Generate value type constraints.

Add an Opcode::constraints() method which returns an OpcodeConstraints object.
This object provides information on instruction polymorphism and how many
results is produced.

Generate a list of TypeSet objects for checking free type variables. The type
sets are parametrized rather than being represented as fully general sets.

Add UniqueTable and UniqueSeqTable classes to the meta code generator. Use for
compressing tabular data by removing duplicates.
This commit is contained in:
Jakob Stoklund Olesen
2016-05-20 10:45:02 -07:00
parent 1e631fdbd6
commit 692a85d720
6 changed files with 413 additions and 10 deletions

View File

@@ -7,6 +7,7 @@ instructions.
import re
import importlib
from collections import namedtuple
camel_re = re.compile('(^|_)([a-z])')
@@ -148,6 +149,9 @@ class ScalarType(ValueType):
def __repr__(self):
return 'ScalarType({})'.format(self.name)
def rust_name(self):
return 'types::' + self.name.upper()
def by(self, lanes):
"""
Get a vector type with this type as the lane type.
@@ -232,6 +236,19 @@ class BoolType(ScalarType):
# Parametric polymorphism.
#: A `TypeSet` represents a set of types. We don't allow arbitrary subsets of
#: types, but use a parametrized approach instead.
#: This is represented as a named tuple so it can be used as a dictionary key.
TypeSet = namedtuple(
'TypeSet', [
'allow_scalars',
'allow_simd',
'base',
'all_ints',
'all_floats',
'all_bools'])
class TypeVar(object):
"""
Type variables can be used in place of concrete types when defining
@@ -257,10 +274,23 @@ class TypeVar(object):
def __init__(
self, name, doc, base=None,
ints=False, floats=False, bools=False,
scalars=True, simd=False):
scalars=True, simd=False,
derived_func=None):
self.name = name
self.__doc__ = doc
self.base = base
self.is_derived = isinstance(base, TypeVar)
if self.is_derived:
assert derived_func
self.derived_func = derived_func
else:
self.type_set = TypeSet(
allow_scalars=scalars,
allow_simd=simd,
base=base,
all_ints=ints,
all_floats=floats,
all_bools=bools)
def __str__(self):
return "`{}`".format(self.name)
@@ -273,14 +303,18 @@ class TypeVar(object):
When this type variable assumes a scalar type, the derived type will be
the same scalar type.
"""
return TypeVar("Lane type of " + self.name, '', base=self, simd=False)
return TypeVar(
"Lane type of " + self.name, '',
base=self, derived_func='Lane')
def as_bool(self):
"""
Return a derived type variable that has the same vector geometry as
this type variable, but with boolean lanes. Scalar types map to `b1`.
"""
return TypeVar(self.name + " as boolean", '', base=self, bools=True)
return TypeVar(
self.name + " as boolean", '',
base=self, derived_func='AsBool')
def operand_kind(self):
# When a `TypeVar` object is used to describe the type of an `Operand`

View File

@@ -61,9 +61,9 @@ br_table = Instruction(
'br_table', r"""
Indirect branch via jump table.
Use ``x`` as an unsigned index into the jump table ``JT``. If a jump table
entry is found, branch to the corresponding EBB. If no entry was found fall
through to the next instruction.
Use ``x`` as an unsigned index into the jump table ``JT``. If a jump
table entry is found, branch to the corresponding EBB. If no entry was
found fall through to the next instruction.
Note that this branch instruction can't pass arguments to the targeted
blocks. Split critical edges as needed to work around this.

View File

@@ -4,6 +4,7 @@ Generate sources with instruction info.
import srcgen
import constant_hash
from unique_table import UniqueTable, UniqueSeqTable
import cretonne
@@ -97,7 +98,8 @@ def gen_instruction_data_impl(fmt):
fmt.doc_comment('Mutable reference to second result value, if any.')
with fmt.indented(
"pub fn second_result_mut<'a>(&'a mut self) -> Option<&'a mut Value> {", '}'):
"pub fn second_result_mut<'a>(&'a mut self)" +
" -> Option<&'a mut Value> {", '}'):
with fmt.indented('match *self {', '}'):
for f in cretonne.InstructionFormat.all_formats:
if not f.multiple_results:
@@ -131,7 +133,11 @@ def collect_instr_groups(targets):
def gen_opcodes(groups, fmt):
"""Generate opcode enumerations."""
"""
Generate opcode enumerations.
Return a list of all instructions.
"""
fmt.doc_comment('An instruction opcode.')
fmt.doc_comment('')
@@ -193,6 +199,125 @@ def gen_opcodes(groups, fmt):
else:
fmt.format('Opcode::{},', i.camel_name)
fmt.line()
return instrs
def get_constraint(op, ctrl_typevar, type_sets):
"""
Get the value type constraint for an SSA value operand, where
`ctrl_typevar` is the controlling type variable.
Each operand constraint is represented as a string, one of:
- `Concrete(vt)`, where `vt` is a value type name.
- `Free(idx)` where `idx` is an index into `type_sets`.
- `Same`, `Lane`, `AsBool` for controlling typevar-derived constraints.
"""
t = op.typ
assert t.operand_kind() is cretonne.value
# A concrete value type.
if isinstance(t, cretonne.ValueType):
return 'Concrete({})'.format(t.rust_name())
if t.free_typevar() is not ctrl_typevar:
assert not t.is_derived
return 'Free({})'.format(type_sets.add(t.type_set))
if t.is_derived:
assert t.base is ctrl_typevar, "Not derived directly from ctrl_typevar"
return t.derived_func
assert t is ctrl_typevar
return 'Same'
def gen_type_constraints(fmt, instrs):
"""
Generate value type constraints for all instructions.
- Emit a compact constant table of ValueTypeSet objects.
- Emit a compact constant table of OperandConstraint objects.
- Emit an opcode-indexed table of instruction constraints.
"""
# Table of TypeSet instances.
type_sets = UniqueTable()
# Table of operand constraint sequences (as tuples). Each operand
# constraint is represented as a string, one of:
# - `Concrete(vt)`, where `vt` is a value type name.
# - `Free(idx)` where `idx` isan index into `type_sets`.
# - `Same`, `Lane`, `AsBool` for controlling typevar-derived constraints.
operand_seqs = UniqueSeqTable()
# Preload table with constraints for typical binops.
operand_seqs.add(['Same'] * 3)
# TypeSet indexes are encoded in 3 bits, with `111` reserved.
typeset_limit = 7
fmt.comment('Table of opcode constraints.')
with fmt.indented(
'const OPCODE_CONSTRAINTS : [OpcodeConstraints; {}] = ['
.format(len(instrs)), '];'):
for i in instrs:
# Collect constraints for the value results, not including
# `variable_args` results which are always special cased.
constraints = list()
ctrl_typevar = None
ctrl_typeset = typeset_limit
if i.is_polymorphic:
ctrl_typevar = i.ctrl_typevar
ctrl_typeset = type_sets.add(ctrl_typevar.type_set)
for idx in i.value_results:
constraints.append(
get_constraint(i.outs[idx], ctrl_typevar, type_sets))
for idx in i.format.value_operands:
constraints.append(
get_constraint(i.ins[idx], ctrl_typevar, type_sets))
offset = operand_seqs.add(constraints)
fixed_results = len(i.value_results)
use_typevar_operand = i.is_polymorphic and i.use_typevar_operand
fmt.comment(
'{}: fixed_results={}, use_typevar_operand={}'
.format(i.camel_name, fixed_results, use_typevar_operand))
fmt.comment('Constraints={}'.format(constraints))
if i.is_polymorphic:
fmt.comment(
'Polymorphic over {}'.format(ctrl_typevar.type_set))
# Compute the bit field encoding, c.f. instructions.rs.
assert fixed_results < 8, "Bit field encoding too tight"
bits = (offset << 8) | (ctrl_typeset << 4) | fixed_results
if use_typevar_operand:
bits |= 8
assert bits < 0x10000, "Constraint table too large for bit field"
fmt.line('OpcodeConstraints({:#06x}),'.format(bits))
fmt.comment('Table of value type sets.')
assert len(type_sets.table) <= typeset_limit, "Too many type sets"
with fmt.indented(
'const TYPE_SETS : [ValueTypeSet; {}] = ['
.format(len(type_sets.table)), '];'):
for ts in type_sets.table:
with fmt.indented('ValueTypeSet {', '},'):
if ts.base:
fmt.line('base: {},'.format(ts.base.rust_name()))
else:
fmt.line('base: types::VOID,')
for field in ts._fields:
if field == 'base':
continue
fmt.line('{}: {},'.format(
field, str(getattr(ts, field)).lower()))
fmt.comment('Table of operand constraint sequences.')
with fmt.indented(
'const OPERAND_CONSTRAINTS : [OperandConstraint; {}] = ['
.format(len(operand_seqs.table)), '];'):
for c in operand_seqs.table:
fmt.line('OperandConstraint::{},'.format(c))
def generate(targets, out_dir):
@@ -202,5 +327,6 @@ def generate(targets, out_dir):
fmt = srcgen.Formatter()
gen_formats(fmt)
gen_instruction_data_impl(fmt)
gen_opcodes(groups, fmt)
instrs = gen_opcodes(groups, fmt)
gen_type_constraints(fmt, instrs)
fmt.update_file('opcodes.rs', out_dir)

68
meta/unique_table.py Normal file
View File

@@ -0,0 +1,68 @@
"""
Generate a table of unique items.
The `UniqueTable` class collects items into an array, removing duplicates. Each
item is mapped to its offset in the final array.
This is a compression technique for compile-time generated tables.
"""
class UniqueTable:
"""
Collect items into the `table` list, removing duplicates.
"""
def __init__(self):
# List of items added in order.
self.table = list()
# Map item -> index.
self.index = dict()
def add(self, item):
"""
Add a single item to the table if it isn't already there.
Return the offset into `self.table` of the item.
"""
if item in self.index:
return self.index[item]
idx = len(self.table)
self.index[item] = idx
self.table.append(item)
return idx
class UniqueSeqTable:
"""
Collect sequences into the `table` list, removing duplicates.
Sequences don't have to be of the same length.
"""
def __init__(self):
self.table = list()
# Map seq -> index.
self.index = dict()
def add(self, seq):
"""
Add a sequence of items to the table. If the table already contains the
items in `seq` in the same order, use those instead.
Return the offset into `self.table` of the beginning of `seq`.
"""
if len(seq) == 0:
return 0
seq = tuple(seq)
if seq in self.index:
return self.index[seq]
idx = len(self.table)
self.table.extend(seq)
# Add seq and all sub-sequences to `index`.
for length in range(1, len(seq) + 1):
for offset in range(len(seq) - length + 1):
self.index[seq[offset:offset+length]] = idx + offset
return idx