &[]);
|
||||
}
|
||||
|
||||
let mut loop_analysis = LoopAnalysis::new();
|
||||
let mut cfg = ControlFlowGraph::new();
|
||||
let mut domtree = DominatorTree::new();
|
||||
cfg.compute(&func);
|
||||
domtree.compute(&func, &cfg);
|
||||
loop_analysis.compute(&func, &cfg, &domtree);
|
||||
|
||||
let loops = loop_analysis.loops().collect::<Vec<Loop>>();
|
||||
assert_eq!(loops.len(), 2);
|
||||
assert_eq!(loop_analysis.loop_header(loops[0]), ebb0);
|
||||
assert_eq!(loop_analysis.loop_header(loops[1]), ebb1);
|
||||
assert_eq!(loop_analysis.loop_parent(loops[1]), Some(loops[0]));
|
||||
assert_eq!(loop_analysis.loop_parent(loops[0]), None);
|
||||
assert_eq!(loop_analysis.is_in_loop(ebb0, loops[0]), true);
|
||||
assert_eq!(loop_analysis.is_in_loop(ebb0, loops[1]), false);
|
||||
assert_eq!(loop_analysis.is_in_loop(ebb1, loops[1]), true);
|
||||
assert_eq!(loop_analysis.is_in_loop(ebb1, loops[0]), true);
|
||||
assert_eq!(loop_analysis.is_in_loop(ebb2, loops[1]), true);
|
||||
assert_eq!(loop_analysis.is_in_loop(ebb2, loops[0]), true);
|
||||
assert_eq!(loop_analysis.is_in_loop(ebb3, loops[0]), true);
|
||||
assert_eq!(loop_analysis.is_in_loop(ebb0, loops[1]), false);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn complex_loop_detection() {
|
||||
let mut func = Function::new();
|
||||
let ebb0 = func.dfg.make_ebb();
|
||||
let ebb1 = func.dfg.make_ebb();
|
||||
let ebb2 = func.dfg.make_ebb();
|
||||
let ebb3 = func.dfg.make_ebb();
|
||||
let ebb4 = func.dfg.make_ebb();
|
||||
let ebb5 = func.dfg.make_ebb();
|
||||
let cond = func.dfg.append_ebb_param(ebb0, types::I32);
|
||||
|
||||
{
|
||||
let mut cur = FuncCursor::new(&mut func);
|
||||
|
||||
cur.insert_ebb(ebb0);
|
||||
cur.ins().brnz(cond, ebb1, &[]);
|
||||
cur.ins().jump(ebb3, &[]);
|
||||
|
||||
cur.insert_ebb(ebb1);
|
||||
cur.ins().jump(ebb2, &[]);
|
||||
|
||||
cur.insert_ebb(ebb2);
|
||||
cur.ins().brnz(cond, ebb1, &[]);
|
||||
cur.ins().jump(ebb5, &[]);
|
||||
|
||||
cur.insert_ebb(ebb3);
|
||||
cur.ins().jump(ebb4, &[]);
|
||||
|
||||
cur.insert_ebb(ebb4);
|
||||
cur.ins().brnz(cond, ebb3, &[]);
|
||||
cur.ins().jump(ebb5, &[]);
|
||||
|
||||
cur.insert_ebb(ebb5);
|
||||
cur.ins().brnz(cond, ebb0, &[]);
|
||||
}
|
||||
|
||||
let mut loop_analysis = LoopAnalysis::new();
|
||||
let mut cfg = ControlFlowGraph::new();
|
||||
let mut domtree = DominatorTree::new();
|
||||
cfg.compute(&func);
|
||||
domtree.compute(&func, &cfg);
|
||||
loop_analysis.compute(&func, &cfg, &domtree);
|
||||
|
||||
let loops = loop_analysis.loops().collect::<Vec<Loop>>();
|
||||
assert_eq!(loops.len(), 3);
|
||||
assert_eq!(loop_analysis.loop_header(loops[0]), ebb0);
|
||||
assert_eq!(loop_analysis.loop_header(loops[1]), ebb1);
|
||||
assert_eq!(loop_analysis.loop_header(loops[2]), ebb3);
|
||||
assert_eq!(loop_analysis.loop_parent(loops[1]), Some(loops[0]));
|
||||
assert_eq!(loop_analysis.loop_parent(loops[2]), Some(loops[0]));
|
||||
assert_eq!(loop_analysis.loop_parent(loops[0]), None);
|
||||
assert_eq!(loop_analysis.is_in_loop(ebb0, loops[0]), true);
|
||||
assert_eq!(loop_analysis.is_in_loop(ebb1, loops[1]), true);
|
||||
assert_eq!(loop_analysis.is_in_loop(ebb2, loops[1]), true);
|
||||
assert_eq!(loop_analysis.is_in_loop(ebb3, loops[2]), true);
|
||||
assert_eq!(loop_analysis.is_in_loop(ebb4, loops[2]), true);
|
||||
assert_eq!(loop_analysis.is_in_loop(ebb5, loops[0]), true);
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user