Infer type constraints on patterns.

Each instruction used in a pattern has constraints on the types of its
operands. These constraints are expressed as symbolic type variables.

Compute type variables for each variable used in a transformation
pattern. Some are free type variables, and some are derived from the
free type variables.

The type variables associated with variables can be used for computing
the result types of replacement instructions that don't support simple
forward type inference from their inputs.

The type sets computed by this patch are conservatively too large, so
they can't yet be used to type check patterns.
This commit is contained in:
Jakob Stoklund Olesen
2016-11-09 15:05:11 -08:00
parent 38f4b9a7c8
commit 68c9f20b77
3 changed files with 254 additions and 0 deletions

View File

@@ -100,6 +100,10 @@ class XForm(object):
"extra inputs in dst RTL: {}".format(
self.inputs[num_src_inputs:]))
self._infer_types(self.src)
self._infer_types(self.dst)
self._collect_typevars()
def __repr__(self):
s = "XForm(inputs={}, defs={},\n ".format(self.inputs, self.defs)
s += '\n '.join(str(n) for n in self.src)
@@ -201,6 +205,63 @@ class XForm(object):
raise AssertionError(
'{} not defined in dest pattern'.format(d))
def _infer_types(self, rtl):
# type: (Rtl) -> None
"""Assign type variables to all value variables used in `rtl`."""
for d in rtl.rtl:
inst = d.expr.inst
# Get the Var corresponding to the controlling type variable.
ctrl_var = None # type: Var
if inst.is_polymorphic:
if inst.use_typevar_operand:
# Should this be an assertion instead?
# Should all value operands be required to be Vars?
arg = d.expr.args[inst.format.typevar_operand]
if isinstance(arg, Var):
ctrl_var = arg
else:
ctrl_var = d.defs[inst.value_results[0]]
# Reconcile arguments with the requirements of `inst`.
for opnum in inst.format.value_operands:
inst_tv = inst.ins[opnum].typevar
v = d.expr.args[opnum]
if isinstance(v, Var):
v.constrain_typevar(inst_tv, inst.ctrl_typevar, ctrl_var)
# Reconcile results with the requirements of `inst`.
for resnum in inst.value_results:
inst_tv = inst.outs[resnum].typevar
v = d.defs[resnum]
v.constrain_typevar(inst_tv, inst.ctrl_typevar, ctrl_var)
def _collect_typevars(self):
# type: () -> None
"""
Collect a list of variables whose type can be used to infer the types
of all expressions.
This should be called after `_infer_types()` above has computed type
variables for all the used vars.
"""
fvars = list(v for v in self.inputs if v.has_free_typevar())
fvars += list(v for v in self.defs if v.has_free_typevar())
self.free_typevars = fvars
# When substituting a pattern, we know the types of all variables that
# appear on the source side: inut, output, and intermediate values.
# However, temporary values which appear only on the destination side
# must have their type computed somehow.
#
# Some variables have a fixed type which appears as a type variable
# with a singleton_type field set. That's allowed for temps too.
for v in fvars:
if v.is_temp() and not v.typevar.singleton_type:
raise AssertionError(
"Cannot determine type of temp '{}' in xform:\n{}"
.format(v, self))
class XFormGroup(object):
"""