Merge pull request #2892 from afonso360/aarch64-multireg-args

Handle i128 arguments in the aarch64 ABI
This commit is contained in:
Chris Fallin
2021-05-21 16:57:42 -07:00
committed by GitHub
4 changed files with 505 additions and 98 deletions

View File

@@ -183,10 +183,11 @@ impl ABIMachineSpec for AArch64MachineDeps {
args_or_rets: ArgsOrRets, args_or_rets: ArgsOrRets,
add_ret_area_ptr: bool, add_ret_area_ptr: bool,
) -> CodegenResult<(Vec<ABIArg>, i64, Option<usize>)> { ) -> CodegenResult<(Vec<ABIArg>, i64, Option<usize>)> {
let is_apple_cc = call_conv == isa::CallConv::AppleAarch64;
let is_baldrdash = call_conv.extends_baldrdash(); let is_baldrdash = call_conv.extends_baldrdash();
let has_baldrdash_tls = call_conv == isa::CallConv::Baldrdash2020; let has_baldrdash_tls = call_conv == isa::CallConv::Baldrdash2020;
// See AArch64 ABI (https://c9x.me/compile/bib/abi-arm64.pdf), sections 5.4. // See AArch64 ABI (https://github.com/ARM-software/abi-aa/blob/2021Q1/aapcs64/aapcs64.rst#64parameter-passing), sections 6.4.
// //
// MacOS aarch64 is slightly different, see also // MacOS aarch64 is slightly different, see also
// https://developer.apple.com/documentation/xcode/writing_arm64_code_for_apple_platforms. // https://developer.apple.com/documentation/xcode/writing_arm64_code_for_apple_platforms.
@@ -194,8 +195,6 @@ impl ABIMachineSpec for AArch64MachineDeps {
// following ways: // following ways:
// - sign- and zero- extensions of data types less than 32 bits are not // - sign- and zero- extensions of data types less than 32 bits are not
// implemented yet. // implemented yet.
// - i128 arguments passing isn't implemented yet in the standard (non
// MacOS) aarch64 ABI.
// - we align the arguments stack space to a 16-bytes boundary, while // - we align the arguments stack space to a 16-bytes boundary, while
// the MacOS allows aligning only on 8 bytes. In practice it means we're // the MacOS allows aligning only on 8 bytes. In practice it means we're
// slightly overallocating when calling, which is fine, and doesn't // slightly overallocating when calling, which is fine, and doesn't
@@ -265,20 +264,16 @@ impl ABIMachineSpec for AArch64MachineDeps {
"Invalid type for AArch64: {:?}", "Invalid type for AArch64: {:?}",
param.value_type param.value_type
); );
let (rcs, _) = Inst::rc_for_type(param.value_type).unwrap();
assert!(rcs.len() == 1, "Multi-reg values not supported yet");
let rc = rcs[0];
let next_reg = match rc { let (rcs, reg_types) = Inst::rc_for_type(param.value_type)?;
RegClass::I64 => &mut next_xreg,
RegClass::V128 => &mut next_vreg,
_ => panic!("Invalid register class: {:?}", rc),
};
if let Some(param) = try_fill_baldrdash_reg(call_conv, param) { if let Some(param) = try_fill_baldrdash_reg(call_conv, param) {
assert!(rc == RegClass::I64); assert!(rcs[0] == RegClass::I64);
ret.push(param); ret.push(param);
} else if let ir::ArgumentPurpose::StructArgument(size) = param.purpose { continue;
}
if let ir::ArgumentPurpose::StructArgument(size) = param.purpose {
let offset = next_stack as i64; let offset = next_stack as i64;
let size = size as u64; let size = size as u64;
assert!(size % 8 == 0, "StructArgument size is not properly aligned"); assert!(size % 8 == 0, "StructArgument size is not properly aligned");
@@ -288,50 +283,148 @@ impl ABIMachineSpec for AArch64MachineDeps {
size, size,
purpose: param.purpose, purpose: param.purpose,
}); });
} else if *next_reg < max_per_class_reg_vals && remaining_reg_vals > 0 { continue;
let reg = match rc {
RegClass::I64 => xreg(*next_reg),
RegClass::V128 => vreg(*next_reg),
_ => unreachable!(),
};
ret.push(ABIArg::reg(
reg.to_real_reg(),
param.value_type,
param.extension,
param.purpose,
));
*next_reg += 1;
remaining_reg_vals -= 1;
} else {
// Compute the stack slot's size.
let size = (ty_bits(param.value_type) / 8) as u64;
let size = if call_conv == isa::CallConv::AppleAarch64
|| (call_conv.extends_wasmtime() && args_or_rets == ArgsOrRets::Rets)
{
// MacOS aarch64 and Wasmtime allow stack slots with
// sizes less than 8 bytes. They still need to be
// properly aligned on their natural data alignment,
// though.
size
} else {
// Every arg takes a minimum slot of 8 bytes. (16-byte stack
// alignment happens separately after all args.)
std::cmp::max(size, 8)
};
// Align the stack slot.
debug_assert!(size.is_power_of_two());
next_stack = align_to(next_stack, size);
ret.push(ABIArg::stack(
next_stack as i64,
param.value_type,
param.extension,
param.purpose,
));
next_stack += size;
} }
// Handle multi register params
//
// See AArch64 ABI (https://github.com/ARM-software/abi-aa/blob/2021Q1/aapcs64/aapcs64.rst#642parameter-passing-rules), (Section 6.4.2 Stage C).
//
// For arguments with alignment of 16 we round up the the register number
// to the next even value. So we can never allocate for example an i128
// to X1 and X2, we have to skip one register and do X2, X3
// (Stage C.8)
// Note: The Apple ABI deviates a bit here. They don't respect Stage C.8
// and will happily allocate a i128 to X1 and X2
//
// For integer types with alignment of 16 we also have the additional
// restriction of passing the lower half in Xn and the upper half in Xn+1
// (Stage C.9)
//
// For examples of how LLVM handles this: https://godbolt.org/z/bhd3vvEfh
//
// On the Apple ABI it is unspecified if we can spill half the value into the stack
// i.e load the lower half into x7 and the upper half into the stack
// LLVM does not seem to do this, so we are going to replicate that behaviour
let is_multi_reg = rcs.len() >= 2;
if is_multi_reg {
assert!(
rcs.len() == 2,
"Unable to handle multi reg params with more than 2 regs"
);
assert!(
rcs == &[RegClass::I64, RegClass::I64],
"Unable to handle non i64 regs"
);
let reg_class_space = max_per_class_reg_vals - next_xreg;
let reg_space = remaining_reg_vals;
if reg_space >= 2 && reg_class_space >= 2 {
// The aarch64 ABI does not allow us to start a split argument
// at an odd numbered register. So we need to skip one register
//
// TODO: The Fast ABI should probably not skip the register
if !is_apple_cc && next_xreg % 2 != 0 {
next_xreg += 1;
}
let lower_reg = xreg(next_xreg);
let upper_reg = xreg(next_xreg + 1);
ret.push(ABIArg::Slots {
slots: vec![
ABIArgSlot::Reg {
reg: lower_reg.to_real_reg(),
ty: param.value_type,
extension: param.extension,
},
ABIArgSlot::Reg {
reg: upper_reg.to_real_reg(),
ty: param.value_type,
extension: param.extension,
},
],
purpose: param.purpose,
});
next_xreg += 2;
remaining_reg_vals -= 2;
continue;
}
} else {
// Single Register parameters
let rc = rcs[0];
let next_reg = match rc {
RegClass::I64 => &mut next_xreg,
RegClass::V128 => &mut next_vreg,
_ => panic!("Invalid register class: {:?}", rc),
};
if *next_reg < max_per_class_reg_vals && remaining_reg_vals > 0 {
let reg = match rc {
RegClass::I64 => xreg(*next_reg),
RegClass::V128 => vreg(*next_reg),
_ => unreachable!(),
};
ret.push(ABIArg::reg(
reg.to_real_reg(),
param.value_type,
param.extension,
param.purpose,
));
*next_reg += 1;
remaining_reg_vals -= 1;
continue;
}
}
// Spill to the stack
// Compute the stack slot's size.
let size = (ty_bits(param.value_type) / 8) as u64;
let size = if is_apple_cc
|| (call_conv.extends_wasmtime() && args_or_rets == ArgsOrRets::Rets)
{
// MacOS aarch64 and Wasmtime allow stack slots with
// sizes less than 8 bytes. They still need to be
// properly aligned on their natural data alignment,
// though.
size
} else {
// Every arg takes a minimum slot of 8 bytes. (16-byte stack
// alignment happens separately after all args.)
std::cmp::max(size, 8)
};
// Align the stack slot.
debug_assert!(size.is_power_of_two());
next_stack = align_to(next_stack, size);
let slots = reg_types
.iter()
.copied()
// Build the stack locations from each slot
.scan(next_stack, |next_stack, ty| {
let slot_offset = *next_stack as i64;
*next_stack += (ty_bits(ty) / 8) as u64;
Some((ty, slot_offset))
})
.map(|(ty, offset)| ABIArgSlot::Stack {
offset,
ty,
extension: param.extension,
})
.collect();
ret.push(ABIArg::Slots {
slots,
purpose: param.purpose,
});
next_stack += size;
} }
if args_or_rets == ArgsOrRets::Rets && is_baldrdash { if args_or_rets == ArgsOrRets::Rets && is_baldrdash {

View File

@@ -158,42 +158,37 @@ impl NarrowValueMode {
} }
} }
/// Lower an instruction input to a reg. /// Emits instruction(s) to generate the given constant value into newly-allocated
/// /// temporary registers, returning these registers.
/// The given register will be extended appropriately, according to fn generate_constant<C: LowerCtx<I = Inst>>(ctx: &mut C, ty: Type, c: u128) -> ValueRegs<Reg> {
/// `narrow_mode` and the input's type. If extended, the value is let from_bits = ty_bits(ty);
/// always extended to 64 bits, for simplicity. let masked = if from_bits < 128 {
pub(crate) fn put_input_in_reg<C: LowerCtx<I = Inst>>( c & ((1u128 << from_bits) - 1)
ctx: &mut C,
input: InsnInput,
narrow_mode: NarrowValueMode,
) -> Reg {
debug!("put_input_in_reg: input {:?}", input);
let ty = ctx.input_ty(input.insn, input.input);
let from_bits = ty_bits(ty) as u8;
let inputs = ctx.get_input_as_source_or_const(input.insn, input.input);
let in_reg = if let Some(c) = inputs.constant {
// Generate constants fresh at each use to minimize long-range register pressure.
let masked = if from_bits < 64 {
c & ((1u64 << from_bits) - 1)
} else {
c
};
let to_reg = ctx.alloc_tmp(ty).only_reg().unwrap();
for inst in Inst::gen_constant(ValueRegs::one(to_reg), masked as u128, ty, |ty| {
ctx.alloc_tmp(ty).only_reg().unwrap()
})
.into_iter()
{
ctx.emit(inst);
}
to_reg.to_reg()
} else { } else {
ctx.put_input_in_regs(input.insn, input.input) c
.only_reg()
.unwrap()
}; };
let cst_copy = ctx.alloc_tmp(ty);
for inst in Inst::gen_constant(cst_copy, masked, ty, |ty| {
ctx.alloc_tmp(ty).only_reg().unwrap()
})
.into_iter()
{
ctx.emit(inst);
}
non_writable_value_regs(cst_copy)
}
/// Extends a register according to `narrow_mode`.
/// If extended, the value is always extended to 64 bits, for simplicity.
fn extend_reg<C: LowerCtx<I = Inst>>(
ctx: &mut C,
ty: Type,
in_reg: Reg,
is_const: bool,
narrow_mode: NarrowValueMode,
) -> Reg {
let from_bits = ty_bits(ty) as u8;
match (narrow_mode, from_bits) { match (narrow_mode, from_bits) {
(NarrowValueMode::None, _) => in_reg, (NarrowValueMode::None, _) => in_reg,
(NarrowValueMode::ZeroExtend32, n) if n < 32 => { (NarrowValueMode::ZeroExtend32, n) if n < 32 => {
@@ -221,7 +216,7 @@ pub(crate) fn put_input_in_reg<C: LowerCtx<I = Inst>>(
(NarrowValueMode::ZeroExtend32, 32) | (NarrowValueMode::SignExtend32, 32) => in_reg, (NarrowValueMode::ZeroExtend32, 32) | (NarrowValueMode::SignExtend32, 32) => in_reg,
(NarrowValueMode::ZeroExtend64, n) if n < 64 => { (NarrowValueMode::ZeroExtend64, n) if n < 64 => {
if inputs.constant.is_some() { if is_const {
// Constants are zero-extended to full 64-bit width on load already. // Constants are zero-extended to full 64-bit width on load already.
in_reg in_reg
} else { } else {
@@ -257,6 +252,53 @@ pub(crate) fn put_input_in_reg<C: LowerCtx<I = Inst>>(
} }
} }
/// Lowers an instruction input to multiple regs
fn lower_input_to_regs<C: LowerCtx<I = Inst>>(
ctx: &mut C,
input: InsnInput,
) -> (ValueRegs<Reg>, Type, bool) {
debug!("lower_input_to_regs: input {:?}", input);
let ty = ctx.input_ty(input.insn, input.input);
let inputs = ctx.get_input_as_source_or_const(input.insn, input.input);
let is_const = inputs.constant.is_some();
let in_regs = if let Some(c) = inputs.constant {
// Generate constants fresh at each use to minimize long-range register pressure.
generate_constant(ctx, ty, c as u128)
} else {
ctx.put_input_in_regs(input.insn, input.input)
};
(in_regs, ty, is_const)
}
/// Lower an instruction input to a register
///
/// The given register will be extended appropriately, according to
/// `narrow_mode` and the input's type. If extended, the value is
/// always extended to 64 bits, for simplicity.
pub(crate) fn put_input_in_reg<C: LowerCtx<I = Inst>>(
ctx: &mut C,
input: InsnInput,
narrow_mode: NarrowValueMode,
) -> Reg {
let (in_regs, ty, is_const) = lower_input_to_regs(ctx, input);
let reg = in_regs
.only_reg()
.expect("Multi-register value not expected");
extend_reg(ctx, ty, reg, is_const, narrow_mode)
}
/// Lower an instruction input to multiple regs
pub(crate) fn put_input_in_regs<C: LowerCtx<I = Inst>>(
ctx: &mut C,
input: InsnInput,
) -> ValueRegs<Reg> {
let (in_regs, _, _) = lower_input_to_regs(ctx, input);
in_regs
}
/// Lower an instruction input to a reg or reg/shift, or reg/extend operand. /// Lower an instruction input to a reg or reg/shift, or reg/extend operand.
/// ///
/// The `narrow_mode` flag indicates whether the consumer of this value needs /// The `narrow_mode` flag indicates whether the consumer of this value needs

View File

@@ -1529,10 +1529,21 @@ pub(crate) fn lower_insn_to_regs<C: LowerCtx<I = Inst>>(
// N.B.: according to the AArch64 ABI, the top bits of a register // N.B.: according to the AArch64 ABI, the top bits of a register
// (above the bits for the value's type) are undefined, so we // (above the bits for the value's type) are undefined, so we
// need not extend the return values. // need not extend the return values.
let reg = put_input_in_reg(ctx, *input, NarrowValueMode::None); let src_regs = put_input_in_regs(ctx, *input);
let retval_reg = ctx.retval(i).only_reg().unwrap(); let retval_regs = ctx.retval(i);
assert_eq!(src_regs.len(), retval_regs.len());
let ty = ctx.input_ty(insn, i); let ty = ctx.input_ty(insn, i);
ctx.emit(Inst::gen_move(retval_reg, reg, ty)); let (_, tys) = Inst::rc_for_type(ty)?;
src_regs
.regs()
.iter()
.zip(retval_regs.regs().iter())
.zip(tys.iter())
.for_each(|((&src, &dst), &ty)| {
ctx.emit(Inst::gen_move(dst, src, ty));
});
} }
// N.B.: the Ret itself is generated by the ABI. // N.B.: the Ret itself is generated by the ABI.
} }
@@ -1710,13 +1721,13 @@ pub(crate) fn lower_insn_to_regs<C: LowerCtx<I = Inst>>(
assert!(inputs.len() == abi.num_args()); assert!(inputs.len() == abi.num_args());
for i in abi.get_copy_to_arg_order() { for i in abi.get_copy_to_arg_order() {
let input = inputs[i]; let input = inputs[i];
let arg_reg = put_input_in_reg(ctx, input, NarrowValueMode::None); let arg_regs = put_input_in_regs(ctx, input);
abi.emit_copy_regs_to_arg(ctx, i, ValueRegs::one(arg_reg)); abi.emit_copy_regs_to_arg(ctx, i, arg_regs);
} }
abi.emit_call(ctx); abi.emit_call(ctx);
for (i, output) in outputs.iter().enumerate() { for (i, output) in outputs.iter().enumerate() {
let retval_reg = get_output_reg(ctx, *output).only_reg().unwrap(); let retval_regs = get_output_reg(ctx, *output);
abi.emit_copy_retval_to_regs(ctx, i, ValueRegs::one(retval_reg)); abi.emit_copy_retval_to_regs(ctx, i, retval_regs);
} }
abi.emit_stack_post_adjust(ctx); abi.emit_stack_post_adjust(ctx);
} }
@@ -2263,7 +2274,39 @@ pub(crate) fn lower_insn_to_regs<C: LowerCtx<I = Inst>>(
panic!("Vector ops not implemented."); panic!("Vector ops not implemented.");
} }
Opcode::Isplit | Opcode::Iconcat => panic!("Vector ops not supported."), Opcode::Isplit => {
assert_eq!(
ctx.input_ty(insn, 0),
I128,
"Isplit only implemented for i128's"
);
assert_eq!(ctx.output_ty(insn, 0), I64);
assert_eq!(ctx.output_ty(insn, 1), I64);
let src_regs = put_input_in_regs(ctx, inputs[0]);
let dst_lo = get_output_reg(ctx, outputs[0]).only_reg().unwrap();
let dst_hi = get_output_reg(ctx, outputs[1]).only_reg().unwrap();
ctx.emit(Inst::gen_move(dst_lo, src_regs.regs()[0], I64));
ctx.emit(Inst::gen_move(dst_hi, src_regs.regs()[1], I64));
}
Opcode::Iconcat => {
assert_eq!(
ctx.output_ty(insn, 0),
I128,
"Iconcat only implemented for i128's"
);
assert_eq!(ctx.input_ty(insn, 0), I64);
assert_eq!(ctx.input_ty(insn, 1), I64);
let src_lo = put_input_in_reg(ctx, inputs[0], NarrowValueMode::None);
let src_hi = put_input_in_reg(ctx, inputs[1], NarrowValueMode::None);
let dst = get_output_reg(ctx, outputs[0]);
ctx.emit(Inst::gen_move(dst.regs()[0], src_lo, I64));
ctx.emit(Inst::gen_move(dst.regs()[1], src_hi, I64));
}
Opcode::Imax | Opcode::Umax | Opcode::Umin | Opcode::Imin => { Opcode::Imax | Opcode::Umax | Opcode::Umin | Opcode::Imin => {
let alu_op = match op { let alu_op = match op {

View File

@@ -250,3 +250,232 @@ block0:
; nextln: add sp, sp, #32 ; nextln: add sp, sp, #32
; nextln: ldp fp, lr, [sp], #16 ; nextln: ldp fp, lr, [sp], #16
; nextln: ret ; nextln: ret
; i128 tests
function %f11(i128, i64) -> i64 {
block0(v0: i128, v1: i64):
v2, v3 = isplit v0
return v3
}
; check: stp fp, lr, [sp, #-16]!
; nextln: mov fp, sp
; nextln: mov x0, x1
; nextln: ldp fp, lr, [sp], #16
; nextln: ret
function %f11_call(i64) -> i64 {
fn0 = %f11(i128, i64) -> i64
block0(v0: i64):
v1 = iconst.i64 42
v2 = iconcat v1, v0
v3 = call fn0(v2, v1)
return v3
}
; check: stp fp, lr, [sp, #-16]!
; nextln: mov fp, sp
; nextln: mov x1, x0
; nextln: movz x0, #42
; nextln: movz x2, #42
; nextln: ldr x3, 8 ; b 12 ; data
; nextln: blr x3
; nextln: ldp fp, lr, [sp], #16
; nextln: ret
; The AArch64 ABI requires that the i128 argument be aligned
; and to be passed in x2 and x3
function %f12(i64, i128) -> i64 {
block0(v0: i64, v1: i128):
v2, v3 = isplit v1
return v2
}
; check: stp fp, lr, [sp, #-16]!
; nextln: mov fp, sp
; nextln: mov x0, x2
; nextln: ldp fp, lr, [sp], #16
; nextln: ret
function %f12_call(i64) -> i64 {
fn0 = %f12(i64, i128) -> i64
block0(v0: i64):
v1 = iconst.i64 42
v2 = iconcat v0, v1
v3 = call fn0(v1, v2)
return v3
}
; check: stp fp, lr, [sp, #-16]!
; nextln: mov fp, sp
; nextln: movz x3, #42
; nextln: mov x2, x0
; nextln: movz x0, #42
; nextln: ldr x1, 8 ; b 12 ; data
; nextln: blr x1
; nextln: ldp fp, lr, [sp], #16
; nextln: ret
; The Apple AArch64 ABI allows the i128 argument to not be aligned
; and to be passed in x1 and x2
function %f13(i64, i128) -> i64 apple_aarch64 {
block0(v0: i64, v1: i128):
v2, v3 = isplit v1
return v2
}
; check: stp fp, lr, [sp, #-16]!
; nextln: mov fp, sp
; nextln: mov x0, x1
; nextln: ldp fp, lr, [sp], #16
; nextln: ret
function %f13_call(i64) -> i64 apple_aarch64 {
fn0 = %f13(i64, i128) -> i64 apple_aarch64
block0(v0: i64):
v1 = iconst.i64 42
v2 = iconcat v0, v1
v3 = call fn0(v1, v2)
return v3
}
; check: stp fp, lr, [sp, #-16]!
; nextln: mov fp, sp
; nextln: movz x2, #42
; nextln: mov x1, x0
; nextln: movz x0, #42
; nextln: ldr x3, 8 ; b 12 ; data
; nextln: blr x3
; nextln: ldp fp, lr, [sp], #16
; nextln: ret
; We only have 8 registers to pass data in
; make sure we spill the last argument even though there is one slot available
function %f14(i128, i128, i128, i64, i128) -> i128 {
block0(v0: i128, v1: i128, v2: i128, v3: i64, v4: i128):
return v4
}
; check: stp fp, lr, [sp, #-16]!
; nextln: mov fp, sp
; nextln: ldur x0, [fp, #16]
; nextln: ldur x1, [fp, #24]
; nextln: ldp fp, lr, [sp], #16
; nextln: ret
function %f14_call(i128, i64) -> i128 {
fn0 = %f14(i128, i128, i128, i64, i128) -> i128
block0(v0: i128, v1: i64):
v2 = call fn0(v0, v0, v0, v1, v0)
return v2
}
; check: stp fp, lr, [sp, #-16]!
; nextln: mov fp, sp
; TODO: Some codegen optimization possible here with x0,x1 moving to x7,x8 and then moving back
; nextln: mov x7, x0
; nextln: mov x8, x1
; nextln: mov x6, x2
; nextln: sub sp, sp, #16
; nextln: virtual_sp_offset_adjust 16
; nextln: mov x0, x7
; nextln: mov x1, x8
; nextln: mov x2, x7
; nextln: mov x3, x8
; nextln: mov x4, x7
; nextln: mov x5, x8
; nextln: stur x7, [sp]
; nextln: stur x8, [sp, #8]
; nextln: ldr x7, 8 ; b 12 ; data
; nextln: blr x7
; nextln: add sp, sp, #16
; nextln: virtual_sp_offset_adjust -16
; nextln: ldp fp, lr, [sp], #16
; nextln: ret
; We have one register slot available (Similar to %f14), however apple
; allows us to start i128 on non even numbered registers (x7 in this case).
;
; It is unspecified if we can split the i128 into x7 + the stack.
; In practice LLVM does not do this, so we are going to go with that.
function %f15(i128, i128, i128, i64, i128) -> i128 apple_aarch64{
block0(v0: i128, v1: i128, v2: i128, v3: i64, v4: i128):
return v4
}
; check: stp fp, lr, [sp, #-16]!
; nextln: mov fp, sp
; nextln: ldur x0, [fp, #16]
; nextln: ldur x1, [fp, #24]
; nextln: ldp fp, lr, [sp], #16
; nextln: ret
function %f15_call(i128, i64) -> i128 apple_aarch64 {
fn0 = %f15(i128, i128, i128, i64, i128) -> i128 apple_aarch64
block0(v0: i128, v1: i64):
v2 = call fn0(v0, v0, v0, v1, v0)
return v2
}
; check: stp fp, lr, [sp, #-16]!
; nextln: mov fp, sp
; nextln: mov x7, x0
; nextln: mov x8, x1
; nextln: mov x6, x2
; nextln: sub sp, sp, #16
; nextln: virtual_sp_offset_adjust 16
; nextln: mov x0, x7
; nextln: mov x1, x8
; nextln: mov x2, x7
; nextln: mov x3, x8
; nextln: mov x4, x7
; nextln: mov x5, x8
; nextln: stur x7, [sp]
; nextln: stur x8, [sp, #8]
; nextln: ldr x7, 8 ; b 12 ; data
; nextln: blr x7
; nextln: add sp, sp, #16
; nextln: virtual_sp_offset_adjust -16
; nextln: ldp fp, lr, [sp], #16
; nextln: ret
function %f16() -> i32, i32 wasmtime_system_v {
block0:
v0 = iconst.i32 0
v1 = iconst.i32 1
return v0, v1
}
; check: stp fp, lr, [sp, #-16]!
; nextln: mov fp, sp
; nextln: mov x1, x0
; nextln: movz x0, #0
; nextln: movz x2, #1
; nextln: stur w2, [x1]
; nextln: ldp fp, lr, [sp], #16
; nextln: ret