moved crates in lib/ to src/, renamed crates, modified some files' text (#660)

moved crates in lib/ to src/, renamed crates, modified some files' text (#660)
This commit is contained in:
lazypassion
2019-01-28 18:56:54 -05:00
committed by Dan Gohman
parent 54959cf5bb
commit 747ad3c4c5
508 changed files with 94 additions and 92 deletions

View File

@@ -0,0 +1 @@
"""Definitions for the base Cranelift language."""

View File

@@ -0,0 +1,38 @@
"""
The `cranelift.entities` module predefines all the Cranelift entity reference
operand types. There are corresponding definitions in the `cranelift.entities`
Rust module.
"""
from __future__ import absolute_import
from cdsl.operands import EntityRefKind
#: A reference to an extended basic block in the same function.
#: This is primarliy used in control flow instructions.
ebb = EntityRefKind(
'ebb', 'An extended basic block in the same function.',
default_member='destination')
#: A reference to a stack slot declared in the function preamble.
stack_slot = EntityRefKind('stack_slot', 'A stack slot.')
#: A reference to a global value.
global_value = EntityRefKind('global_value', 'A global value.')
#: A reference to a function sugnature declared in the function preamble.
#: This is used to provide the call signature in a call_indirect instruction.
sig_ref = EntityRefKind('sig_ref', 'A function signature.')
#: A reference to an external function declared in the function preamble.
#: This is used to provide the callee and signature in a call instruction.
func_ref = EntityRefKind('func_ref', 'An external function.')
#: A reference to a jump table declared in the function preamble.
jump_table = EntityRefKind(
'jump_table', 'A jump table.', default_member='table')
#: A reference to a heap declared in the function preamble.
heap = EntityRefKind('heap', 'A heap.')
#: A reference to a table declared in the function preamble.
table = EntityRefKind('table', 'A table.')

View File

@@ -0,0 +1,89 @@
"""
The cranelift.formats defines all instruction formats.
Every instruction format has a corresponding `InstructionData` variant in the
Rust representation of Cranelift IR, so all instruction formats must be defined
in this module.
"""
from __future__ import absolute_import
from cdsl.formats import InstructionFormat
from cdsl.operands import VALUE, VARIABLE_ARGS
from .immediates import imm64, uimm8, uimm32, ieee32, ieee64, offset32
from .immediates import boolean, intcc, floatcc, memflags, regunit, trapcode
from . import entities
from .entities import ebb, sig_ref, func_ref, stack_slot, heap, table
Unary = InstructionFormat(VALUE)
UnaryImm = InstructionFormat(imm64)
UnaryIeee32 = InstructionFormat(ieee32)
UnaryIeee64 = InstructionFormat(ieee64)
UnaryBool = InstructionFormat(boolean)
UnaryGlobalValue = InstructionFormat(entities.global_value)
Binary = InstructionFormat(VALUE, VALUE)
BinaryImm = InstructionFormat(VALUE, imm64)
# The select instructions are controlled by the second VALUE operand.
# The first VALUE operand is the controlling flag which has a derived type.
# The fma instruction has the same constraint on all inputs.
Ternary = InstructionFormat(VALUE, VALUE, VALUE, typevar_operand=1)
# Catch-all for instructions with many outputs and inputs and no immediate
# operands.
MultiAry = InstructionFormat(VARIABLE_ARGS)
NullAry = InstructionFormat()
InsertLane = InstructionFormat(VALUE, ('lane', uimm8), VALUE)
ExtractLane = InstructionFormat(VALUE, ('lane', uimm8))
IntCompare = InstructionFormat(intcc, VALUE, VALUE)
IntCompareImm = InstructionFormat(intcc, VALUE, imm64)
IntCond = InstructionFormat(intcc, VALUE)
FloatCompare = InstructionFormat(floatcc, VALUE, VALUE)
FloatCond = InstructionFormat(floatcc, VALUE)
IntSelect = InstructionFormat(intcc, VALUE, VALUE, VALUE)
Jump = InstructionFormat(ebb, VARIABLE_ARGS)
Branch = InstructionFormat(VALUE, ebb, VARIABLE_ARGS)
BranchInt = InstructionFormat(intcc, VALUE, ebb, VARIABLE_ARGS)
BranchFloat = InstructionFormat(floatcc, VALUE, ebb, VARIABLE_ARGS)
BranchIcmp = InstructionFormat(intcc, VALUE, VALUE, ebb, VARIABLE_ARGS)
BranchTable = InstructionFormat(VALUE, ebb, entities.jump_table)
BranchTableEntry = InstructionFormat(VALUE, VALUE, uimm8, entities.jump_table)
BranchTableBase = InstructionFormat(entities.jump_table)
IndirectJump = InstructionFormat(VALUE, entities.jump_table)
Call = InstructionFormat(func_ref, VARIABLE_ARGS)
CallIndirect = InstructionFormat(sig_ref, VALUE, VARIABLE_ARGS)
FuncAddr = InstructionFormat(func_ref)
Load = InstructionFormat(memflags, VALUE, offset32)
LoadComplex = InstructionFormat(memflags, VARIABLE_ARGS, offset32)
Store = InstructionFormat(memflags, VALUE, VALUE, offset32)
StoreComplex = InstructionFormat(memflags, VALUE, VARIABLE_ARGS, offset32)
StackLoad = InstructionFormat(stack_slot, offset32)
StackStore = InstructionFormat(VALUE, stack_slot, offset32)
# Accessing a WebAssembly heap.
HeapAddr = InstructionFormat(heap, VALUE, uimm32)
# Accessing a WebAssembly table.
TableAddr = InstructionFormat(table, VALUE, offset32)
RegMove = InstructionFormat(VALUE, ('src', regunit), ('dst', regunit))
CopySpecial = InstructionFormat(('src', regunit), ('dst', regunit))
RegSpill = InstructionFormat(
VALUE, ('src', regunit), ('dst', entities.stack_slot))
RegFill = InstructionFormat(
VALUE, ('src', entities.stack_slot), ('dst', regunit))
Trap = InstructionFormat(trapcode)
CondTrap = InstructionFormat(VALUE, trapcode)
IntCondTrap = InstructionFormat(intcc, VALUE, trapcode)
FloatCondTrap = InstructionFormat(floatcc, VALUE, trapcode)
# Finally extract the names of global values in this module.
InstructionFormat.extract_names(globals())

View File

@@ -0,0 +1,123 @@
"""
The `cranelift.immediates` module predefines all the Cranelift immediate
operand types.
"""
from __future__ import absolute_import
from cdsl.operands import ImmediateKind
#: A 64-bit immediate integer operand.
#:
#: This type of immediate integer can interact with SSA values with any
#: :py:class:`cranelift.IntType` type.
imm64 = ImmediateKind('imm64', 'A 64-bit immediate integer.')
#: An unsigned 8-bit immediate integer operand.
#:
#: This small operand is used to indicate lane indexes in SIMD vectors and
#: immediate bit counts on shift instructions.
uimm8 = ImmediateKind('uimm8', 'An 8-bit immediate unsigned integer.')
#: An unsigned 32-bit immediate integer operand.
uimm32 = ImmediateKind('uimm32', 'A 32-bit immediate unsigned integer.')
#: A 32-bit immediate signed offset.
#:
#: This is used to represent an immediate address offset in load/store
#: instructions.
offset32 = ImmediateKind(
'offset32',
'A 32-bit immediate signed offset.',
default_member='offset')
#: A 32-bit immediate floating point operand.
#:
#: IEEE 754-2008 binary32 interchange format.
ieee32 = ImmediateKind('ieee32', 'A 32-bit immediate floating point number.')
#: A 64-bit immediate floating point operand.
#:
#: IEEE 754-2008 binary64 interchange format.
ieee64 = ImmediateKind('ieee64', 'A 64-bit immediate floating point number.')
#: An immediate boolean operand.
#:
#: This type of immediate boolean can interact with SSA values with any
#: :py:class:`cranelift.BoolType` type.
boolean = ImmediateKind('bool', 'An immediate boolean.',
rust_type='bool')
#: A condition code for comparing integer values.
#:
#: This enumerated operand kind is used for the :clif:inst:`icmp` instruction
#: and corresponds to the `condcodes::IntCC` Rust type.
intcc = ImmediateKind(
'intcc',
'An integer comparison condition code.',
default_member='cond',
rust_type='ir::condcodes::IntCC',
values={
'eq': 'Equal',
'ne': 'NotEqual',
'sge': 'SignedGreaterThanOrEqual',
'sgt': 'SignedGreaterThan',
'sle': 'SignedLessThanOrEqual',
'slt': 'SignedLessThan',
'uge': 'UnsignedGreaterThanOrEqual',
'ugt': 'UnsignedGreaterThan',
'ule': 'UnsignedLessThanOrEqual',
'ult': 'UnsignedLessThan',
})
#: A condition code for comparing floating point values.
#:
#: This enumerated operand kind is used for the :clif:inst:`fcmp` instruction
#: and corresponds to the `condcodes::FloatCC` Rust type.
floatcc = ImmediateKind(
'floatcc',
'A floating point comparison condition code.',
default_member='cond',
rust_type='ir::condcodes::FloatCC',
values={
'ord': 'Ordered',
'uno': 'Unordered',
'eq': 'Equal',
'ne': 'NotEqual',
'one': 'OrderedNotEqual',
'ueq': 'UnorderedOrEqual',
'lt': 'LessThan',
'le': 'LessThanOrEqual',
'gt': 'GreaterThan',
'ge': 'GreaterThanOrEqual',
'ult': 'UnorderedOrLessThan',
'ule': 'UnorderedOrLessThanOrEqual',
'ugt': 'UnorderedOrGreaterThan',
'uge': 'UnorderedOrGreaterThanOrEqual',
})
#: Flags for memory operations like :clif:inst:`load` and :clif:inst:`store`.
memflags = ImmediateKind(
'memflags',
'Memory operation flags',
default_member='flags', rust_type='ir::MemFlags')
#: A register unit in the current target ISA.
regunit = ImmediateKind(
'regunit',
'A register unit in the target ISA',
rust_type='isa::RegUnit')
#: A trap code indicating the reason for trapping.
#:
#: The Rust enum type also has a `User(u16)` variant for user-provided trap
#: codes.
trapcode = ImmediateKind(
'trapcode',
'A trap reason code.',
default_member='code',
rust_type='ir::TrapCode',
values={
"stk_ovf": 'StackOverflow',
"heap_oob": 'HeapOutOfBounds',
"int_ovf": 'IntegerOverflow',
"int_divz": 'IntegerDivisionByZero',
})

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,708 @@
"""
Patterns for legalizing the `base` instruction set.
The base Cranelift instruction set is 'fat', and many instructions don't have
legal representations in a given target ISA. This module defines legalization
patterns that describe how base instructions can be transformed to other base
instructions that are legal.
"""
from __future__ import absolute_import
from .immediates import intcc, imm64, ieee32, ieee64
from . import instructions as insts
from . import types
from .instructions import uextend, sextend, ireduce
from .instructions import iadd, iadd_cout, iadd_cin, iadd_carry, iadd_imm
from .instructions import isub, isub_bin, isub_bout, isub_borrow, irsub_imm
from .instructions import imul, imul_imm
from .instructions import sdiv, sdiv_imm, udiv, udiv_imm
from .instructions import srem, srem_imm, urem, urem_imm
from .instructions import band, bor, bxor, isplit, iconcat
from .instructions import bnot, band_not, bor_not, bxor_not
from .instructions import band_imm, bor_imm, bxor_imm
from .instructions import icmp, icmp_imm, ifcmp, ifcmp_imm
from .instructions import iconst, bint, select
from .instructions import ishl, ishl_imm, sshr, sshr_imm, ushr, ushr_imm
from .instructions import rotl, rotl_imm, rotr, rotr_imm
from .instructions import f32const, f64const
from .instructions import store, load
from .instructions import br_table
from .instructions import bitrev
from cdsl.ast import Var
from cdsl.xform import Rtl, XFormGroup
try:
from typing import TYPE_CHECKING # noqa
if TYPE_CHECKING:
from cdsl.instructions import Instruction # noqa
except ImportError:
TYPE_CHECKING = False
narrow = XFormGroup('narrow', """
Legalize instructions by narrowing.
The transformations in the 'narrow' group work by expressing
instructions in terms of smaller types. Operations on vector types are
expressed in terms of vector types with fewer lanes, and integer
operations are expressed in terms of smaller integer types.
""")
widen = XFormGroup('widen', """
Legalize instructions by widening.
The transformations in the 'widen' group work by expressing
instructions in terms of larger types.
""")
expand = XFormGroup('expand', """
Legalize instructions by expansion.
Rewrite instructions in terms of other instructions, generally
operating on the same types as the original instructions.
""")
expand_flags = XFormGroup('expand_flags', """
Instruction expansions for architectures with flags.
Expand some instructions using CPU flags, then fall back to the normal
expansions. Not all architectures support CPU flags, so these patterns
are kept separate.
""", chain=expand)
# Custom expansions for memory objects.
expand.custom_legalize(insts.global_value, 'expand_global_value')
expand.custom_legalize(insts.heap_addr, 'expand_heap_addr')
expand.custom_legalize(insts.table_addr, 'expand_table_addr')
# Custom expansions for calls.
expand.custom_legalize(insts.call, 'expand_call')
# Custom expansions that need to change the CFG.
# TODO: Add sufficient XForm syntax that we don't need to hand-code these.
expand.custom_legalize(insts.trapz, 'expand_cond_trap')
expand.custom_legalize(insts.trapnz, 'expand_cond_trap')
expand.custom_legalize(insts.br_table, 'expand_br_table')
expand.custom_legalize(insts.select, 'expand_select')
# Custom expansions for floating point constants.
# These expansions require bit-casting or creating constant pool entries.
expand.custom_legalize(insts.f32const, 'expand_fconst')
expand.custom_legalize(insts.f64const, 'expand_fconst')
# Custom expansions for stack memory accesses.
expand.custom_legalize(insts.stack_load, 'expand_stack_load')
expand.custom_legalize(insts.stack_store, 'expand_stack_store')
x = Var('x')
y = Var('y')
z = Var('z')
a = Var('a')
a1 = Var('a1')
a2 = Var('a2')
a3 = Var('a3')
a4 = Var('a4')
b = Var('b')
b1 = Var('b1')
b2 = Var('b2')
b3 = Var('b3')
b4 = Var('b4')
b_in = Var('b_in')
b_int = Var('b_int')
c = Var('c')
c1 = Var('c1')
c2 = Var('c2')
c3 = Var('c3')
c4 = Var('c4')
c_in = Var('c_in')
c_int = Var('c_int')
d = Var('d')
d1 = Var('d1')
d2 = Var('d2')
d3 = Var('d3')
d4 = Var('d4')
e = Var('e')
e1 = Var('e1')
e2 = Var('e2')
e3 = Var('e3')
e4 = Var('e4')
f = Var('f')
f1 = Var('f1')
f2 = Var('f2')
xl = Var('xl')
xh = Var('xh')
yl = Var('yl')
yh = Var('yh')
al = Var('al')
ah = Var('ah')
cc = Var('cc')
ptr = Var('ptr')
flags = Var('flags')
offset = Var('off')
ss = Var('ss')
narrow.legalize(
a << iadd(x, y),
Rtl(
(xl, xh) << isplit(x),
(yl, yh) << isplit(y),
(al, c) << iadd_cout(xl, yl),
ah << iadd_cin(xh, yh, c),
a << iconcat(al, ah)
))
narrow.legalize(
a << isub(x, y),
Rtl(
(xl, xh) << isplit(x),
(yl, yh) << isplit(y),
(al, b) << isub_bout(xl, yl),
ah << isub_bin(xh, yh, b),
a << iconcat(al, ah)
))
for bitop in [band, bor, bxor]:
narrow.legalize(
a << bitop(x, y),
Rtl(
(xl, xh) << isplit(x),
(yl, yh) << isplit(y),
al << bitop(xl, yl),
ah << bitop(xh, yh),
a << iconcat(al, ah)
))
narrow.legalize(
a << select(c, x, y),
Rtl(
(xl, xh) << isplit(x),
(yl, yh) << isplit(y),
al << select(c, xl, yl),
ah << select(c, xh, yh),
a << iconcat(al, ah)
))
def widen_one_arg(signed, op):
# type: (bool, Instruction) -> None
for int_ty in [types.i8, types.i16]:
if signed:
widen.legalize(
a << op.bind(int_ty)(b),
Rtl(
x << sextend.i32(b),
z << op.i32(x),
a << ireduce.bind(int_ty)(z)
))
else:
widen.legalize(
a << op.bind(int_ty)(b),
Rtl(
x << uextend.i32(b),
z << op.i32(x),
a << ireduce.bind(int_ty)(z)
))
def widen_two_arg(signed, op):
# type: (bool, Instruction) -> None
for int_ty in [types.i8, types.i16]:
if signed:
widen.legalize(
a << op.bind(int_ty)(b, c),
Rtl(
x << sextend.i32(b),
y << sextend.i32(c),
z << op.i32(x, y),
a << ireduce.bind(int_ty)(z)
))
else:
widen.legalize(
a << op.bind(int_ty)(b, c),
Rtl(
x << uextend.i32(b),
y << uextend.i32(c),
z << op.i32(x, y),
a << ireduce.bind(int_ty)(z)
))
def widen_imm(signed, op):
# type: (bool, Instruction) -> None
for int_ty in [types.i8, types.i16]:
if signed:
widen.legalize(
a << op.bind(int_ty)(b, c),
Rtl(
x << sextend.i32(b),
z << op.i32(x, c),
a << ireduce.bind(int_ty)(z)
))
else:
widen.legalize(
a << op.bind(int_ty)(b, c),
Rtl(
x << uextend.i32(b),
z << op.i32(x, c),
a << ireduce.bind(int_ty)(z)
))
# int ops
for binop in [iadd, isub, imul, udiv, urem]:
widen_two_arg(False, binop)
for binop in [sdiv, srem]:
widen_two_arg(True, binop)
for binop in [iadd_imm, imul_imm, udiv_imm, urem_imm]:
widen_imm(False, binop)
for binop in [sdiv_imm, srem_imm]:
widen_imm(True, binop)
widen_imm(False, irsub_imm)
# bit ops
widen_one_arg(False, bnot)
for binop in [band, bor, bxor, band_not, bor_not, bxor_not]:
widen_two_arg(False, binop)
for binop in [band_imm, bor_imm, bxor_imm]:
widen_imm(False, binop)
widen_one_arg(False, insts.popcnt)
for (int_ty, num) in [(types.i8, 24), (types.i16, 16)]:
widen.legalize(
a << insts.clz.bind(int_ty)(b),
Rtl(
c << uextend.i32(b),
d << insts.clz.i32(c),
e << iadd_imm(d, imm64(-num)),
a << ireduce.bind(int_ty)(e)
))
widen.legalize(
a << insts.cls.bind(int_ty)(b),
Rtl(
c << sextend.i32(b),
d << insts.cls.i32(c),
e << iadd_imm(d, imm64(-num)),
a << ireduce.bind(int_ty)(e)
))
for (int_ty, num) in [(types.i8, 1 << 8), (types.i16, 1 << 16)]:
widen.legalize(
a << insts.ctz.bind(int_ty)(b),
Rtl(
c << uextend.i32(b),
# When `b` is zero, returns the size of x in bits.
d << bor_imm(c, imm64(num)),
e << insts.ctz.i32(d),
a << ireduce.bind(int_ty)(e)
))
# iconst
for int_ty in [types.i8, types.i16]:
widen.legalize(
a << iconst.bind(int_ty)(b),
Rtl(
c << iconst.i32(b),
a << ireduce.bind(int_ty)(c)
))
widen.legalize(
a << uextend.i16.i8(b),
Rtl(
c << uextend.i32(b),
a << ireduce(c)
))
widen.legalize(
a << sextend.i16.i8(b),
Rtl(
c << sextend.i32(b),
a << ireduce(c)
))
widen.legalize(
store.i8(flags, a, ptr, offset),
Rtl(
b << uextend.i32(a),
insts.istore8(flags, b, ptr, offset)
))
widen.legalize(
store.i16(flags, a, ptr, offset),
Rtl(
b << uextend.i32(a),
insts.istore16(flags, b, ptr, offset)
))
widen.legalize(
a << load.i8(flags, ptr, offset),
Rtl(
b << insts.uload8.i32(flags, ptr, offset),
a << ireduce(b)
))
widen.legalize(
a << load.i16(flags, ptr, offset),
Rtl(
b << insts.uload16.i32(flags, ptr, offset),
a << ireduce(b)
))
for int_ty in [types.i8, types.i16]:
widen.legalize(
br_table.bind(int_ty)(x, y, z),
Rtl(
b << uextend.i32(x),
br_table(b, y, z),
)
)
for int_ty in [types.i8, types.i16]:
widen.legalize(
a << insts.bint.bind(int_ty)(b),
Rtl(
x << insts.bint.i32(b),
a << ireduce.bind(int_ty)(x)
)
)
for int_ty in [types.i8, types.i16]:
for op in [ushr_imm, ishl_imm]:
widen.legalize(
a << op.bind(int_ty)(b, c),
Rtl(
x << uextend.i32(b),
z << op.i32(x, c),
a << ireduce.bind(int_ty)(z)
))
widen.legalize(
a << ishl.bind(int_ty)(b, c),
Rtl(
x << uextend.i32(b),
z << ishl.i32(x, c),
a << ireduce.bind(int_ty)(z)
))
widen.legalize(
a << ushr.bind(int_ty)(b, c),
Rtl(
x << uextend.i32(b),
z << ushr.i32(x, c),
a << ireduce.bind(int_ty)(z)
))
widen.legalize(
a << sshr.bind(int_ty)(b, c),
Rtl(
x << sextend.i32(b),
z << sshr.i32(x, c),
a << ireduce.bind(int_ty)(z)
))
for w_cc in [
intcc.eq, intcc.ne, intcc.ugt, intcc.ult, intcc.uge, intcc.ule
]:
widen.legalize(
a << insts.icmp_imm.bind(int_ty)(w_cc, b, c),
Rtl(
x << uextend.i32(b),
a << insts.icmp_imm(w_cc, x, c)
))
widen.legalize(
a << insts.icmp.bind(int_ty)(w_cc, b, c),
Rtl(
x << uextend.i32(b),
y << uextend.i32(c),
a << insts.icmp.i32(w_cc, x, y)
))
for w_cc in [intcc.sgt, intcc.slt, intcc.sge, intcc.sle]:
widen.legalize(
a << insts.icmp_imm.bind(int_ty)(w_cc, b, c),
Rtl(
x << sextend.i32(b),
a << insts.icmp_imm(w_cc, x, c)
))
widen.legalize(
a << insts.icmp.bind(int_ty)(w_cc, b, c),
Rtl(
x << sextend.i32(b),
y << sextend.i32(c),
a << insts.icmp(w_cc, x, y)
)
)
# Expand integer operations with carry for RISC architectures that don't have
# the flags.
expand.legalize(
(a, c) << iadd_cout(x, y),
Rtl(
a << iadd(x, y),
c << icmp(intcc.ult, a, x)
))
expand.legalize(
(a, b) << isub_bout(x, y),
Rtl(
a << isub(x, y),
b << icmp(intcc.ugt, a, x)
))
expand.legalize(
a << iadd_cin(x, y, c),
Rtl(
a1 << iadd(x, y),
c_int << bint(c),
a << iadd(a1, c_int)
))
expand.legalize(
a << isub_bin(x, y, b),
Rtl(
a1 << isub(x, y),
b_int << bint(b),
a << isub(a1, b_int)
))
expand.legalize(
(a, c) << iadd_carry(x, y, c_in),
Rtl(
(a1, c1) << iadd_cout(x, y),
c_int << bint(c_in),
(a, c2) << iadd_cout(a1, c_int),
c << bor(c1, c2)
))
expand.legalize(
(a, b) << isub_borrow(x, y, b_in),
Rtl(
(a1, b1) << isub_bout(x, y),
b_int << bint(b_in),
(a, b2) << isub_bout(a1, b_int),
b << bor(b1, b2)
))
# Expansions for immediate operands that are out of range.
for inst_imm, inst in [
(iadd_imm, iadd),
(imul_imm, imul),
(sdiv_imm, sdiv),
(udiv_imm, udiv),
(srem_imm, srem),
(urem_imm, urem),
(band_imm, band),
(bor_imm, bor),
(bxor_imm, bxor),
(ifcmp_imm, ifcmp)]:
expand.legalize(
a << inst_imm(x, y),
Rtl(
a1 << iconst(y),
a << inst(x, a1)
))
expand.legalize(
a << irsub_imm(y, x),
Rtl(
a1 << iconst(x),
a << isub(a1, y)
))
# Rotates and shifts.
for inst_imm, inst in [
(rotl_imm, rotl),
(rotr_imm, rotr),
(ishl_imm, ishl),
(sshr_imm, sshr),
(ushr_imm, ushr)]:
expand.legalize(
a << inst_imm(x, y),
Rtl(
a1 << iconst.i32(y),
a << inst(x, a1)
))
expand.legalize(
a << icmp_imm(cc, x, y),
Rtl(
a1 << iconst(y),
a << icmp(cc, x, a1)
))
# Expansions for *_not variants of bitwise ops.
for inst_not, inst in [
(band_not, band),
(bor_not, bor),
(bxor_not, bxor)]:
expand.legalize(
a << inst_not(x, y),
Rtl(
a1 << bnot(y),
a << inst(x, a1)
))
# Expand bnot using xor.
expand.legalize(
a << bnot(x),
Rtl(
y << iconst(imm64(-1)),
a << bxor(x, y)
))
# Expand bitrev
# Adapted from Stack Overflow.
# https://stackoverflow.com/questions/746171/most-efficient-algorithm-for-bit-reversal-from-msb-lsb-to-lsb-msb-in-c
widen.legalize(
a << bitrev.i8(x),
Rtl(
a1 << band_imm(x, imm64(0xaa)),
a2 << ushr_imm(a1, imm64(1)),
a3 << band_imm(x, imm64(0x55)),
a4 << ishl_imm(a3, imm64(1)),
b << bor(a2, a4),
b1 << band_imm(b, imm64(0xcc)),
b2 << ushr_imm(b1, imm64(2)),
b3 << band_imm(b, imm64(0x33)),
b4 << ushr_imm(b3, imm64(2)),
c << bor(b2, b4),
c1 << band_imm(c, imm64(0xf0)),
c2 << ushr_imm(c1, imm64(4)),
c3 << band_imm(c, imm64(0x0f)),
c4 << ishl_imm(c3, imm64(4)),
a << bor(c2, c4),
))
widen.legalize(
a << bitrev.i16(x),
Rtl(
a1 << band_imm(x, imm64(0xaaaa)),
a2 << ushr_imm(a1, imm64(1)),
a3 << band_imm(x, imm64(0x5555)),
a4 << ishl_imm(a3, imm64(1)),
b << bor(a2, a4),
b1 << band_imm(b, imm64(0xcccc)),
b2 << ushr_imm(b1, imm64(2)),
b3 << band_imm(b, imm64(0x3333)),
b4 << ushr_imm(b3, imm64(2)),
c << bor(b2, b4),
c1 << band_imm(c, imm64(0xf0f0)),
c2 << ushr_imm(c1, imm64(4)),
c3 << band_imm(c, imm64(0x0f0f)),
c4 << ishl_imm(c3, imm64(4)),
d << bor(c2, c4),
d1 << band_imm(d, imm64(0xff00)),
d2 << ushr_imm(d1, imm64(8)),
d3 << band_imm(d, imm64(0x00ff)),
d4 << ishl_imm(d3, imm64(8)),
a << bor(d2, d4),
))
expand.legalize(
a << bitrev.i32(x),
Rtl(
a1 << band_imm(x, imm64(0xaaaaaaaa)),
a2 << ushr_imm(a1, imm64(1)),
a3 << band_imm(x, imm64(0x55555555)),
a4 << ishl_imm(a3, imm64(1)),
b << bor(a2, a4),
b1 << band_imm(b, imm64(0xcccccccc)),
b2 << ushr_imm(b1, imm64(2)),
b3 << band_imm(b, imm64(0x33333333)),
b4 << ushr_imm(b3, imm64(2)),
c << bor(b2, b4),
c1 << band_imm(c, imm64(0xf0f0f0f0)),
c2 << ushr_imm(c1, imm64(4)),
c3 << band_imm(c, imm64(0x0f0f0f0f)),
c4 << ishl_imm(c3, imm64(4)),
d << bor(c2, c4),
d1 << band_imm(d, imm64(0xff00ff00)),
d2 << ushr_imm(d1, imm64(8)),
d3 << band_imm(d, imm64(0x00ff00ff)),
d4 << ishl_imm(d3, imm64(8)),
e << bor(d2, d4),
e1 << ushr_imm(e, imm64(16)),
e2 << ishl_imm(e, imm64(16)),
a << bor(e1, e2),
))
expand.legalize(
a << bitrev.i64(x),
Rtl(
a1 << band_imm(x, imm64(0xaaaaaaaaaaaaaaaa)),
a2 << ushr_imm(a1, imm64(1)),
a3 << band_imm(x, imm64(0x5555555555555555)),
a4 << ishl_imm(a3, imm64(1)),
b << bor(a2, a4),
b1 << band_imm(b, imm64(0xcccccccccccccccc)),
b2 << ushr_imm(b1, imm64(2)),
b3 << band_imm(b, imm64(0x3333333333333333)),
b4 << ushr_imm(b3, imm64(2)),
c << bor(b2, b4),
c1 << band_imm(c, imm64(0xf0f0f0f0f0f0f0f0)),
c2 << ushr_imm(c1, imm64(4)),
c3 << band_imm(c, imm64(0x0f0f0f0f0f0f0f0f)),
c4 << ishl_imm(c3, imm64(4)),
d << bor(c2, c4),
d1 << band_imm(d, imm64(0xff00ff00ff00ff00)),
d2 << ushr_imm(d1, imm64(8)),
d3 << band_imm(d, imm64(0x00ff00ff00ff00ff)),
d4 << ishl_imm(d3, imm64(8)),
e << bor(d2, d4),
e1 << band_imm(e, imm64(0xffff0000ffff0000)),
e2 << ushr_imm(e1, imm64(16)),
e3 << band_imm(e, imm64(0x0000ffff0000ffff)),
e4 << ishl_imm(e3, imm64(16)),
f << bor(e2, e4),
f1 << ushr_imm(f, imm64(32)),
f2 << ishl_imm(f, imm64(32)),
a << bor(f1, f2),
))
# Floating-point sign manipulations.
for ty, minus_zero in [
(types.f32, f32const(ieee32.bits(0x80000000))),
(types.f64, f64const(ieee64.bits(0x8000000000000000)))]:
expand.legalize(
a << insts.fabs.bind(ty)(x),
Rtl(
b << minus_zero,
a << band_not(x, b),
))
expand.legalize(
a << insts.fneg.bind(ty)(x),
Rtl(
b << minus_zero,
a << bxor(x, b),
))
expand.legalize(
a << insts.fcopysign.bind(ty)(x, y),
Rtl(
b << minus_zero,
a1 << band_not(x, b),
a2 << band(y, b),
a << bor(a1, a2)
))
expand.custom_legalize(insts.br_icmp, 'expand_br_icmp')
# Expansions using CPU flags.
expand_flags.legalize(
insts.trapnz(x, c),
Rtl(
a << insts.ifcmp_imm(x, imm64(0)),
insts.trapif(intcc.ne, a, c)
))
expand_flags.legalize(
insts.trapz(x, c),
Rtl(
a << insts.ifcmp_imm(x, imm64(0)),
insts.trapif(intcc.eq, a, c)
))

View File

@@ -0,0 +1,42 @@
"""
Cranelift predicates that consider `Function` fields.
"""
from cdsl.predicates import FieldPredicate
from .formats import UnaryGlobalValue, InstructionFormat
try:
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from cdsl.formats import InstructionFormat, FormatField # noqa
except ImportError:
pass
class IsColocatedFunc(FieldPredicate):
"""
An instruction predicate that checks the referenced function is colocated.
"""
def __init__(self, field):
# type: (FormatField) -> None
super(IsColocatedFunc, self).__init__(
field, 'is_colocated_func', ('func',))
class IsColocatedData(FieldPredicate):
"""
An instruction predicate that checks the referenced data object is
colocated.
"""
def __init__(self):
# type: () -> None
super(IsColocatedData, self).__init__(
UnaryGlobalValue.global_value, 'is_colocated_data', ('func',))
class LengthEquals(FieldPredicate):
def __init__(self, iform, num):
# type: (InstructionFormat, int) -> None
super(LengthEquals, self).__init__(
iform.args(), 'has_length_of', (num, 'func'))

View File

@@ -0,0 +1,218 @@
from __future__ import absolute_import
from semantics.primitives import prim_to_bv, prim_from_bv, bvsplit, bvconcat,\
bvadd, bvzeroext, bvsignext
from semantics.primitives import bveq, bvne, bvsge, bvsgt, bvsle, bvslt,\
bvuge, bvugt, bvule, bvult
from semantics.macros import bool2bv
from .instructions import vsplit, vconcat, iadd, iadd_cout, icmp, bextend, \
isplit, iconcat, iadd_cin, iadd_carry
from .immediates import intcc
from cdsl.xform import Rtl, XForm
from cdsl.ast import Var
from cdsl.typevar import TypeSet
from cdsl.ti import InTypeset
try:
from typing import TYPE_CHECKING # noqa
if TYPE_CHECKING:
from cdsl.ast import Enumerator # noqa
from cdsl.instructions import Instruction # noqa
except ImportError:
TYPE_CHECKING = False
x = Var('x')
y = Var('y')
a = Var('a')
b = Var('b')
c_out = Var('c_out')
c_in = Var('c_in')
CC = Var('CC')
bc_out = Var('bc_out')
bvc_out = Var('bvc_out')
bvc_in = Var('bvc_in')
xhi = Var('xhi')
yhi = Var('yhi')
ahi = Var('ahi')
bhi = Var('bhi')
xlo = Var('xlo')
ylo = Var('ylo')
alo = Var('alo')
blo = Var('blo')
lo = Var('lo')
hi = Var('hi')
bvx = Var('bvx')
bvy = Var('bvy')
bva = Var('bva')
bvt = Var('bvt')
bvs = Var('bvs')
bva_wide = Var('bva_wide')
bvlo = Var('bvlo')
bvhi = Var('bvhi')
ScalarTS = TypeSet(lanes=(1, 1), ints=True, floats=True, bools=True)
vsplit.set_semantics(
(lo, hi) << vsplit(x),
Rtl(
bvx << prim_to_bv(x),
(bvlo, bvhi) << bvsplit(bvx),
lo << prim_from_bv(bvlo),
hi << prim_from_bv(bvhi)
))
vconcat.set_semantics(
x << vconcat(lo, hi),
Rtl(
bvlo << prim_to_bv(lo),
bvhi << prim_to_bv(hi),
bvx << bvconcat(bvlo, bvhi),
x << prim_from_bv(bvx)
))
iadd.set_semantics(
a << iadd(x, y),
(Rtl(
bvx << prim_to_bv(x),
bvy << prim_to_bv(y),
bva << bvadd(bvx, bvy),
a << prim_from_bv(bva)
), [InTypeset(x.get_typevar(), ScalarTS)]),
Rtl(
(xlo, xhi) << vsplit(x),
(ylo, yhi) << vsplit(y),
alo << iadd(xlo, ylo),
ahi << iadd(xhi, yhi),
a << vconcat(alo, ahi)
))
#
# Integer arithmetic with carry and/or borrow.
#
iadd_cin.set_semantics(
a << iadd_cin(x, y, c_in),
Rtl(
bvx << prim_to_bv(x),
bvy << prim_to_bv(y),
bvc_in << prim_to_bv(c_in),
bvs << bvzeroext(bvc_in),
bvt << bvadd(bvx, bvy),
bva << bvadd(bvt, bvs),
a << prim_from_bv(bva)
))
iadd_cout.set_semantics(
(a, c_out) << iadd_cout(x, y),
Rtl(
bvx << prim_to_bv(x),
bvy << prim_to_bv(y),
bva << bvadd(bvx, bvy),
bc_out << bvult(bva, bvx),
bvc_out << bool2bv(bc_out),
a << prim_from_bv(bva),
c_out << prim_from_bv(bvc_out)
))
iadd_carry.set_semantics(
(a, c_out) << iadd_carry(x, y, c_in),
Rtl(
bvx << prim_to_bv(x),
bvy << prim_to_bv(y),
bvc_in << prim_to_bv(c_in),
bvs << bvzeroext(bvc_in),
bvt << bvadd(bvx, bvy),
bva << bvadd(bvt, bvs),
bc_out << bvult(bva, bvx),
bvc_out << bool2bv(bc_out),
a << prim_from_bv(bva),
c_out << prim_from_bv(bvc_out)
))
bextend.set_semantics(
a << bextend(x),
(Rtl(
bvx << prim_to_bv(x),
bvy << bvsignext(bvx),
a << prim_from_bv(bvy)
), [InTypeset(x.get_typevar(), ScalarTS)]),
Rtl(
(xlo, xhi) << vsplit(x),
alo << bextend(xlo),
ahi << bextend(xhi),
a << vconcat(alo, ahi)
))
def create_comp_xform(cc, bvcmp_func):
# type: (Enumerator, Instruction) -> XForm
ba = Var('ba')
return XForm(
Rtl(
a << icmp(cc, x, y)
),
Rtl(
bvx << prim_to_bv(x),
bvy << prim_to_bv(y),
ba << bvcmp_func(bvx, bvy),
bva << bool2bv(ba),
bva_wide << bvzeroext(bva),
a << prim_from_bv(bva_wide),
),
constraints=InTypeset(x.get_typevar(), ScalarTS))
icmp.set_semantics(
a << icmp(CC, x, y),
Rtl(
(xlo, xhi) << vsplit(x),
(ylo, yhi) << vsplit(y),
alo << icmp(CC, xlo, ylo),
ahi << icmp(CC, xhi, yhi),
b << vconcat(alo, ahi),
a << bextend(b)
),
create_comp_xform(intcc.eq, bveq),
create_comp_xform(intcc.ne, bvne),
create_comp_xform(intcc.sge, bvsge),
create_comp_xform(intcc.sgt, bvsgt),
create_comp_xform(intcc.sle, bvsle),
create_comp_xform(intcc.slt, bvslt),
create_comp_xform(intcc.uge, bvuge),
create_comp_xform(intcc.ugt, bvugt),
create_comp_xform(intcc.ule, bvule),
create_comp_xform(intcc.ult, bvult))
#
# Legalization helper instructions.
#
isplit.set_semantics(
(xlo, xhi) << isplit(x),
(Rtl(
bvx << prim_to_bv(x),
(bvlo, bvhi) << bvsplit(bvx),
xlo << prim_from_bv(bvlo),
xhi << prim_from_bv(bvhi)
), [InTypeset(x.get_typevar(), ScalarTS)]),
Rtl(
(a, b) << vsplit(x),
(alo, ahi) << isplit(a),
(blo, bhi) << isplit(b),
xlo << vconcat(alo, blo),
xhi << vconcat(bhi, bhi)
))
iconcat.set_semantics(
x << iconcat(xlo, xhi),
(Rtl(
bvlo << prim_to_bv(xlo),
bvhi << prim_to_bv(xhi),
bvx << bvconcat(bvlo, bvhi),
x << prim_from_bv(bvx)
), [InTypeset(x.get_typevar(), ScalarTS)]),
Rtl(
(alo, ahi) << vsplit(xlo),
(blo, bhi) << vsplit(xhi),
a << iconcat(alo, blo),
b << iconcat(ahi, bhi),
x << vconcat(a, b),
))

View File

@@ -0,0 +1,144 @@
"""
Cranelift shared settings.
This module defines settings relevant for all code generators.
"""
from __future__ import absolute_import
from cdsl.settings import SettingGroup, BoolSetting, EnumSetting, NumSetting
group = SettingGroup('shared')
opt_level = EnumSetting(
"""
Optimization level:
- default: Very profitable optimizations enabled, none slow.
- best: Enable all optimizations
- fastest: Optimize for compile time by disabling most optimizations.
""",
'default', 'best', 'fastest')
enable_verifier = BoolSetting(
"""
Run the Cranelift IR verifier at strategic times during compilation.
This makes compilation slower but catches many bugs. The verifier is
disabled by default, except when reading Cranelift IR from a text file.
""",
default=True)
# Note that Cranelift doesn't currently need an is_pie flag, because PIE is
# just PIC where symbols can't be pre-empted, which can be expressed with the
# `colocated` flag on external functions and global values.
is_pic = BoolSetting("Enable Position-Independent Code generation")
colocated_libcalls = BoolSetting(
"""
Use colocated libcalls.
Generate code that assumes that libcalls can be declared "colocated",
meaning they will be defined along with the current function, such that
they can use more efficient addressing.
""")
avoid_div_traps = BoolSetting(
"""
Generate explicit checks around native division instructions to avoid
their trapping.
This is primarily used by SpiderMonkey which doesn't install a signal
handler for SIGFPE, but expects a SIGILL trap for division by zero.
On ISAs like ARM where the native division instructions don't trap,
this setting has no effect - explicit checks are always inserted.
""")
enable_float = BoolSetting(
"""
Enable the use of floating-point instructions
Disabling use of floating-point instructions is not yet implemented.
""",
default=True)
enable_nan_canonicalization = BoolSetting(
"""
Enable NaN canonicalization
This replaces NaNs with a single canonical value, for users requiring
entirely deterministic WebAssembly computation. This is not required
by the WebAssembly spec, so it is not enabled by default.
""",
default=False)
enable_simd = BoolSetting(
"""Enable the use of SIMD instructions.""",
default=True)
enable_atomics = BoolSetting(
"""Enable the use of atomic instructions""",
default=True)
#
# Settings specific to the `baldrdash` calling convention.
#
baldrdash_prologue_words = NumSetting(
"""
Number of pointer-sized words pushed by the baldrdash prologue.
Functions with the `baldrdash` calling convention don't generate their
own prologue and epilogue. They depend on externally generated code
that pushes a fixed number of words in the prologue and restores them
in the epilogue.
This setting configures the number of pointer-sized words pushed on the
stack when the Cranelift-generated code is entered. This includes the
pushed return address on x86.
""")
#
# BaldrMonkey requires that not-yet-relocated function addresses be encoded
# as all-ones bitpatterns.
#
allones_funcaddrs = BoolSetting(
"""
Emit not-yet-relocated function addresses as all-ones bit patterns.
""")
#
# Stack probing options.
#
probestack_enabled = BoolSetting(
"""
Enable the use of stack probes, for calling conventions which support
this functionality.
""",
default=True)
probestack_func_adjusts_sp = BoolSetting(
"""
Set this to true of the stack probe function modifies the stack pointer
itself.
""")
probestack_size_log2 = NumSetting(
"""
The log2 of the size of the stack guard region.
Stack frames larger than this size will have stack overflow checked
by calling the probestack function.
The default is 12, which translates to a size of 4096.
""",
default=12)
#
# Jump table options.
#
jump_tables_enabled = BoolSetting(
"""
Enable the use of jump tables in generated machine code.
""",
default=True)
group.close(globals())

View File

@@ -0,0 +1,49 @@
"""
The base.types module predefines all the Cranelift scalar types.
"""
from __future__ import absolute_import
from cdsl.types import IntType, FloatType, BoolType, FlagsType
#: Abstract boolean (can't be stored in memory, use bint to convert to 0 or 1).
b1 = BoolType(1) #: 1-bit bool.
#: Booleans used as SIMD elements (can be stored in memory, true is all-ones).
b8 = BoolType(8) #: 8-bit bool.
b16 = BoolType(16) #: 16-bit bool.
b32 = BoolType(32) #: 32-bit bool.
b64 = BoolType(64) #: 64-bit bool.
# Integers.
i8 = IntType(8) #: 8-bit int.
i16 = IntType(16) #: 16-bit int.
i32 = IntType(32) #: 32-bit int.
i64 = IntType(64) #: 64-bit int.
#: IEEE single precision.
f32 = FloatType(
32, """
A 32-bit floating point type represented in the IEEE 754-2008
*binary32* interchange format. This corresponds to the :c:type:`float`
type in most C implementations.
""")
#: IEEE double precision.
f64 = FloatType(
64, """
A 64-bit floating point type represented in the IEEE 754-2008
*binary64* interchange format. This corresponds to the :c:type:`double`
type in most C implementations.
""")
#: CPU flags from an integer comparison.
iflags = FlagsType(
'iflags', """
CPU flags representing the result of an integer comparison. These flags
can be tested with an :type:`intcc` condition code.
""")
#: CPU flags from a floating point comparison.
fflags = FlagsType(
'fflags', """
CPU flags representing the result of a floating point comparison. These
flags can be tested with a :type:`floatcc` condition code.
""")