* Add Atom and Literal base classes to CDSL Ast. Change substitution() and copy() on Def/Apply/Rtl to support substituting Var->Union[Var, Literal]. Check in Apply() constructor kinds of passed in Literals respect instruction signature
* Change verify_semantics to check all possible instantiations of enumerated immediates (needed to descrive icmp). Add all bitvector comparison primitives and bvite; Change set_semantics to optionally accept XForms; Add semantics for icmp; Fix typing errors in semantics/{smtlib, elaborate, __init__}.py after the change of VarMap->VarAtomMap
* Forgot macros.py
* Nit obscured by testing with mypy enabled present.
* Typo
This commit is contained in:
committed by
Jakob Stoklund Olesen
parent
591f6c1632
commit
66da171050
@@ -1,9 +1,11 @@
|
||||
"""Definitions for the semantics segment of the Cretonne language."""
|
||||
from cdsl.ti import TypeEnv, ti_rtl, get_type_env
|
||||
from cdsl.operands import ImmediateKind
|
||||
from cdsl.ast import Var
|
||||
|
||||
try:
|
||||
from typing import List, Dict, Tuple # noqa
|
||||
from cdsl.ast import Var # noqa
|
||||
from cdsl.ast import VarAtomMap # noqa
|
||||
from cdsl.xform import XForm, Rtl # noqa
|
||||
from cdsl.ti import VarTyping # noqa
|
||||
from cdsl.instructions import Instruction, InstructionSemantics # noqa
|
||||
@@ -16,34 +18,60 @@ def verify_semantics(inst, src, xforms):
|
||||
"""
|
||||
Verify that the semantics transforms in xforms correctly describe the
|
||||
instruction described by the src Rtl. This involves checking that:
|
||||
1) For all XForms x \in xforms, there is a Var substitution form src to
|
||||
x.src
|
||||
2) For any possible concrete typing of src there is exactly 1 XForm x
|
||||
in xforms that applies.
|
||||
0) src is a single instance of inst
|
||||
1) For all x\in xforms x.src is a single instance of inst
|
||||
2) For any concrete values V of Literals in inst:
|
||||
For all concrete typing T of inst:
|
||||
Exists single x \in xforms that applies to src conretazied to V
|
||||
and T
|
||||
"""
|
||||
# 0) The source rtl is always a single instruction
|
||||
assert len(src.rtl) == 1
|
||||
# 0) The source rtl is always a single instance of inst
|
||||
assert len(src.rtl) == 1 and src.rtl[0].expr.inst == inst
|
||||
|
||||
# 1) For all XForms x, x.src is structurally equivalent to src
|
||||
# 1) For all XForms x, x.src is a single instance of inst
|
||||
for x in xforms:
|
||||
assert src.substitution(x.src, {}) is not None,\
|
||||
"XForm {} doesn't describe instruction {}.".format(x, src)
|
||||
assert len(x.src.rtl) == 1 and x.src.rtl[0].expr.inst == inst
|
||||
|
||||
# 2) Any possible typing for the instruction should be covered by
|
||||
# exactly ONE semantic XForm
|
||||
src = src.copy({})
|
||||
typenv = get_type_env(ti_rtl(src, TypeEnv()))
|
||||
typenv.normalize()
|
||||
typenv = typenv.extract()
|
||||
variants = [src] # type: List[Rtl]
|
||||
|
||||
for t in typenv.concrete_typings():
|
||||
matching_xforms = [] # type: List[XForm]
|
||||
for x in xforms:
|
||||
# Translate t using x.symtab
|
||||
t = {x.symtab[str(v)]: tv for (v, tv) in t.items()}
|
||||
if (x.ti.permits(t)):
|
||||
matching_xforms.append(x)
|
||||
# 2) For all enumerated immediates, compute all the possible
|
||||
# versions of src with the concrete value filled in.
|
||||
for i in inst.imm_opnums:
|
||||
op = inst.ins[i]
|
||||
if not (isinstance(op.kind, ImmediateKind) and
|
||||
op.kind.is_enumerable()):
|
||||
continue
|
||||
|
||||
assert len(matching_xforms) == 1,\
|
||||
("Possible typing {} of {} not matched by exactly one case " +
|
||||
": {}").format(t, inst, matching_xforms)
|
||||
new_variants = [] # type: List[Rtl]
|
||||
for rtl_var in variants:
|
||||
s = {v: v for v in rtl_var.vars()} # type: VarAtomMap
|
||||
arg = rtl_var.rtl[0].expr.args[i]
|
||||
assert isinstance(arg, Var)
|
||||
for val in op.kind.possible_values():
|
||||
s[arg] = val
|
||||
new_variants.append(rtl_var.copy(s))
|
||||
variants = new_variants
|
||||
|
||||
# For any possible version of the src with concrete enumerated immediates
|
||||
for src in variants:
|
||||
# 2) Any possible typing should be covered by exactly ONE semantic
|
||||
# XForm
|
||||
src = src.copy({})
|
||||
typenv = get_type_env(ti_rtl(src, TypeEnv()))
|
||||
typenv.normalize()
|
||||
typenv = typenv.extract()
|
||||
|
||||
for t in typenv.concrete_typings():
|
||||
matching_xforms = [] # type: List[XForm]
|
||||
for x in xforms:
|
||||
if src.substitution(x.src, {}) is None:
|
||||
continue
|
||||
|
||||
# Translate t using x.symtab
|
||||
t = {x.symtab[str(v)]: tv for (v, tv) in t.items()}
|
||||
if (x.ti.permits(t)):
|
||||
matching_xforms.append(x)
|
||||
|
||||
assert len(matching_xforms) == 1,\
|
||||
("Possible typing {} of {} not matched by exactly one case " +
|
||||
": {}").format(t, src.rtl[0], matching_xforms)
|
||||
|
||||
@@ -10,7 +10,7 @@ from cdsl.ast import Var
|
||||
try:
|
||||
from typing import TYPE_CHECKING, Dict, Union, List, Set, Tuple # noqa
|
||||
from cdsl.xform import XForm # noqa
|
||||
from cdsl.ast import Def, VarMap # noqa
|
||||
from cdsl.ast import Def, VarAtomMap # noqa
|
||||
from cdsl.ti import VarTyping # noqa
|
||||
except ImportError:
|
||||
TYPE_CHECKING = False
|
||||
@@ -34,7 +34,13 @@ def find_matching_xform(d):
|
||||
if (subst is None):
|
||||
continue
|
||||
|
||||
if x.ti.permits({subst[v]: tv for (v, tv) in typing.items()}):
|
||||
inner_typing = {} # type: VarTyping
|
||||
for (v, tv) in typing.items():
|
||||
inner_v = subst[v]
|
||||
assert isinstance(inner_v, Var)
|
||||
inner_typing[inner_v] = tv
|
||||
|
||||
if x.ti.permits(inner_typing):
|
||||
res.append(x)
|
||||
|
||||
assert len(res) == 1, "Couldn't find semantic transform for {}".format(d)
|
||||
@@ -60,7 +66,7 @@ def cleanup_semantics(r, outputs):
|
||||
...
|
||||
"""
|
||||
new_defs = [] # type: List[Def]
|
||||
subst_m = {v: v for v in r.vars()} # type: VarMap
|
||||
subst_m = {v: v for v in r.vars()} # type: VarAtomMap
|
||||
definition = {} # type: Dict[Var, Def]
|
||||
prim_to_bv_map = {} # type: Dict[Var, Def]
|
||||
|
||||
|
||||
45
lib/cretonne/meta/semantics/macros.py
Normal file
45
lib/cretonne/meta/semantics/macros.py
Normal file
@@ -0,0 +1,45 @@
|
||||
"""
|
||||
Useful semantics "macro" instructions built on top of
|
||||
the primitives.
|
||||
"""
|
||||
from __future__ import absolute_import
|
||||
from cdsl.operands import Operand
|
||||
from cdsl.typevar import TypeVar
|
||||
from cdsl.instructions import Instruction, InstructionGroup
|
||||
from base.types import b1
|
||||
from base.immediates import imm64
|
||||
from cdsl.ast import Var
|
||||
from cdsl.xform import Rtl
|
||||
from semantics.primitives import bv_from_imm64, bvite
|
||||
import base.formats # noqa
|
||||
|
||||
GROUP = InstructionGroup("primitive_macros", "Semantic macros instruction set")
|
||||
AnyBV = TypeVar('AnyBV', bitvecs=True, doc="")
|
||||
x = Var('x')
|
||||
y = Var('y')
|
||||
imm = Var('imm')
|
||||
a = Var('a')
|
||||
|
||||
#
|
||||
# Bool-to-bv1
|
||||
#
|
||||
BV1 = TypeVar("BV1", bitvecs=(1, 1), doc="")
|
||||
bv1_op = Operand('bv1_op', BV1, doc="")
|
||||
cond_op = Operand("cond", b1, doc="")
|
||||
bool2bv = Instruction(
|
||||
'bool2bv', r"""Convert a b1 value to a 1-bit BV""",
|
||||
ins=cond_op, outs=bv1_op)
|
||||
|
||||
v1 = Var('v1')
|
||||
v2 = Var('v2')
|
||||
bvone = Var('bvone')
|
||||
bvzero = Var('bvzero')
|
||||
bool2bv.set_semantics(
|
||||
v1 << bool2bv(v2),
|
||||
Rtl(
|
||||
bvone << bv_from_imm64(imm64(1)),
|
||||
bvzero << bv_from_imm64(imm64(0)),
|
||||
v1 << bvite(v2, bvone, bvzero)
|
||||
))
|
||||
|
||||
GROUP.close()
|
||||
@@ -10,6 +10,8 @@ from cdsl.operands import Operand
|
||||
from cdsl.typevar import TypeVar
|
||||
from cdsl.instructions import Instruction, InstructionGroup
|
||||
from cdsl.ti import WiderOrEq
|
||||
from base.types import b1
|
||||
from base.immediates import imm64
|
||||
import base.formats # noqa
|
||||
|
||||
GROUP = InstructionGroup("primitive", "Primitive instruction set")
|
||||
@@ -22,26 +24,40 @@ Real = TypeVar('Real', 'Any real type.', ints=True, floats=True,
|
||||
x = Operand('x', BV, doc="A semantic value X")
|
||||
y = Operand('x', BV, doc="A semantic value Y (same width as X)")
|
||||
a = Operand('a', BV, doc="A semantic value A (same width as X)")
|
||||
cond = Operand('b', TypeVar.singleton(b1), doc='A b1 value')
|
||||
|
||||
real = Operand('real', Real, doc="A real cretonne value")
|
||||
fromReal = Operand('fromReal', Real.to_bitvec(),
|
||||
doc="A real cretonne value converted to a BV")
|
||||
|
||||
#
|
||||
# BV Conversion/Materialization
|
||||
#
|
||||
prim_to_bv = Instruction(
|
||||
'prim_to_bv', r"""
|
||||
Convert an SSA Value to a flat bitvector
|
||||
""",
|
||||
ins=(real), outs=(fromReal))
|
||||
|
||||
# Note that when converting from BV->real values, we use a constraint and not a
|
||||
# derived function. This reflects that fact that to_bitvec() is not a
|
||||
# bijection.
|
||||
prim_from_bv = Instruction(
|
||||
'prim_from_bv', r"""
|
||||
Convert a flat bitvector to a real SSA Value.
|
||||
""",
|
||||
ins=(fromReal), outs=(real))
|
||||
|
||||
N = Operand('N', imm64)
|
||||
bv_from_imm64 = Instruction(
|
||||
'bv_from_imm64', r"""Materialize an imm64 as a bitvector.""",
|
||||
ins=(N), outs=a)
|
||||
|
||||
#
|
||||
# Generics
|
||||
#
|
||||
bvite = Instruction(
|
||||
'bvite', r"""Bitvector ternary operator""",
|
||||
ins=(cond, x, y), outs=a)
|
||||
|
||||
|
||||
xh = Operand('xh', BV.half_width(),
|
||||
doc="A semantic value representing the upper half of X")
|
||||
xl = Operand('xl', BV.half_width(),
|
||||
@@ -67,12 +83,40 @@ bvadd = Instruction(
|
||||
of the operands.
|
||||
""",
|
||||
ins=(x, y), outs=a)
|
||||
|
||||
#
|
||||
# Bitvector comparisons
|
||||
cmp_res = Operand('cmp_res', BV1, doc="Single bit boolean")
|
||||
#
|
||||
|
||||
bveq = Instruction(
|
||||
'bveq', r"""Unsigned bitvector equality""",
|
||||
ins=(x, y), outs=cond)
|
||||
bvne = Instruction(
|
||||
'bveq', r"""Unsigned bitvector inequality""",
|
||||
ins=(x, y), outs=cond)
|
||||
bvsge = Instruction(
|
||||
'bvsge', r"""Signed bitvector greater or equal""",
|
||||
ins=(x, y), outs=cond)
|
||||
bvsgt = Instruction(
|
||||
'bvsgt', r"""Signed bitvector greater than""",
|
||||
ins=(x, y), outs=cond)
|
||||
bvsle = Instruction(
|
||||
'bvsle', r"""Signed bitvector less than or equal""",
|
||||
ins=(x, y), outs=cond)
|
||||
bvslt = Instruction(
|
||||
'bvslt', r"""Signed bitvector less than""",
|
||||
ins=(x, y), outs=cond)
|
||||
bvuge = Instruction(
|
||||
'bvuge', r"""Unsigned bitvector greater or equal""",
|
||||
ins=(x, y), outs=cond)
|
||||
bvugt = Instruction(
|
||||
'bvugt', r"""Unsigned bitvector greater than""",
|
||||
ins=(x, y), outs=cond)
|
||||
bvule = Instruction(
|
||||
'bvule', r"""Unsigned bitvector less than or equal""",
|
||||
ins=(x, y), outs=cond)
|
||||
bvult = Instruction(
|
||||
'bvult', r"""Unsigned bitvector comparison""",
|
||||
ins=(x, y), outs=cmp_res)
|
||||
'bvult', r"""Unsigned bitvector less than""",
|
||||
ins=(x, y), outs=cond)
|
||||
|
||||
# Extensions
|
||||
ToBV = TypeVar('ToBV', 'A bitvector type.', bitvecs=True)
|
||||
|
||||
@@ -14,7 +14,7 @@ from z3.z3core import Z3_mk_eq
|
||||
try:
|
||||
from typing import TYPE_CHECKING, Tuple, Dict, List # noqa
|
||||
from cdsl.xform import Rtl, XForm # noqa
|
||||
from cdsl.ast import VarMap # noqa
|
||||
from cdsl.ast import VarAtomMap, Atom # noqa
|
||||
from cdsl.ti import VarTyping # noqa
|
||||
if TYPE_CHECKING:
|
||||
from z3 import ExprRef, BitVecRef # noqa
|
||||
@@ -137,13 +137,13 @@ def to_smt(r):
|
||||
|
||||
|
||||
def equivalent(r1, r2, inp_m, out_m):
|
||||
# type: (Rtl, Rtl, VarMap, VarMap) -> List[ExprRef]
|
||||
# type: (Rtl, Rtl, VarAtomMap, VarAtomMap) -> List[ExprRef]
|
||||
"""
|
||||
Given:
|
||||
- concrete source Rtl r1
|
||||
- concrete dest Rtl r2
|
||||
- VarMap inp_m mapping r1's non-bitvector inputs to r2
|
||||
- VarMap out_m mapping r1's non-bitvector outputs to r2
|
||||
- VarAtomMap inp_m mapping r1's non-bitvector inputs to r2
|
||||
- VarAtomMap out_m mapping r1's non-bitvector outputs to r2
|
||||
|
||||
Build a query checking whether r1 and r2 are semantically equivalent.
|
||||
If the returned query is unsatisfiable, then r1 and r2 are equivalent.
|
||||
@@ -156,17 +156,31 @@ def equivalent(r1, r2, inp_m, out_m):
|
||||
assert set(r2.free_vars()) == set(inp_m.values())
|
||||
|
||||
# Note that the same rule is not expected to hold for out_m due to
|
||||
# temporaries/intermediates.
|
||||
# temporaries/intermediates. out_m specified which values are enough for
|
||||
# equivalence.
|
||||
|
||||
# Rename the vars in r1 and r2 with unique suffixes to avoid conflicts
|
||||
src_m = {v: Var(v.name + ".a", v.get_typevar()) for v in r1.vars()}
|
||||
dst_m = {v: Var(v.name + ".b", v.get_typevar()) for v in r2.vars()}
|
||||
src_m = {v: Var(v.name + ".a", v.get_typevar()) for v in r1.vars()} # type: VarAtomMap # noqa
|
||||
dst_m = {v: Var(v.name + ".b", v.get_typevar()) for v in r2.vars()} # type: VarAtomMap # noqa
|
||||
r1 = r1.copy(src_m)
|
||||
r2 = r2.copy(dst_m)
|
||||
|
||||
def _translate(m, k_m, v_m):
|
||||
# type: (VarAtomMap, VarAtomMap, VarAtomMap) -> VarAtomMap
|
||||
"""Obtain a new map from m, by mapping m's keys with k_m and m's values
|
||||
with v_m"""
|
||||
res = {} # type: VarAtomMap
|
||||
for (k, v) in m1.items():
|
||||
new_k = k_m[k]
|
||||
new_v = v_m[v]
|
||||
assert isinstance(new_k, Var)
|
||||
res[new_k] = new_v
|
||||
|
||||
return res
|
||||
|
||||
# Convert inp_m, out_m in terms of variables with the .a/.b suffixes
|
||||
inp_m = {src_m[k]: dst_m[v] for (k, v) in inp_m.items()}
|
||||
out_m = {src_m[k]: dst_m[v] for (k, v) in out_m.items()}
|
||||
inp_m = _translate(inp_m, src_m, dst_m)
|
||||
out_m = _translate(out_m, src_m, dst_m)
|
||||
|
||||
# Encode r1 and r2 as SMT queries
|
||||
(q1, m1) = to_smt(r1)
|
||||
@@ -175,12 +189,14 @@ def equivalent(r1, r2, inp_m, out_m):
|
||||
# Build an expression for the equality of real Cretone inputs of r1 and r2
|
||||
args_eq_exp = [] # type: List[ExprRef]
|
||||
|
||||
for v in r1.free_vars():
|
||||
args_eq_exp.append(mk_eq(m1[v], m2[inp_m[v]]))
|
||||
for (v1, v2) in inp_m.items():
|
||||
assert isinstance(v2, Var)
|
||||
args_eq_exp.append(mk_eq(m1[v1], m2[v2]))
|
||||
|
||||
# Build an expression for the equality of real Cretone outputs of r1 and r2
|
||||
results_eq_exp = [] # type: List[ExprRef]
|
||||
for (v1, v2) in out_m.items():
|
||||
assert isinstance(v2, Var)
|
||||
results_eq_exp.append(mk_eq(m1[v1], m2[v2]))
|
||||
|
||||
# Put the whole query toghether
|
||||
@@ -196,20 +212,22 @@ def xform_correct(x, typing):
|
||||
assert x.ti.permits(typing)
|
||||
|
||||
# Create copies of the x.src and x.dst with their concrete types
|
||||
src_m = {v: Var(v.name, typing[v]) for v in x.src.vars()}
|
||||
src_m = {v: Var(v.name, typing[v]) for v in x.src.vars()} # type: VarAtomMap # noqa
|
||||
src = x.src.copy(src_m)
|
||||
dst = x.apply(src)
|
||||
dst_m = x.dst.substitution(dst, {})
|
||||
|
||||
# Build maps for the inputs/outputs for src->dst
|
||||
inp_m = {}
|
||||
out_m = {}
|
||||
inp_m = {} # type: VarAtomMap
|
||||
out_m = {} # type: VarAtomMap
|
||||
|
||||
for v in x.src.vars():
|
||||
src_v = src_m[v]
|
||||
assert isinstance(src_v, Var)
|
||||
if v.is_input():
|
||||
inp_m[src_m[v]] = dst_m[v]
|
||||
inp_m[src_v] = dst_m[v]
|
||||
elif v.is_output():
|
||||
out_m[src_m[v]] = dst_m[v]
|
||||
out_m[src_v] = dst_m[v]
|
||||
|
||||
# Get the primitive semantic Rtls for src and dst
|
||||
prim_src = elaborate(src)
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
from __future__ import absolute_import
|
||||
from base.instructions import vselect, vsplit, vconcat, iconst, iadd, bint
|
||||
from base.instructions import b1, icmp, ireduce, iadd_cout
|
||||
from base.immediates import intcc
|
||||
from base.immediates import intcc, imm64
|
||||
from base.types import i64, i8, b32, i32, i16, f32
|
||||
from cdsl.typevar import TypeVar
|
||||
from cdsl.ast import Var
|
||||
@@ -9,7 +9,7 @@ from cdsl.xform import Rtl
|
||||
from unittest import TestCase
|
||||
from .elaborate import elaborate
|
||||
from .primitives import prim_to_bv, bvsplit, prim_from_bv, bvconcat, bvadd, \
|
||||
bvult
|
||||
bvult, bv_from_imm64, bvite
|
||||
import base.semantics # noqa
|
||||
|
||||
|
||||
@@ -366,9 +366,12 @@ class TestElaborate(TestCase):
|
||||
a = Var('a')
|
||||
c_out = Var('c_out')
|
||||
bvc_out = Var('bvc_out')
|
||||
bc_out = Var('bc_out')
|
||||
bvx = Var('bvx')
|
||||
bvy = Var('bvy')
|
||||
bva = Var('bva')
|
||||
bvone = Var('bvone')
|
||||
bvzero = Var('bvzero')
|
||||
r = Rtl(
|
||||
(a, c_out) << iadd_cout.i32(x, y),
|
||||
)
|
||||
@@ -378,10 +381,12 @@ class TestElaborate(TestCase):
|
||||
bvx << prim_to_bv.i32(x),
|
||||
bvy << prim_to_bv.i32(y),
|
||||
bva << bvadd.bv32(bvx, bvy),
|
||||
bvc_out << bvult.bv32(bva, bvx),
|
||||
bc_out << bvult.bv32(bva, bvx),
|
||||
bvone << bv_from_imm64(imm64(1)),
|
||||
bvzero << bv_from_imm64(imm64(0)),
|
||||
bvc_out << bvite(bc_out, bvone, bvzero),
|
||||
a << prim_from_bv.i32(bva),
|
||||
c_out << prim_from_bv.b1(bvc_out)
|
||||
)
|
||||
exp.cleanup_concrete_rtl()
|
||||
|
||||
assert concrete_rtls_eq(sem, exp)
|
||||
|
||||
Reference in New Issue
Block a user