Merge pull request #3738 from cfallin/pooling-affinity

Pooling allocator: add a reuse-affinity policy.
This commit is contained in:
Chris Fallin
2022-02-02 13:11:39 -08:00
committed by GitHub
11 changed files with 724 additions and 129 deletions

View File

@@ -11,7 +11,7 @@ use crate::vmcontext::{
VMCallerCheckedAnyfunc, VMContext, VMFunctionImport, VMGlobalDefinition, VMGlobalImport, VMCallerCheckedAnyfunc, VMContext, VMFunctionImport, VMGlobalDefinition, VMGlobalImport,
VMInterrupts, VMMemoryDefinition, VMMemoryImport, VMTableDefinition, VMTableImport, VMInterrupts, VMMemoryDefinition, VMMemoryImport, VMTableDefinition, VMTableImport,
}; };
use crate::{ExportFunction, ExportGlobal, ExportMemory, ExportTable, Store}; use crate::{CompiledModuleId, ExportFunction, ExportGlobal, ExportMemory, ExportTable, Store};
use anyhow::Error; use anyhow::Error;
use memoffset::offset_of; use memoffset::offset_of;
use more_asserts::assert_lt; use more_asserts::assert_lt;
@@ -54,6 +54,9 @@ pub(crate) struct Instance {
/// The `Module` this `Instance` was instantiated from. /// The `Module` this `Instance` was instantiated from.
module: Arc<Module>, module: Arc<Module>,
/// The unique ID for the `Module` this `Instance` was instantiated from.
unique_id: Option<CompiledModuleId>,
/// Offsets in the `vmctx` region, precomputed from the `module` above. /// Offsets in the `vmctx` region, precomputed from the `module` above.
offsets: VMOffsets<HostPtr>, offsets: VMOffsets<HostPtr>,
@@ -100,6 +103,7 @@ impl Instance {
/// Helper for allocators; not a public API. /// Helper for allocators; not a public API.
pub(crate) fn create_raw( pub(crate) fn create_raw(
module: &Arc<Module>, module: &Arc<Module>,
unique_id: Option<CompiledModuleId>,
wasm_data: &'static [u8], wasm_data: &'static [u8],
memories: PrimaryMap<DefinedMemoryIndex, Memory>, memories: PrimaryMap<DefinedMemoryIndex, Memory>,
tables: PrimaryMap<DefinedTableIndex, Table>, tables: PrimaryMap<DefinedTableIndex, Table>,
@@ -107,6 +111,7 @@ impl Instance {
) -> Instance { ) -> Instance {
Instance { Instance {
module: module.clone(), module: module.clone(),
unique_id,
offsets: VMOffsets::new(HostPtr, &module), offsets: VMOffsets::new(HostPtr, &module),
memories, memories,
tables, tables,

View File

@@ -7,7 +7,7 @@ use crate::vmcontext::{
VMBuiltinFunctionsArray, VMCallerCheckedAnyfunc, VMGlobalDefinition, VMSharedSignatureIndex, VMBuiltinFunctionsArray, VMCallerCheckedAnyfunc, VMGlobalDefinition, VMSharedSignatureIndex,
}; };
use crate::ModuleMemFds; use crate::ModuleMemFds;
use crate::Store; use crate::{CompiledModuleId, Store};
use anyhow::Result; use anyhow::Result;
use std::alloc; use std::alloc;
use std::any::Any; use std::any::Any;
@@ -35,6 +35,9 @@ pub struct InstanceAllocationRequest<'a> {
/// The module being instantiated. /// The module being instantiated.
pub module: Arc<Module>, pub module: Arc<Module>,
/// The unique ID of the module being allocated within this engine.
pub unique_id: Option<CompiledModuleId>,
/// The base address of where JIT functions are located. /// The base address of where JIT functions are located.
pub image_base: usize, pub image_base: usize,
@@ -726,8 +729,14 @@ unsafe impl InstanceAllocator for OnDemandInstanceAllocator {
let host_state = std::mem::replace(&mut req.host_state, Box::new(())); let host_state = std::mem::replace(&mut req.host_state, Box::new(()));
let mut handle = { let mut handle = {
let instance = let instance = Instance::create_raw(
Instance::create_raw(&req.module, &*req.wasm_data, memories, tables, host_state); &req.module,
req.unique_id,
&*req.wasm_data,
memories,
tables,
host_state,
);
let layout = instance.alloc_layout(); let layout = instance.alloc_layout();
let instance_ptr = alloc::alloc(layout) as *mut Instance; let instance_ptr = alloc::alloc(layout) as *mut Instance;
if instance_ptr.is_null() { if instance_ptr.is_null() {

View File

@@ -15,7 +15,6 @@ use crate::MemFdSlot;
use crate::{instance::Instance, Memory, Mmap, ModuleMemFds, Table}; use crate::{instance::Instance, Memory, Mmap, ModuleMemFds, Table};
use anyhow::{anyhow, bail, Context, Result}; use anyhow::{anyhow, bail, Context, Result};
use libc::c_void; use libc::c_void;
use rand::Rng;
use std::convert::TryFrom; use std::convert::TryFrom;
use std::mem; use std::mem;
use std::sync::Arc; use std::sync::Arc;
@@ -25,6 +24,9 @@ use wasmtime_environ::{
WASM_PAGE_SIZE, WASM_PAGE_SIZE,
}; };
mod index_allocator;
use index_allocator::{PoolingAllocationState, SlotId};
cfg_if::cfg_if! { cfg_if::cfg_if! {
if #[cfg(windows)] { if #[cfg(windows)] {
mod windows; mod windows;
@@ -250,20 +252,19 @@ pub enum PoolingAllocationStrategy {
NextAvailable, NextAvailable,
/// Allocate from a random available instance. /// Allocate from a random available instance.
Random, Random,
} /// Try to allocate an instance slot that was previously used for
/// the same module, potentially enabling faster instantiation by
impl PoolingAllocationStrategy { /// reusing e.g. memory mappings.
fn next(&self, free_count: usize) -> usize { ReuseAffinity,
debug_assert!(free_count > 0);
match self {
Self::NextAvailable => free_count - 1,
Self::Random => rand::thread_rng().gen_range(0..free_count),
}
}
} }
impl Default for PoolingAllocationStrategy { impl Default for PoolingAllocationStrategy {
#[cfg(feature = "memfd-allocator")]
fn default() -> Self {
Self::ReuseAffinity
}
#[cfg(not(feature = "memfd-allocator"))]
fn default() -> Self { fn default() -> Self {
Self::NextAvailable Self::NextAvailable
} }
@@ -283,13 +284,14 @@ struct InstancePool {
mapping: Mmap, mapping: Mmap,
instance_size: usize, instance_size: usize,
max_instances: usize, max_instances: usize,
free_list: Mutex<Vec<usize>>, index_allocator: Mutex<PoolingAllocationState>,
memories: MemoryPool, memories: MemoryPool,
tables: TablePool, tables: TablePool,
} }
impl InstancePool { impl InstancePool {
fn new( fn new(
strategy: PoolingAllocationStrategy,
module_limits: &ModuleLimits, module_limits: &ModuleLimits,
instance_limits: &InstanceLimits, instance_limits: &InstanceLimits,
tunables: &Tunables, tunables: &Tunables,
@@ -330,7 +332,7 @@ impl InstancePool {
mapping, mapping,
instance_size, instance_size,
max_instances, max_instances,
free_list: Mutex::new((0..max_instances).collect()), index_allocator: Mutex::new(PoolingAllocationState::new(strategy, max_instances)),
memories: MemoryPool::new(module_limits, instance_limits, tunables)?, memories: MemoryPool::new(module_limits, instance_limits, tunables)?,
tables: TablePool::new(module_limits, instance_limits)?, tables: TablePool::new(module_limits, instance_limits)?,
}; };
@@ -351,6 +353,7 @@ impl InstancePool {
let host_state = std::mem::replace(&mut req.host_state, Box::new(())); let host_state = std::mem::replace(&mut req.host_state, Box::new(()));
let instance_data = Instance::create_raw( let instance_data = Instance::create_raw(
&req.module, &req.module,
req.unique_id,
&*req.wasm_data, &*req.wasm_data,
PrimaryMap::default(), PrimaryMap::default(),
PrimaryMap::default(), PrimaryMap::default(),
@@ -362,6 +365,7 @@ impl InstancePool {
// chosen slot before we do anything else with it. (This is // chosen slot before we do anything else with it. (This is
// paired with a `drop_in_place` in deallocate below.) // paired with a `drop_in_place` in deallocate below.)
let instance = self.instance(index); let instance = self.instance(index);
std::ptr::write(instance as _, instance_data); std::ptr::write(instance as _, instance_data);
// set_instance_memories and _tables will need the store before we can completely // set_instance_memories and _tables will need the store before we can completely
@@ -393,16 +397,14 @@ impl InstancePool {
fn allocate( fn allocate(
&self, &self,
strategy: PoolingAllocationStrategy,
req: InstanceAllocationRequest, req: InstanceAllocationRequest,
) -> Result<InstanceHandle, InstantiationError> { ) -> Result<InstanceHandle, InstantiationError> {
let index = { let index = {
let mut free_list = self.free_list.lock().unwrap(); let mut alloc = self.index_allocator.lock().unwrap();
if free_list.is_empty() { if alloc.is_empty() {
return Err(InstantiationError::Limit(self.max_instances as u32)); return Err(InstantiationError::Limit(self.max_instances as u32));
} }
let free_index = strategy.next(free_list.len()); alloc.alloc(req.unique_id).index()
free_list.swap_remove(free_index)
}; };
unsafe { unsafe {
@@ -497,7 +499,7 @@ impl InstancePool {
// touched again until we write a fresh Instance in-place with // touched again until we write a fresh Instance in-place with
// std::ptr::write in allocate() above. // std::ptr::write in allocate() above.
self.free_list.lock().unwrap().push(index); self.index_allocator.lock().unwrap().free(SlotId(index));
} }
fn set_instance_memories( fn set_instance_memories(
@@ -860,7 +862,7 @@ struct StackPool {
stack_size: usize, stack_size: usize,
max_instances: usize, max_instances: usize,
page_size: usize, page_size: usize,
free_list: Mutex<Vec<usize>>, index_allocator: Mutex<PoolingAllocationState>,
} }
#[cfg(all(feature = "async", unix))] #[cfg(all(feature = "async", unix))]
@@ -903,25 +905,29 @@ impl StackPool {
stack_size, stack_size,
max_instances, max_instances,
page_size, page_size,
free_list: Mutex::new((0..max_instances).collect()), // We always use a `NextAvailable` strategy for stack
// allocation. We don't want or need an affinity policy
// here: stacks do not benefit from being allocated to the
// same compiled module with the same image (they always
// start zeroed just the same for everyone).
index_allocator: Mutex::new(PoolingAllocationState::new(
PoolingAllocationStrategy::NextAvailable,
max_instances,
)),
}) })
} }
fn allocate( fn allocate(&self) -> Result<wasmtime_fiber::FiberStack, FiberStackError> {
&self,
strategy: PoolingAllocationStrategy,
) -> Result<wasmtime_fiber::FiberStack, FiberStackError> {
if self.stack_size == 0 { if self.stack_size == 0 {
return Err(FiberStackError::NotSupported); return Err(FiberStackError::NotSupported);
} }
let index = { let index = {
let mut free_list = self.free_list.lock().unwrap(); let mut alloc = self.index_allocator.lock().unwrap();
if free_list.is_empty() { if alloc.is_empty() {
return Err(FiberStackError::Limit(self.max_instances as u32)); return Err(FiberStackError::Limit(self.max_instances as u32));
} }
let free_index = strategy.next(free_list.len()); alloc.alloc(None).index()
free_list.swap_remove(free_index)
}; };
debug_assert!(index < self.max_instances); debug_assert!(index < self.max_instances);
@@ -967,7 +973,7 @@ impl StackPool {
decommit_stack_pages(bottom_of_stack as _, stack_size).unwrap(); decommit_stack_pages(bottom_of_stack as _, stack_size).unwrap();
self.free_list.lock().unwrap().push(index); self.index_allocator.lock().unwrap().free(SlotId(index));
} }
} }
@@ -978,7 +984,6 @@ impl StackPool {
/// Note: the resource pools are manually dropped so that the fault handler terminates correctly. /// Note: the resource pools are manually dropped so that the fault handler terminates correctly.
#[derive(Debug)] #[derive(Debug)]
pub struct PoolingInstanceAllocator { pub struct PoolingInstanceAllocator {
strategy: PoolingAllocationStrategy,
module_limits: ModuleLimits, module_limits: ModuleLimits,
// This is manually drop so that the pools unmap their memory before the page fault handler drops. // This is manually drop so that the pools unmap their memory before the page fault handler drops.
instances: mem::ManuallyDrop<InstancePool>, instances: mem::ManuallyDrop<InstancePool>,
@@ -1003,7 +1008,7 @@ impl PoolingInstanceAllocator {
bail!("the instance count limit cannot be zero"); bail!("the instance count limit cannot be zero");
} }
let instances = InstancePool::new(&module_limits, &instance_limits, tunables)?; let instances = InstancePool::new(strategy, &module_limits, &instance_limits, tunables)?;
#[cfg(all(feature = "uffd", target_os = "linux"))] #[cfg(all(feature = "uffd", target_os = "linux"))]
let _fault_handler = imp::PageFaultHandler::new(&instances)?; let _fault_handler = imp::PageFaultHandler::new(&instances)?;
@@ -1011,7 +1016,6 @@ impl PoolingInstanceAllocator {
drop(stack_size); // suppress unused warnings w/o async feature drop(stack_size); // suppress unused warnings w/o async feature
Ok(Self { Ok(Self {
strategy,
module_limits, module_limits,
instances: mem::ManuallyDrop::new(instances), instances: mem::ManuallyDrop::new(instances),
#[cfg(all(feature = "async", unix))] #[cfg(all(feature = "async", unix))]
@@ -1050,7 +1054,7 @@ unsafe impl InstanceAllocator for PoolingInstanceAllocator {
&self, &self,
req: InstanceAllocationRequest, req: InstanceAllocationRequest,
) -> Result<InstanceHandle, InstantiationError> { ) -> Result<InstanceHandle, InstantiationError> {
self.instances.allocate(self.strategy, req) self.instances.allocate(req)
} }
unsafe fn initialize( unsafe fn initialize(
@@ -1097,7 +1101,7 @@ unsafe impl InstanceAllocator for PoolingInstanceAllocator {
#[cfg(all(feature = "async", unix))] #[cfg(all(feature = "async", unix))]
fn allocate_fiber_stack(&self) -> Result<wasmtime_fiber::FiberStack, FiberStackError> { fn allocate_fiber_stack(&self) -> Result<wasmtime_fiber::FiberStack, FiberStackError> {
self.stacks.allocate(self.strategy) self.stacks.allocate()
} }
#[cfg(all(feature = "async", unix))] #[cfg(all(feature = "async", unix))]
@@ -1417,21 +1421,6 @@ mod test {
); );
} }
#[test]
fn test_next_available_allocation_strategy() {
let strat = PoolingAllocationStrategy::NextAvailable;
assert_eq!(strat.next(10), 9);
assert_eq!(strat.next(5), 4);
assert_eq!(strat.next(1), 0);
}
#[test]
fn test_random_allocation_strategy() {
let strat = PoolingAllocationStrategy::Random;
assert!(strat.next(100) < 100);
assert_eq!(strat.next(1), 0);
}
#[cfg(target_pointer_width = "64")] #[cfg(target_pointer_width = "64")]
#[test] #[test]
fn test_instance_pool() -> Result<()> { fn test_instance_pool() -> Result<()> {
@@ -1451,6 +1440,7 @@ mod test {
let instance_limits = InstanceLimits { count: 3 }; let instance_limits = InstanceLimits { count: 3 };
let instances = InstancePool::new( let instances = InstancePool::new(
PoolingAllocationStrategy::NextAvailable,
&module_limits, &module_limits,
&instance_limits, &instance_limits,
&Tunables { &Tunables {
@@ -1464,7 +1454,10 @@ mod test {
assert_eq!(instances.instance_size, region::page::size()); assert_eq!(instances.instance_size, region::page::size());
assert_eq!(instances.max_instances, 3); assert_eq!(instances.max_instances, 3);
assert_eq!(&*instances.free_list.lock().unwrap(), &[0, 1, 2]); assert_eq!(
instances.index_allocator.lock().unwrap().testing_freelist(),
&[SlotId(0), SlotId(1), SlotId(2)]
);
let mut handles = Vec::new(); let mut handles = Vec::new();
let module = Arc::new(Module::default()); let module = Arc::new(Module::default());
@@ -1473,10 +1466,9 @@ mod test {
for _ in (0..3).rev() { for _ in (0..3).rev() {
handles.push( handles.push(
instances instances
.allocate( .allocate(InstanceAllocationRequest {
PoolingAllocationStrategy::NextAvailable,
InstanceAllocationRequest {
module: module.clone(), module: module.clone(),
unique_id: None,
image_base: 0, image_base: 0,
functions, functions,
imports: Imports { imports: Imports {
@@ -1490,18 +1482,19 @@ mod test {
store: StorePtr::empty(), store: StorePtr::empty(),
wasm_data: &[], wasm_data: &[],
memfds: None, memfds: None,
}, })
)
.expect("allocation should succeed"), .expect("allocation should succeed"),
); );
} }
assert_eq!(&*instances.free_list.lock().unwrap(), &[]); assert_eq!(
instances.index_allocator.lock().unwrap().testing_freelist(),
&[]
);
match instances.allocate( match instances.allocate(InstanceAllocationRequest {
PoolingAllocationStrategy::NextAvailable,
InstanceAllocationRequest {
module: module.clone(), module: module.clone(),
unique_id: None,
functions, functions,
image_base: 0, image_base: 0,
imports: Imports { imports: Imports {
@@ -1515,8 +1508,7 @@ mod test {
store: StorePtr::empty(), store: StorePtr::empty(),
wasm_data: &[], wasm_data: &[],
memfds: None, memfds: None,
}, }) {
) {
Err(InstantiationError::Limit(3)) => {} Err(InstantiationError::Limit(3)) => {}
_ => panic!("unexpected error"), _ => panic!("unexpected error"),
}; };
@@ -1525,7 +1517,10 @@ mod test {
instances.deallocate(&handle); instances.deallocate(&handle);
} }
assert_eq!(&*instances.free_list.lock().unwrap(), &[2, 1, 0]); assert_eq!(
instances.index_allocator.lock().unwrap().testing_freelist(),
&[SlotId(2), SlotId(1), SlotId(0)]
);
Ok(()) Ok(())
} }
@@ -1635,17 +1630,26 @@ mod test {
assert_eq!(pool.page_size, native_page_size); assert_eq!(pool.page_size, native_page_size);
assert_eq!( assert_eq!(
&*pool.free_list.lock().unwrap(), pool.index_allocator.lock().unwrap().testing_freelist(),
&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], &[
SlotId(0),
SlotId(1),
SlotId(2),
SlotId(3),
SlotId(4),
SlotId(5),
SlotId(6),
SlotId(7),
SlotId(8),
SlotId(9)
],
); );
let base = pool.mapping.as_ptr() as usize; let base = pool.mapping.as_ptr() as usize;
let mut stacks = Vec::new(); let mut stacks = Vec::new();
for i in (0..10).rev() { for i in (0..10).rev() {
let stack = pool let stack = pool.allocate().expect("allocation should succeed");
.allocate(PoolingAllocationStrategy::NextAvailable)
.expect("allocation should succeed");
assert_eq!( assert_eq!(
((stack.top().unwrap() as usize - base) / pool.stack_size) - 1, ((stack.top().unwrap() as usize - base) / pool.stack_size) - 1,
i i
@@ -1653,12 +1657,9 @@ mod test {
stacks.push(stack); stacks.push(stack);
} }
assert_eq!(&*pool.free_list.lock().unwrap(), &[]); assert_eq!(pool.index_allocator.lock().unwrap().testing_freelist(), &[]);
match pool match pool.allocate().unwrap_err() {
.allocate(PoolingAllocationStrategy::NextAvailable)
.unwrap_err()
{
FiberStackError::Limit(10) => {} FiberStackError::Limit(10) => {}
_ => panic!("unexpected error"), _ => panic!("unexpected error"),
}; };
@@ -1668,8 +1669,19 @@ mod test {
} }
assert_eq!( assert_eq!(
&*pool.free_list.lock().unwrap(), pool.index_allocator.lock().unwrap().testing_freelist(),
&[9, 8, 7, 6, 5, 4, 3, 2, 1, 0], &[
SlotId(9),
SlotId(8),
SlotId(7),
SlotId(6),
SlotId(5),
SlotId(4),
SlotId(3),
SlotId(2),
SlotId(1),
SlotId(0)
],
); );
Ok(()) Ok(())

View File

@@ -0,0 +1,541 @@
//! Index/slot allocator policies for the pooling allocator.
use super::PoolingAllocationStrategy;
use crate::CompiledModuleId;
use rand::Rng;
use std::collections::HashMap;
/// A slot index. The job of this allocator is to hand out these
/// indices.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct SlotId(pub usize);
impl SlotId {
/// The index of this slot.
pub fn index(self) -> usize {
self.0
}
}
/// An index in the global freelist.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct GlobalFreeListIndex(usize);
impl GlobalFreeListIndex {
/// The index of this slot.
fn index(self) -> usize {
self.0
}
}
/// An index in a per-module freelist.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct PerModuleFreeListIndex(usize);
impl PerModuleFreeListIndex {
/// The index of this slot.
fn index(self) -> usize {
self.0
}
}
#[derive(Clone, Debug)]
pub(crate) enum PoolingAllocationState {
NextAvailable(Vec<SlotId>),
Random(Vec<SlotId>),
/// Reuse-affinity policy state.
///
/// The data structures here deserve a little explanation:
///
/// - free_list: this is a vec of slot indices that are free, no
/// matter their affinities (or no affinity at all).
/// - per_module: this is a hashmap of vecs of slot indices that
/// are free, with affinity for particular module IDs. A slot may
/// appear in zero or one of these lists.
/// - slot_state: indicates what state each slot is in: allocated
/// (Taken), only in free_list (Empty), or in free_list and a
/// per_module list (Affinity).
///
/// The slot state tracks a slot's index in the global and
/// per-module freelists, so it can be efficiently removed from
/// both. We take some care to keep these up-to-date as well.
///
/// On allocation, we first try to find a slot with affinity for
/// the given module ID, if any. If not, we pick a random slot
/// ID. This random choice is unbiased across all free slots.
ReuseAffinity {
/// Free-list of all slots. We use this to pick a victim when
/// we don't have an appropriate slot with the preferred
/// affinity.
free_list: Vec<SlotId>,
/// Invariant: any module ID in this hashmap must have a
/// non-empty list of free slots (otherwise we remove it). We
/// remove a module's freelist when we have no more slots with
/// affinity for that module.
per_module: HashMap<CompiledModuleId, Vec<SlotId>>,
/// The state of any given slot. Records indices in the above
/// list (empty) or two lists (with affinity), and these
/// indices are kept up-to-date to allow fast removal.
slot_state: Vec<SlotState>,
},
}
#[derive(Clone, Debug)]
pub(crate) enum SlotState {
/// Currently allocated.
///
/// Invariant: no slot in this state has its index in either
/// `free_list` or any list in `per_module`.
Taken(Option<CompiledModuleId>),
/// Currently free. A free slot is able to be allocated for any
/// request, but may have affinity to a certain module that we
/// prefer to use it for.
///
/// Invariant: every slot in this state has its index in at least
/// `free_list`, and possibly a `per_module` free-list; see
/// FreeSlotState.
Free(FreeSlotState),
}
impl SlotState {
fn unwrap_free(&self) -> &FreeSlotState {
match self {
&Self::Free(ref free) => free,
_ => panic!("Slot not free"),
}
}
fn unwrap_free_mut(&mut self) -> &mut FreeSlotState {
match self {
&mut Self::Free(ref mut free) => free,
_ => panic!("Slot not free"),
}
}
fn unwrap_module_id(&self) -> Option<CompiledModuleId> {
match self {
&Self::Taken(module_id) => module_id,
_ => panic!("Slot not in Taken state"),
}
}
}
#[derive(Clone, Debug)]
pub(crate) enum FreeSlotState {
/// The slot is free, and has no affinity.
///
/// Invariant: every slot in this state has its index in
/// `free_list`. No slot in this state has its index in any other
/// (per-module) free-list.
NoAffinity {
/// Index in the global free list.
///
/// Invariant: free_list[slot_state[i].free_list_index] == i.
free_list_index: GlobalFreeListIndex,
},
/// The slot is free, and has an affinity for some module. This
/// means we prefer to choose this slot (or some other one with
/// the same affinity) given a request to allocate a slot for this
/// module. It can, however, still be used for any other module if
/// needed.
///
/// Invariant: every slot in this state has its index in both
/// `free_list` *and* exactly one list in `per_module`.
Affinity {
module: CompiledModuleId,
/// Index in the global free list.
///
/// Invariant: free_list[slot_state[i].free_list_index] == i.
free_list_index: GlobalFreeListIndex,
/// Index in a per-module free list.
///
/// Invariant: per_module[slot_state[i].module][slot_state[i].per_module_index]
/// == i.
per_module_index: PerModuleFreeListIndex,
},
}
impl FreeSlotState {
/// Get the index of this slot in the global free list.
fn free_list_index(&self) -> GlobalFreeListIndex {
match self {
&Self::NoAffinity { free_list_index }
| &Self::Affinity {
free_list_index, ..
} => free_list_index,
}
}
/// Update the index of this slot in the global free list.
fn update_free_list_index(&mut self, index: GlobalFreeListIndex) {
match self {
&mut Self::NoAffinity {
ref mut free_list_index,
}
| &mut Self::Affinity {
ref mut free_list_index,
..
} => {
*free_list_index = index;
}
}
}
/// Get the index of this slot in its per-module free list.
fn per_module_index(&self) -> PerModuleFreeListIndex {
match self {
&Self::Affinity {
per_module_index, ..
} => per_module_index,
_ => panic!("per_module_index on slot with no affinity"),
}
}
/// Update the index of this slot in its per-module free list.
fn update_per_module_index(&mut self, index: PerModuleFreeListIndex) {
match self {
&mut Self::Affinity {
ref mut per_module_index,
..
} => {
*per_module_index = index;
}
_ => panic!("per_module_index on slot with no affinity"),
}
}
}
/// Internal: remove a slot-index from the global free list.
fn remove_global_free_list_item(
slot_state: &mut Vec<SlotState>,
free_list: &mut Vec<SlotId>,
index: SlotId,
) {
let free_list_index = slot_state[index.index()].unwrap_free().free_list_index();
assert_eq!(index, free_list.swap_remove(free_list_index.index()));
if free_list_index.index() < free_list.len() {
let replaced = free_list[free_list_index.index()];
slot_state[replaced.index()]
.unwrap_free_mut()
.update_free_list_index(free_list_index);
}
}
/// Internal: remove a slot-index from a per-module free list.
fn remove_module_free_list_item(
slot_state: &mut Vec<SlotState>,
per_module: &mut HashMap<CompiledModuleId, Vec<SlotId>>,
id: CompiledModuleId,
index: SlotId,
) {
debug_assert!(
per_module.contains_key(&id),
"per_module list for given module should not be empty"
);
let per_module_list = per_module.get_mut(&id).unwrap();
debug_assert!(!per_module_list.is_empty());
let per_module_index = slot_state[index.index()].unwrap_free().per_module_index();
assert_eq!(index, per_module_list.swap_remove(per_module_index.index()));
if per_module_index.index() < per_module_list.len() {
let replaced = per_module_list[per_module_index.index()];
slot_state[replaced.index()]
.unwrap_free_mut()
.update_per_module_index(per_module_index);
}
if per_module_list.is_empty() {
per_module.remove(&id);
}
}
impl PoolingAllocationState {
/// Create the default state for this strategy.
pub(crate) fn new(strategy: PoolingAllocationStrategy, max_instances: usize) -> Self {
let ids = (0..max_instances).map(|i| SlotId(i)).collect::<Vec<_>>();
match strategy {
PoolingAllocationStrategy::NextAvailable => PoolingAllocationState::NextAvailable(ids),
PoolingAllocationStrategy::Random => PoolingAllocationState::Random(ids),
PoolingAllocationStrategy::ReuseAffinity => PoolingAllocationState::ReuseAffinity {
free_list: ids,
per_module: HashMap::new(),
slot_state: (0..max_instances)
.map(|i| {
SlotState::Free(FreeSlotState::NoAffinity {
free_list_index: GlobalFreeListIndex(i),
})
})
.collect(),
},
}
}
/// Are any slots left, or is this allocator empty?
pub(crate) fn is_empty(&self) -> bool {
match self {
&PoolingAllocationState::NextAvailable(ref free_list)
| &PoolingAllocationState::Random(ref free_list) => free_list.is_empty(),
&PoolingAllocationState::ReuseAffinity { ref free_list, .. } => free_list.is_empty(),
}
}
/// Allocate a new slot.
pub(crate) fn alloc(&mut self, id: Option<CompiledModuleId>) -> SlotId {
match self {
&mut PoolingAllocationState::NextAvailable(ref mut free_list) => {
debug_assert!(free_list.len() > 0);
free_list.pop().unwrap()
}
&mut PoolingAllocationState::Random(ref mut free_list) => {
debug_assert!(free_list.len() > 0);
let id = rand::thread_rng().gen_range(0..free_list.len());
free_list.swap_remove(id)
}
&mut PoolingAllocationState::ReuseAffinity {
ref mut free_list,
ref mut per_module,
ref mut slot_state,
..
} => {
if let Some(this_module) = id.and_then(|id| per_module.get_mut(&id)) {
// There is a freelist of slots with affinity for
// the requested module-ID. Pick the last one; any
// will do, no need for randomness here.
assert!(!this_module.is_empty());
let slot_id = this_module.pop().expect("List should never be empty");
if this_module.is_empty() {
per_module.remove(&id.unwrap());
}
// Make sure to remove from the global
// freelist. We already removed from the
// per-module list above.
remove_global_free_list_item(slot_state, free_list, slot_id);
slot_state[slot_id.index()] = SlotState::Taken(id);
slot_id
} else {
// Pick a random free slot ID. Note that we do
// this, rather than pick a victim module first,
// to maintain an unbiased stealing distribution:
// we want the likelihood of our taking a slot
// from some other module's freelist to be
// proportional to that module's freelist
// length. Or in other words, every *slot* should
// be equally likely to be stolen. The
// alternative, where we pick the victim module
// freelist first, means that either a module with
// an affinity freelist of one slot has the same
// chances of losing that slot as one with a
// hundred slots; or else we need a weighted
// random choice among modules, which is just as
// complex as this process.
//
// We don't bother picking an empty slot (no
// established affinity) before a random slot,
// because this is more complex, and in the steady
// state, all slots will see at least one
// instantiation very quickly, so there will never
// (past an initial phase) be a slot with no
// affinity.
let free_list_index = rand::thread_rng().gen_range(0..free_list.len());
let slot_id = free_list[free_list_index];
// Remove from both the global freelist and
// per-module freelist, if any.
remove_global_free_list_item(slot_state, free_list, slot_id);
if let &SlotState::Free(FreeSlotState::Affinity { module, .. }) =
&slot_state[slot_id.index()]
{
remove_module_free_list_item(slot_state, per_module, module, slot_id);
}
slot_state[slot_id.index()] = SlotState::Taken(id);
slot_id
}
}
}
}
pub(crate) fn free(&mut self, index: SlotId) {
match self {
&mut PoolingAllocationState::NextAvailable(ref mut free_list)
| &mut PoolingAllocationState::Random(ref mut free_list) => {
free_list.push(index);
}
&mut PoolingAllocationState::ReuseAffinity {
ref mut per_module,
ref mut free_list,
ref mut slot_state,
} => {
let module_id = slot_state[index.index()].unwrap_module_id();
let free_list_index = GlobalFreeListIndex(free_list.len());
free_list.push(index);
if let Some(id) = module_id {
let per_module_list = per_module
.entry(id)
.or_insert_with(|| Vec::with_capacity(1));
let per_module_index = PerModuleFreeListIndex(per_module_list.len());
per_module_list.push(index);
slot_state[index.index()] = SlotState::Free(FreeSlotState::Affinity {
module: id,
free_list_index,
per_module_index,
});
} else {
slot_state[index.index()] =
SlotState::Free(FreeSlotState::NoAffinity { free_list_index });
}
}
}
}
/// For testing only, we want to be able to assert what is on the
/// single freelist, for the policies that keep just one.
#[cfg(test)]
pub(crate) fn testing_freelist(&self) -> &[SlotId] {
match self {
&PoolingAllocationState::NextAvailable(ref free_list)
| &PoolingAllocationState::Random(ref free_list) => &free_list[..],
_ => panic!("Wrong kind of state"),
}
}
/// For testing only, get the list of all modules with at least
/// one slot with affinity for that module.
#[cfg(test)]
pub(crate) fn testing_module_affinity_list(&self) -> Vec<CompiledModuleId> {
match self {
&PoolingAllocationState::NextAvailable(..) | &PoolingAllocationState::Random(..) => {
panic!("Wrong kind of state")
}
&PoolingAllocationState::ReuseAffinity { ref per_module, .. } => {
let mut ret = vec![];
for (module, list) in per_module {
assert!(!list.is_empty());
ret.push(*module);
}
ret
}
}
}
}
#[cfg(test)]
mod test {
use super::{PoolingAllocationState, SlotId};
use crate::CompiledModuleIdAllocator;
use crate::PoolingAllocationStrategy;
#[test]
fn test_next_available_allocation_strategy() {
let strat = PoolingAllocationStrategy::NextAvailable;
let mut state = PoolingAllocationState::new(strat, 10);
assert_eq!(state.alloc(None).index(), 9);
let mut state = PoolingAllocationState::new(strat, 5);
assert_eq!(state.alloc(None).index(), 4);
let mut state = PoolingAllocationState::new(strat, 1);
assert_eq!(state.alloc(None).index(), 0);
}
#[test]
fn test_random_allocation_strategy() {
let strat = PoolingAllocationStrategy::Random;
let mut state = PoolingAllocationState::new(strat, 100);
assert!(state.alloc(None).index() < 100);
let mut state = PoolingAllocationState::new(strat, 1);
assert_eq!(state.alloc(None).index(), 0);
}
#[test]
fn test_affinity_allocation_strategy() {
let strat = PoolingAllocationStrategy::ReuseAffinity;
let id_alloc = CompiledModuleIdAllocator::new();
let id1 = id_alloc.alloc();
let id2 = id_alloc.alloc();
let mut state = PoolingAllocationState::new(strat, 100);
let index1 = state.alloc(Some(id1));
assert!(index1.index() < 100);
let index2 = state.alloc(Some(id2));
assert!(index2.index() < 100);
assert_ne!(index1, index2);
state.free(index1);
let index3 = state.alloc(Some(id1));
assert_eq!(index3, index1);
state.free(index3);
state.free(index2);
// Both id1 and id2 should have some slots with affinity.
let affinity_modules = state.testing_module_affinity_list();
assert_eq!(2, affinity_modules.len());
assert!(affinity_modules.contains(&id1));
assert!(affinity_modules.contains(&id2));
// Now there is 1 free instance for id2 and 1 free instance
// for id1, and 98 empty. Allocate 100 for id2. The first
// should be equal to the one we know was previously used for
// id2. The next 99 are arbitrary.
let mut indices = vec![];
for _ in 0..100 {
assert!(!state.is_empty());
indices.push(state.alloc(Some(id2)));
}
assert!(state.is_empty());
assert_eq!(indices[0], index2);
for i in indices {
state.free(i);
}
// Now there should be no slots left with affinity for id1.
let affinity_modules = state.testing_module_affinity_list();
assert_eq!(1, affinity_modules.len());
assert!(affinity_modules.contains(&id2));
// Allocate an index we know previously had an instance but
// now does not (list ran empty).
let index = state.alloc(Some(id1));
state.free(index);
}
#[test]
fn test_affinity_allocation_strategy_random() {
use rand::Rng;
let mut rng = rand::thread_rng();
let strat = PoolingAllocationStrategy::ReuseAffinity;
let id_alloc = CompiledModuleIdAllocator::new();
let ids = std::iter::repeat_with(|| id_alloc.alloc())
.take(10)
.collect::<Vec<_>>();
let mut state = PoolingAllocationState::new(strat, 1000);
let mut allocated: Vec<SlotId> = vec![];
let mut last_id = vec![None; 1000];
let mut hits = 0;
for _ in 0..100_000 {
if !allocated.is_empty() && (state.is_empty() || rng.gen_bool(0.5)) {
let i = rng.gen_range(0..allocated.len());
let to_free_idx = allocated.swap_remove(i);
state.free(to_free_idx);
} else {
assert!(!state.is_empty());
let id = ids[rng.gen_range(0..ids.len())];
let index = state.alloc(Some(id));
if last_id[index.index()] == Some(id) {
hits += 1;
}
last_id[index.index()] = Some(id);
allocated.push(index);
}
}
// 10% reuse would be random chance (because we have 10 module
// IDs). Check for at least double that to ensure some sort of
// affinity is occurring.
assert!(
hits > 20000,
"expected at least 20000 (20%) ID-reuses but got {}",
hits
);
}
}

View File

@@ -466,7 +466,12 @@ mod test {
..Tunables::default() ..Tunables::default()
}; };
let instances = InstancePool::new(&module_limits, &instance_limits, &tunables) let instances = InstancePool::new(
PoolingAllocationStrategy::Random,
&module_limits,
&instance_limits,
&tunables,
)
.expect("should allocate"); .expect("should allocate");
let locator = FaultLocator::new(&instances); let locator = FaultLocator::new(&instances);
@@ -573,11 +578,10 @@ mod test {
for _ in 0..instances.max_instances { for _ in 0..instances.max_instances {
handles.push( handles.push(
instances instances
.allocate( .allocate(InstanceAllocationRequest {
PoolingAllocationStrategy::Random,
InstanceAllocationRequest {
module: module.clone(), module: module.clone(),
memfds: None, memfds: None,
unique_id: None,
image_base: 0, image_base: 0,
functions, functions,
imports: Imports { imports: Imports {
@@ -590,8 +594,7 @@ mod test {
host_state: Box::new(()), host_state: Box::new(()),
store: StorePtr::new(&mut mock_store), store: StorePtr::new(&mut mock_store),
wasm_data: &[], wasm_data: &[],
}, })
)
.expect("instance should allocate"), .expect("instance should allocate"),
); );
} }

View File

@@ -1,11 +1,14 @@
//! Unique IDs for modules in the runtime. //! Unique IDs for modules in the runtime.
use std::sync::atomic::{AtomicU64, Ordering}; use std::{
num::NonZeroU64,
sync::atomic::{AtomicU64, Ordering},
};
/// A unique identifier (within an engine or similar) for a compiled /// A unique identifier (within an engine or similar) for a compiled
/// module. /// module.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)] #[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct CompiledModuleId(u64); pub struct CompiledModuleId(NonZeroU64);
/// An allocator for compiled module IDs. /// An allocator for compiled module IDs.
pub struct CompiledModuleIdAllocator { pub struct CompiledModuleIdAllocator {
@@ -22,7 +25,19 @@ impl CompiledModuleIdAllocator {
/// Allocate a new ID. /// Allocate a new ID.
pub fn alloc(&self) -> CompiledModuleId { pub fn alloc(&self) -> CompiledModuleId {
// Note: why is `Relaxed` OK here?
//
// The only requirement we have is that IDs are unique. We
// don't care how one module's ID compares to another, i.e.,
// what order they come in. `Relaxed` means that this
// `fetch_add` operation does not have any particular
// synchronization (ordering) with respect to any other memory
// access in the program. However, `fetch_add` is always
// atomic with respect to other accesses to this variable
// (`self.next`). So we will always hand out separate, unique
// IDs correctly, just in some possibly arbitrary order (which
// is fine).
let id = self.next.fetch_add(1, Ordering::Relaxed); let id = self.next.fetch_add(1, Ordering::Relaxed);
CompiledModuleId(id) CompiledModuleId(NonZeroU64::new(id).unwrap())
} }
} }

View File

@@ -249,6 +249,10 @@ pub enum PoolingAllocationStrategy {
NextAvailable, NextAvailable,
/// Allocate from a random available instance. /// Allocate from a random available instance.
Random, Random,
/// Try to allocate an instance slot that was previously used for
/// the same module, potentially enabling faster instantiation by
/// reusing e.g. memory mappings.
ReuseAffinity,
} }
impl Default for PoolingAllocationStrategy { impl Default for PoolingAllocationStrategy {
@@ -256,6 +260,7 @@ impl Default for PoolingAllocationStrategy {
match wasmtime_runtime::PoolingAllocationStrategy::default() { match wasmtime_runtime::PoolingAllocationStrategy::default() {
wasmtime_runtime::PoolingAllocationStrategy::NextAvailable => Self::NextAvailable, wasmtime_runtime::PoolingAllocationStrategy::NextAvailable => Self::NextAvailable,
wasmtime_runtime::PoolingAllocationStrategy::Random => Self::Random, wasmtime_runtime::PoolingAllocationStrategy::Random => Self::Random,
wasmtime_runtime::PoolingAllocationStrategy::ReuseAffinity => Self::ReuseAffinity,
} }
} }
} }
@@ -268,6 +273,7 @@ impl Into<wasmtime_runtime::PoolingAllocationStrategy> for PoolingAllocationStra
match self { match self {
Self::NextAvailable => wasmtime_runtime::PoolingAllocationStrategy::NextAvailable, Self::NextAvailable => wasmtime_runtime::PoolingAllocationStrategy::NextAvailable,
Self::Random => wasmtime_runtime::PoolingAllocationStrategy::Random, Self::Random => wasmtime_runtime::PoolingAllocationStrategy::Random,
Self::ReuseAffinity => wasmtime_runtime::PoolingAllocationStrategy::ReuseAffinity,
} }
} }
} }

View File

@@ -707,6 +707,7 @@ impl<'a> Instantiator<'a> {
.allocator() .allocator()
.allocate(InstanceAllocationRequest { .allocate(InstanceAllocationRequest {
module: compiled_module.module().clone(), module: compiled_module.module().clone(),
unique_id: Some(compiled_module.unique_id()),
memfds: self.cur.module.memfds().clone(), memfds: self.cur.module.memfds().clone(),
image_base: compiled_module.code().as_ptr() as usize, image_base: compiled_module.code().as_ptr() as usize,
functions: compiled_module.functions(), functions: compiled_module.functions(),

View File

@@ -426,6 +426,7 @@ impl<T> Store<T> {
shared_signatures: None.into(), shared_signatures: None.into(),
imports: Default::default(), imports: Default::default(),
module: Arc::new(wasmtime_environ::Module::default()), module: Arc::new(wasmtime_environ::Module::default()),
unique_id: None,
memfds: None, memfds: None,
store: StorePtr::empty(), store: StorePtr::empty(),
wasm_data: &[], wasm_data: &[],

View File

@@ -41,6 +41,7 @@ fn create_handle(
let handle = OnDemandInstanceAllocator::new(config.mem_creator.clone(), 0).allocate( let handle = OnDemandInstanceAllocator::new(config.mem_creator.clone(), 0).allocate(
InstanceAllocationRequest { InstanceAllocationRequest {
module: Arc::new(module), module: Arc::new(module),
unique_id: None,
memfds: None, memfds: None,
functions, functions,
image_base: 0, image_base: 0,

View File

@@ -161,6 +161,7 @@ pub unsafe fn create_raw_function(
Ok( Ok(
OnDemandInstanceAllocator::default().allocate(InstanceAllocationRequest { OnDemandInstanceAllocator::default().allocate(InstanceAllocationRequest {
module: Arc::new(module), module: Arc::new(module),
unique_id: None,
memfds: None, memfds: None,
functions: &functions, functions: &functions,
image_base: (*func).as_ptr() as usize, image_base: (*func).as_ptr() as usize,