Coalesce some formats into MultiAry.

Allow some flexibility in the signature matching for instruction
formats. In particular, look for a value list format as a second chance
option.

The Return, ReturnReg, and TernaryOverflow formats all fit the single
MultiAry catch-all format for instructions without immediate operands.
This commit is contained in:
Jakob Stoklund Olesen
2017-03-10 12:17:12 -08:00
parent 6021da8e1c
commit 519eb1934b
8 changed files with 50 additions and 99 deletions

View File

@@ -30,9 +30,10 @@ BinaryOverflow = InstructionFormat(VALUE, VALUE, multiple_results=True)
# The fma instruction has the same constraint on all inputs.
Ternary = InstructionFormat(VALUE, VALUE, VALUE, typevar_operand=1)
# Carry in *and* carry out for `iadd_carry` and friends.
TernaryOverflow = InstructionFormat(
VALUE, VALUE, VALUE, multiple_results=True, boxed_storage=True)
# Catch-all for instructions with many outputs and inputs and no immediate
# operands.
MultiAry = InstructionFormat(
VARIABLE_ARGS, multiple_results=True, value_list=True)
InsertLane = InstructionFormat(VALUE, ('lane', uimm8), VALUE)
ExtractLane = InstructionFormat(VALUE, ('lane', uimm8))
@@ -49,8 +50,6 @@ Call = InstructionFormat(
IndirectCall = InstructionFormat(
sig_ref, VALUE, VARIABLE_ARGS,
multiple_results=True, value_list=True)
Return = InstructionFormat(VARIABLE_ARGS, value_list=True)
ReturnReg = InstructionFormat(VALUE, VARIABLE_ARGS, value_list=True)
# Finally extract the names of global variables in this module.
InstructionFormat.extract_names(globals())

View File

@@ -82,7 +82,7 @@ class InstructionFormat(object):
if not self.has_value_list:
assert self.typevar_operand < self.num_value_operands, \
"typevar_operand must indicate a 'value' operand"
elif self.num_value_operands != 0:
elif self.has_value_list or self.num_value_operands > 0:
# Default to the first 'value' operand, if there is one.
self.typevar_operand = 0
@@ -176,13 +176,27 @@ class InstructionFormat(object):
has_varargs = (VARIABLE_ARGS in tuple(op.kind for op in ins))
sig = (multiple_results, imm_kinds, num_values, has_varargs)
if sig not in InstructionFormat._registry:
raise RuntimeError(
"No instruction format matches ins = ({}){}".format(
", ".join(map(str, sig[1])),
"[multiple results]" if multiple_results else ""))
if sig in InstructionFormat._registry:
return InstructionFormat._registry[sig]
# Try another value list format as an alternative.
sig = (True, imm_kinds, num_values, has_varargs)
if sig in InstructionFormat._registry:
return InstructionFormat._registry[sig]
sig = (multiple_results, imm_kinds, 0, True)
if sig in InstructionFormat._registry:
return InstructionFormat._registry[sig]
sig = (True, imm_kinds, 0, True)
if sig in InstructionFormat._registry:
return InstructionFormat._registry[sig]
raise RuntimeError(
'No instruction format matches multiple_results={},'
'imms={}, vals={}, varargs={}'.format(
multiple_results, imm_kinds, num_values, has_varargs))
@staticmethod
def extract_names(globs):
"""

View File

@@ -50,10 +50,12 @@ def unwrap_inst(iref, node, fmt):
fmt.line('{},'.format(m))
if nvops == 1:
fmt.line('arg,')
elif nvops != 0:
fmt.line('args,')
elif iform.has_value_list or nvops > 1:
fmt.line('ref args,')
fmt.line('..')
fmt.outdented_line('} = dfg[inst] {')
if iform.has_value_list:
fmt.line('let args = args.as_slice(&dfg.value_lists);')
# Generate the values for the tuple.
outs = list()
prefix = 'data.' if iform.boxed_storage else ''

View File

@@ -11,7 +11,7 @@ instruction formats described in the reference:
from __future__ import absolute_import
from cdsl.isa import EncRecipe
from cdsl.predicates import IsSignedInt
from base.formats import Binary, BinaryImm, ReturnReg
from base.formats import Binary, BinaryImm, MultiAry
from .registers import GPR
# The low 7 bits of a RISC-V instruction is the base opcode. All 32-bit
@@ -86,4 +86,4 @@ I = EncRecipe(
# I-type encoding for `jalr` as a return instruction. We won't use the
# immediate offset.
# The variable return values are not encoded.
Iret = EncRecipe('Iret', ReturnReg, ins=GPR, outs=())
Iret = EncRecipe('Iret', MultiAry, ins=GPR, outs=())

View File

@@ -3,7 +3,7 @@
//! A `Builder` provides a convenient interface for inserting instructions into a Cretonne
//! function. Many of its methods are generated from the meta language instruction definitions.
use ir::{types, instructions};
use ir::types;
use ir::{InstructionData, DataFlowGraph, Cursor};
use ir::{Opcode, Type, Inst, Value, Ebb, JumpTable, SigRef, FuncRef, ValueList};
use ir::immediates::{Imm64, Uimm8, Ieee32, Ieee64};

View File

@@ -151,11 +151,11 @@ pub enum InstructionData {
ty: Type,
args: [Value; 3],
},
TernaryOverflow {
MultiAry {
opcode: Opcode,
ty: Type,
second_result: PackedOption<Value>,
data: Box<TernaryOverflowData>,
args: ValueList,
},
InsertLane {
opcode: Opcode,
@@ -213,16 +213,6 @@ pub enum InstructionData {
sig_ref: SigRef,
args: ValueList,
},
Return {
opcode: Opcode,
ty: Type,
args: ValueList,
},
ReturnReg {
opcode: Opcode,
ty: Type,
args: ValueList,
},
}
/// A variable list of `Value` operands used for function call arguments and passing arguments to
@@ -289,19 +279,6 @@ impl Default for VariableArgs {
}
}
/// Payload data for ternary instructions with multiple results, such as `iadd_carry`.
#[derive(Clone, Debug)]
pub struct TernaryOverflowData {
/// Value arguments.
pub args: [Value; 3],
}
impl Display for TernaryOverflowData {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "{}, {}, {}", self.args[0], self.args[1], self.args[2])
}
}
/// Analyzing an instruction.
///
/// Avoid large matches on instruction formats by using the methods defined here to examine

View File

@@ -238,7 +238,15 @@ fn write_instruction(w: &mut Write,
BinaryImm { arg, imm, .. } => writeln!(w, " {}, {}", arg, imm),
BinaryOverflow { args, .. } => writeln!(w, " {}, {}", args[0], args[1]),
Ternary { args, .. } => writeln!(w, " {}, {}, {}", args[0], args[1], args[2]),
TernaryOverflow { ref data, .. } => writeln!(w, " {}", data),
MultiAry { ref args, .. } => {
if args.is_empty() {
writeln!(w, "")
} else {
writeln!(w,
" {}",
DisplayValues(args.as_slice(&func.dfg.value_lists)))
}
}
InsertLane { lane, args, .. } => writeln!(w, " {}, {}, {}", args[0], lane, args[1]),
ExtractLane { lane, arg, .. } => writeln!(w, " {}, {}", arg, lane),
IntCompare { cond, args, .. } => writeln!(w, " {}, {}, {}", cond, args[0], args[1]),
@@ -280,20 +288,6 @@ fn write_instruction(w: &mut Write,
args[0],
DisplayValues(&args[1..]))
}
Return { ref args, .. } => {
if args.is_empty() {
writeln!(w, "")
} else {
writeln!(w,
" {}",
DisplayValues(args.as_slice(&func.dfg.value_lists)))
}
}
ReturnReg { ref args, .. } => {
writeln!(w,
" {}",
DisplayValues(args.as_slice(&func.dfg.value_lists)))
}
}
}

View File

@@ -14,8 +14,7 @@ use cretonne::ir::{Function, Ebb, Opcode, Value, Type, FunctionName, StackSlotDa
use cretonne::ir::types::VOID;
use cretonne::ir::immediates::{Imm64, Ieee32, Ieee64};
use cretonne::ir::entities::AnyEntity;
use cretonne::ir::instructions::{InstructionFormat, InstructionData, VariableArgs,
TernaryOverflowData};
use cretonne::ir::instructions::{InstructionFormat, InstructionData, VariableArgs};
use cretonne::isa::{self, TargetIsa, Encoding};
use cretonne::settings;
use testfile::{TestFile, Details, Comment};
@@ -193,8 +192,8 @@ impl<'a> Context<'a> {
self.map.rewrite_values(args, loc)?;
}
InstructionData::TernaryOverflow { ref mut data, .. } => {
self.map.rewrite_values(&mut data.args, loc)?;
InstructionData::MultiAry { ref mut args, .. } => {
self.map.rewrite_values(args.as_mut_slice(value_lists), loc)?;
}
InstructionData::Jump { ref mut destination, ref mut args, .. } => {
@@ -214,14 +213,6 @@ impl<'a> Context<'a> {
InstructionData::IndirectCall { ref mut args, .. } => {
self.map.rewrite_values(args.as_mut_slice(value_lists), loc)?;
}
InstructionData::Return { ref mut args, .. } => {
self.map.rewrite_values(args.as_mut_slice(value_lists), loc)?;
}
InstructionData::ReturnReg { ref mut args, .. } => {
self.map.rewrite_values(args.as_mut_slice(value_lists), loc)?;
}
}
}
}
@@ -1388,18 +1379,13 @@ impl<'a> Parser<'a> {
args: [ctrl_arg, true_arg, false_arg],
}
}
InstructionFormat::TernaryOverflow => {
// Names here refer to the `iadd_carry` instruction.
let lhs = self.match_value("expected SSA value first operand")?;
self.match_token(Token::Comma, "expected ',' between operands")?;
let rhs = self.match_value("expected SSA value second operand")?;
self.match_token(Token::Comma, "expected ',' between operands")?;
let cin = self.match_value("expected SSA value third operand")?;
InstructionData::TernaryOverflow {
InstructionFormat::MultiAry => {
let args = self.parse_value_list()?;
InstructionData::MultiAry {
opcode: opcode,
ty: VOID,
second_result: None.into(),
data: Box::new(TernaryOverflowData { args: [lhs, rhs, cin] }),
args: args.into_value_list(&[], &mut ctx.function.dfg.value_lists),
}
}
InstructionFormat::Jump => {
@@ -1505,27 +1491,6 @@ impl<'a> Parser<'a> {
args: args.into_value_list(&[callee], &mut ctx.function.dfg.value_lists),
}
}
InstructionFormat::Return => {
let args = self.parse_value_list()?;
InstructionData::Return {
opcode: opcode,
ty: VOID,
args: args.into_value_list(&[], &mut ctx.function.dfg.value_lists),
}
}
InstructionFormat::ReturnReg => {
let raddr = self.match_value("expected SSA value return address operand")?;
let args = if self.optional(Token::Comma) {
self.parse_value_list()?
} else {
VariableArgs::new()
};
InstructionData::ReturnReg {
opcode: opcode,
ty: VOID,
args: args.into_value_list(&[raddr], &mut ctx.function.dfg.value_lists),
}
}
InstructionFormat::BranchTable => {
let arg = self.match_value("expected SSA value operand")?;
self.match_token(Token::Comma, "expected ',' between operands")?;