Address review comments:

- Undo temporary changes to default features (`all-arch`) and a
  signal-handler test.
- Remove `SIGTRAP` handler: no longer needed now that we've found an
  "undefined opcode" option on ARM64.
- Rename pp.rs to pretty_print.rs in machinst/.
- Only use empty stack-probe on non-x86. As per a comment in
  rust-lang/compiler-builtins [1], LLVM only supports stack probes on
  x86 and x86-64. Thus, on any other CPU architecture, we cannot refer
  to `__rust_probestack`, because it does not exist.
- Rename arm64 to aarch64.
- Use `target` directive in vcode filetests.
- Run the flags verifier, but without encinfo, when using new backends.
- Clean up warning overrides.
- Fix up use of casts: use u32::from(x) and siblings when possible,
  u32::try_from(x).unwrap() when not, to avoid silent truncation.
- Take immutable `Function` borrows as input; we don't actually
  mutate the input IR.
- Lots of other miscellaneous cleanups.

[1] cae3e6ea23/src/probestack.rs (L39)
This commit is contained in:
Chris Fallin
2020-04-15 16:31:44 -07:00
parent 3de504c24c
commit 48cf2c2f50
49 changed files with 1550 additions and 1544 deletions

View File

@@ -0,0 +1,752 @@
//! AArch64 ISA definitions: immediate constants.
// Some variants are never constructed, but we still want them as options in the future.
#[allow(dead_code)]
use crate::ir::types::*;
use crate::ir::Type;
use crate::machinst::*;
use regalloc::RealRegUniverse;
use core::convert::TryFrom;
use std::string::String;
/// A signed, scaled 7-bit offset.
#[derive(Clone, Copy, Debug)]
pub struct SImm7Scaled {
/// The value.
pub value: i16,
/// multiplied by the size of this type
pub scale_ty: Type,
}
impl SImm7Scaled {
/// Create a SImm7Scaled from a raw offset and the known scale type, if
/// possible.
pub fn maybe_from_i64(value: i64, scale_ty: Type) -> Option<SImm7Scaled> {
assert!(scale_ty == I64 || scale_ty == I32);
let scale = scale_ty.bytes();
assert!(scale.is_power_of_two());
let scale = i64::from(scale);
let upper_limit = 63 * scale;
let lower_limit = -(64 * scale);
if value >= lower_limit && value <= upper_limit && (value & (scale - 1)) == 0 {
Some(SImm7Scaled {
value: i16::try_from(value).unwrap(),
scale_ty,
})
} else {
None
}
}
/// Create a zero immediate of this format.
pub fn zero(scale_ty: Type) -> SImm7Scaled {
SImm7Scaled { value: 0, scale_ty }
}
/// Bits for encoding.
pub fn bits(&self) -> u32 {
let ty_bytes: i16 = self.scale_ty.bytes() as i16;
let scaled: i16 = self.value / ty_bytes;
assert!(scaled <= 63 && scaled >= -64);
let scaled: i8 = scaled as i8;
let encoded: u32 = scaled as u32;
encoded & 0x7f
}
}
/// a 9-bit signed offset.
#[derive(Clone, Copy, Debug)]
pub struct SImm9 {
/// The value.
pub value: i16,
}
impl SImm9 {
/// Create a signed 9-bit offset from a full-range value, if possible.
pub fn maybe_from_i64(value: i64) -> Option<SImm9> {
if value >= -256 && value <= 255 {
Some(SImm9 {
value: value as i16,
})
} else {
None
}
}
/// Create a zero immediate of this format.
pub fn zero() -> SImm9 {
SImm9 { value: 0 }
}
/// Bits for encoding.
pub fn bits(&self) -> u32 {
(self.value as u32) & 0x1ff
}
}
/// An unsigned, scaled 12-bit offset.
#[derive(Clone, Copy, Debug)]
pub struct UImm12Scaled {
/// The value.
pub value: u16,
/// multiplied by the size of this type
pub scale_ty: Type,
}
impl UImm12Scaled {
/// Create a UImm12Scaled from a raw offset and the known scale type, if
/// possible.
pub fn maybe_from_i64(value: i64, scale_ty: Type) -> Option<UImm12Scaled> {
let scale = scale_ty.bytes();
assert!(scale.is_power_of_two());
let scale = scale as i64;
let limit = 4095 * scale;
if value >= 0 && value <= limit && (value & (scale - 1)) == 0 {
Some(UImm12Scaled {
value: value as u16,
scale_ty,
})
} else {
None
}
}
/// Create a zero immediate of this format.
pub fn zero(scale_ty: Type) -> UImm12Scaled {
UImm12Scaled { value: 0, scale_ty }
}
/// Encoded bits.
pub fn bits(&self) -> u32 {
(self.value as u32 / self.scale_ty.bytes()) & 0xfff
}
}
/// A shifted immediate value in 'imm12' format: supports 12 bits, shifted
/// left by 0 or 12 places.
#[derive(Clone, Debug)]
pub struct Imm12 {
/// The immediate bits.
pub bits: u16,
/// Whether the immediate bits are shifted left by 12 or not.
pub shift12: bool,
}
impl Imm12 {
/// Compute a Imm12 from raw bits, if possible.
pub fn maybe_from_u64(val: u64) -> Option<Imm12> {
if val == 0 {
Some(Imm12 {
bits: 0,
shift12: false,
})
} else if val < 0xfff {
Some(Imm12 {
bits: val as u16,
shift12: false,
})
} else if val < 0xfff_000 && (val & 0xfff == 0) {
Some(Imm12 {
bits: (val >> 12) as u16,
shift12: true,
})
} else {
None
}
}
/// Bits for 2-bit "shift" field in e.g. AddI.
pub fn shift_bits(&self) -> u32 {
if self.shift12 {
0b01
} else {
0b00
}
}
/// Bits for 12-bit "imm" field in e.g. AddI.
pub fn imm_bits(&self) -> u32 {
self.bits as u32
}
}
/// An immediate for logical instructions.
#[derive(Clone, Debug)]
#[cfg_attr(test, derive(PartialEq))]
pub struct ImmLogic {
/// The actual value.
value: u64,
/// `N` flag.
pub n: bool,
/// `S` field: element size and element bits.
pub r: u8,
/// `R` field: rotate amount.
pub s: u8,
}
impl ImmLogic {
/// Compute an ImmLogic from raw bits, if possible.
pub fn maybe_from_u64(value: u64, ty: Type) -> Option<ImmLogic> {
// Note: This function is a port of VIXL's Assembler::IsImmLogical.
if ty != I64 && ty != I32 {
return None;
}
let original_value = value;
let value = if ty == I32 {
// To handle 32-bit logical immediates, the very easiest thing is to repeat
// the input value twice to make a 64-bit word. The correct encoding of that
// as a logical immediate will also be the correct encoding of the 32-bit
// value.
// Avoid making the assumption that the most-significant 32 bits are zero by
// shifting the value left and duplicating it.
let value = value << 32;
value | value >> 32
} else {
value
};
// Logical immediates are encoded using parameters n, imm_s and imm_r using
// the following table:
//
// N imms immr size S R
// 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
// 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
// 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
// 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
// 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
// 0 11110s xxxxxr 2 UInt(s) UInt(r)
// (s bits must not be all set)
//
// A pattern is constructed of size bits, where the least significant S+1 bits
// are set. The pattern is rotated right by R, and repeated across a 32 or
// 64-bit value, depending on destination register width.
//
// Put another way: the basic format of a logical immediate is a single
// contiguous stretch of 1 bits, repeated across the whole word at intervals
// given by a power of 2. To identify them quickly, we first locate the
// lowest stretch of 1 bits, then the next 1 bit above that; that combination
// is different for every logical immediate, so it gives us all the
// information we need to identify the only logical immediate that our input
// could be, and then we simply check if that's the value we actually have.
//
// (The rotation parameter does give the possibility of the stretch of 1 bits
// going 'round the end' of the word. To deal with that, we observe that in
// any situation where that happens the bitwise NOT of the value is also a
// valid logical immediate. So we simply invert the input whenever its low bit
// is set, and then we know that the rotated case can't arise.)
let (value, inverted) = if value & 1 == 1 {
(!value, true)
} else {
(value, false)
};
if value == 0 {
return None;
}
// The basic analysis idea: imagine our input word looks like this.
//
// 0011111000111110001111100011111000111110001111100011111000111110
// c b a
// |<--d-->|
//
// We find the lowest set bit (as an actual power-of-2 value, not its index)
// and call it a. Then we add a to our original number, which wipes out the
// bottommost stretch of set bits and replaces it with a 1 carried into the
// next zero bit. Then we look for the new lowest set bit, which is in
// position b, and subtract it, so now our number is just like the original
// but with the lowest stretch of set bits completely gone. Now we find the
// lowest set bit again, which is position c in the diagram above. Then we'll
// measure the distance d between bit positions a and c (using CLZ), and that
// tells us that the only valid logical immediate that could possibly be equal
// to this number is the one in which a stretch of bits running from a to just
// below b is replicated every d bits.
fn lowest_set_bit(value: u64) -> u64 {
let bit = value.trailing_zeros();
1u64.checked_shl(bit).unwrap_or(0)
}
let a = lowest_set_bit(value);
assert_ne!(0, a);
let value_plus_a = value.wrapping_add(a);
let b = lowest_set_bit(value_plus_a);
let value_plus_a_minus_b = value_plus_a - b;
let c = lowest_set_bit(value_plus_a_minus_b);
let (d, clz_a, out_n, mask) = if c != 0 {
// The general case, in which there is more than one stretch of set bits.
// Compute the repeat distance d, and set up a bitmask covering the basic
// unit of repetition (i.e. a word with the bottom d bits set). Also, in all
// of these cases the N bit of the output will be zero.
let clz_a = a.leading_zeros();
let clz_c = c.leading_zeros();
let d = clz_a - clz_c;
let mask = (1 << d) - 1;
(d, clz_a, 0, mask)
} else {
(64, a.leading_zeros(), 1, u64::max_value())
};
// If the repeat period d is not a power of two, it can't be encoded.
if !d.is_power_of_two() {
return None;
}
if ((b.wrapping_sub(a)) & !mask) != 0 {
// If the bit stretch (b - a) does not fit within the mask derived from the
// repeat period, then fail.
return None;
}
// The only possible option is b - a repeated every d bits. Now we're going to
// actually construct the valid logical immediate derived from that
// specification, and see if it equals our original input.
//
// To repeat a value every d bits, we multiply it by a number of the form
// (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can
// be derived using a table lookup on CLZ(d).
const MULTIPLIERS: [u64; 6] = [
0x0000000000000001,
0x0000000100000001,
0x0001000100010001,
0x0101010101010101,
0x1111111111111111,
0x5555555555555555,
];
let multiplier = MULTIPLIERS[(u64::from(d).leading_zeros() - 57) as usize];
let candidate = b.wrapping_sub(a) * multiplier;
if value != candidate {
// The candidate pattern doesn't match our input value, so fail.
return None;
}
// We have a match! This is a valid logical immediate, so now we have to
// construct the bits and pieces of the instruction encoding that generates
// it.
// Count the set bits in our basic stretch. The special case of clz(0) == -1
// makes the answer come out right for stretches that reach the very top of
// the word (e.g. numbers like 0xffffc00000000000).
let clz_b = if b == 0 {
u32::max_value() // -1
} else {
b.leading_zeros()
};
let s = clz_a.wrapping_sub(clz_b);
// Decide how many bits to rotate right by, to put the low bit of that basic
// stretch in position a.
let (s, r) = if inverted {
// If we inverted the input right at the start of this function, here's
// where we compensate: the number of set bits becomes the number of clear
// bits, and the rotation count is based on position b rather than position
// a (since b is the location of the 'lowest' 1 bit after inversion).
// Need wrapping for when clz_b is max_value() (for when b == 0).
(d - s, clz_b.wrapping_add(1) & (d - 1))
} else {
(s, (clz_a + 1) & (d - 1))
};
// Now we're done, except for having to encode the S output in such a way that
// it gives both the number of set bits and the length of the repeated
// segment. The s field is encoded like this:
//
// imms size S
// ssssss 64 UInt(ssssss)
// 0sssss 32 UInt(sssss)
// 10ssss 16 UInt(ssss)
// 110sss 8 UInt(sss)
// 1110ss 4 UInt(ss)
// 11110s 2 UInt(s)
//
// So we 'or' (2 * -d) with our computed s to form imms.
let s = ((d * 2).wrapping_neg() | (s - 1)) & 0x3f;
debug_assert!(u8::try_from(r).is_ok());
debug_assert!(u8::try_from(s).is_ok());
Some(ImmLogic {
value: original_value,
n: out_n != 0,
r: r as u8,
s: s as u8,
})
}
pub fn from_raw(value: u64, n: bool, r: u8, s: u8) -> ImmLogic {
ImmLogic { n, r, s, value }
}
/// Returns bits ready for encoding: (N:1, R:6, S:6)
pub fn enc_bits(&self) -> u32 {
((self.n as u32) << 12) | ((self.r as u32) << 6) | (self.s as u32)
}
/// Returns the value that this immediate represents.
pub fn value(&self) -> u64 {
self.value
}
/// Return an immediate for the bitwise-inverted value.
pub fn invert(&self) -> ImmLogic {
// For every ImmLogical immediate, the inverse can also be encoded.
Self::maybe_from_u64(!self.value, I64).unwrap()
}
}
/// An immediate for shift instructions.
#[derive(Clone, Debug)]
pub struct ImmShift {
/// 6-bit shift amount.
pub imm: u8,
}
impl ImmShift {
/// Create an ImmShift from raw bits, if possible.
pub fn maybe_from_u64(val: u64) -> Option<ImmShift> {
if val < 64 {
Some(ImmShift { imm: val as u8 })
} else {
None
}
}
/// Get the immediate value.
pub fn value(&self) -> u8 {
self.imm
}
}
/// A 16-bit immediate for a MOVZ instruction, with a {0,16,32,48}-bit shift.
#[derive(Clone, Copy, Debug)]
pub struct MoveWideConst {
/// The value.
pub bits: u16,
/// Result is `bits` shifted 16*shift bits to the left.
pub shift: u8,
}
impl MoveWideConst {
/// Construct a MoveWideConst from an arbitrary 64-bit constant if possible.
pub fn maybe_from_u64(value: u64) -> Option<MoveWideConst> {
let mask0 = 0x0000_0000_0000_ffffu64;
let mask1 = 0x0000_0000_ffff_0000u64;
let mask2 = 0x0000_ffff_0000_0000u64;
let mask3 = 0xffff_0000_0000_0000u64;
if value == (value & mask0) {
return Some(MoveWideConst {
bits: (value & mask0) as u16,
shift: 0,
});
}
if value == (value & mask1) {
return Some(MoveWideConst {
bits: ((value >> 16) & mask0) as u16,
shift: 1,
});
}
if value == (value & mask2) {
return Some(MoveWideConst {
bits: ((value >> 32) & mask0) as u16,
shift: 2,
});
}
if value == (value & mask3) {
return Some(MoveWideConst {
bits: ((value >> 48) & mask0) as u16,
shift: 3,
});
}
None
}
pub fn maybe_with_shift(imm: u16, shift: u8) -> Option<MoveWideConst> {
let shift_enc = shift / 16;
if shift_enc > 3 {
None
} else {
Some(MoveWideConst {
bits: imm,
shift: shift_enc,
})
}
}
/// Returns the value that this constant represents.
pub fn value(&self) -> u64 {
(self.bits as u64) << (16 * self.shift)
}
}
impl ShowWithRRU for Imm12 {
fn show_rru(&self, _mb_rru: Option<&RealRegUniverse>) -> String {
let shift = if self.shift12 { 12 } else { 0 };
let value = u32::from(self.bits) << shift;
format!("#{}", value)
}
}
impl ShowWithRRU for SImm7Scaled {
fn show_rru(&self, _mb_rru: Option<&RealRegUniverse>) -> String {
format!("#{}", self.value)
}
}
impl ShowWithRRU for SImm9 {
fn show_rru(&self, _mb_rru: Option<&RealRegUniverse>) -> String {
format!("#{}", self.value)
}
}
impl ShowWithRRU for UImm12Scaled {
fn show_rru(&self, _mb_rru: Option<&RealRegUniverse>) -> String {
format!("#{}", self.value)
}
}
impl ShowWithRRU for ImmLogic {
fn show_rru(&self, _mb_rru: Option<&RealRegUniverse>) -> String {
format!("#{}", self.value())
}
}
impl ShowWithRRU for ImmShift {
fn show_rru(&self, _mb_rru: Option<&RealRegUniverse>) -> String {
format!("#{}", self.imm)
}
}
impl ShowWithRRU for MoveWideConst {
fn show_rru(&self, _mb_rru: Option<&RealRegUniverse>) -> String {
if self.shift == 0 {
format!("#{}", self.bits)
} else {
format!("#{}, LSL #{}", self.bits, self.shift * 16)
}
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn imm_logical_test() {
assert_eq!(None, ImmLogic::maybe_from_u64(0, I64));
assert_eq!(None, ImmLogic::maybe_from_u64(u64::max_value(), I64));
assert_eq!(
Some(ImmLogic {
value: 1,
n: true,
r: 0,
s: 0
}),
ImmLogic::maybe_from_u64(1, I64)
);
assert_eq!(
Some(ImmLogic {
value: 2,
n: true,
r: 63,
s: 0
}),
ImmLogic::maybe_from_u64(2, I64)
);
assert_eq!(None, ImmLogic::maybe_from_u64(5, I64));
assert_eq!(None, ImmLogic::maybe_from_u64(11, I64));
assert_eq!(
Some(ImmLogic {
value: 248,
n: true,
r: 61,
s: 4
}),
ImmLogic::maybe_from_u64(248, I64)
);
assert_eq!(None, ImmLogic::maybe_from_u64(249, I64));
assert_eq!(
Some(ImmLogic {
value: 1920,
n: true,
r: 57,
s: 3
}),
ImmLogic::maybe_from_u64(1920, I64)
);
assert_eq!(
Some(ImmLogic {
value: 0x7ffe,
n: true,
r: 63,
s: 13
}),
ImmLogic::maybe_from_u64(0x7ffe, I64)
);
assert_eq!(
Some(ImmLogic {
value: 0x30000,
n: true,
r: 48,
s: 1
}),
ImmLogic::maybe_from_u64(0x30000, I64)
);
assert_eq!(
Some(ImmLogic {
value: 0x100000,
n: true,
r: 44,
s: 0
}),
ImmLogic::maybe_from_u64(0x100000, I64)
);
assert_eq!(
Some(ImmLogic {
value: u64::max_value() - 1,
n: true,
r: 63,
s: 62
}),
ImmLogic::maybe_from_u64(u64::max_value() - 1, I64)
);
assert_eq!(
Some(ImmLogic {
value: 0xaaaaaaaaaaaaaaaa,
n: false,
r: 1,
s: 60
}),
ImmLogic::maybe_from_u64(0xaaaaaaaaaaaaaaaa, I64)
);
assert_eq!(
Some(ImmLogic {
value: 0x8181818181818181,
n: false,
r: 1,
s: 49
}),
ImmLogic::maybe_from_u64(0x8181818181818181, I64)
);
assert_eq!(
Some(ImmLogic {
value: 0xffc3ffc3ffc3ffc3,
n: false,
r: 10,
s: 43
}),
ImmLogic::maybe_from_u64(0xffc3ffc3ffc3ffc3, I64)
);
assert_eq!(
Some(ImmLogic {
value: 0x100000001,
n: false,
r: 0,
s: 0
}),
ImmLogic::maybe_from_u64(0x100000001, I64)
);
assert_eq!(
Some(ImmLogic {
value: 0x1111111111111111,
n: false,
r: 0,
s: 56
}),
ImmLogic::maybe_from_u64(0x1111111111111111, I64)
);
for n in 0..2 {
let types = if n == 0 { vec![I64, I32] } else { vec![I64] };
for s in 0..64 {
for r in 0..64 {
let imm = get_logical_imm(n, s, r);
for &ty in &types {
match ImmLogic::maybe_from_u64(imm, ty) {
Some(ImmLogic { value, .. }) => {
assert_eq!(imm, value);
ImmLogic::maybe_from_u64(!value, ty).unwrap();
}
None => assert_eq!(0, imm),
};
}
}
}
}
}
// Repeat a value that has `width` bits, across a 64-bit value.
fn repeat(value: u64, width: u64) -> u64 {
let mut result = value & ((1 << width) - 1);
let mut i = width;
while i < 64 {
result |= result << i;
i *= 2;
}
result
}
// Get the logical immediate, from the encoding N/R/S bits.
fn get_logical_imm(n: u32, s: u32, r: u32) -> u64 {
// An integer is constructed from the n, imm_s and imm_r bits according to
// the following table:
//
// N imms immr size S R
// 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
// 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
// 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
// 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
// 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
// 0 11110s xxxxxr 2 UInt(s) UInt(r)
// (s bits must not be all set)
//
// A pattern is constructed of size bits, where the least significant S+1
// bits are set. The pattern is rotated right by R, and repeated across a
// 64-bit value.
if n == 1 {
if s == 0x3f {
return 0;
}
let bits = (1u64 << (s + 1)) - 1;
bits.rotate_right(r)
} else {
if (s >> 1) == 0x1f {
return 0;
}
let mut width = 0x20;
while width >= 0x2 {
if (s & width) == 0 {
let mask = width - 1;
if (s & mask) == mask {
return 0;
}
let bits = (1u64 << ((s & mask) + 1)) - 1;
return repeat(bits.rotate_right(r & mask), width.into());
}
width >>= 1;
}
unreachable!();
}
}
}