Rework bounds checking for atomic operations (#5239)

Before, we would do a `heap_addr` to translate the given Wasm memory address
into a native memory address and pass it into the libcall that implemented the
atomic operation, which would then treat the address as a Wasm memory address
and pass it to `validate_atomic_addr` to be bounds checked a second time. This
is a bit nonsensical, as we are validating a native memory address as if it were
a Wasm memory address.

Now, we no longer do a `heap_addr` to translate the Wasm memory address to a
native memory address. Instead, we pass the Wasm memory address to the libcall,
and the libcall is responsible for doing the bounds check (by calling
`validate_atomic_addr` with the correct type of memory address now).
This commit is contained in:
Nick Fitzgerald
2022-11-09 16:19:43 -08:00
committed by GitHub
parent 86679489ef
commit 47fa1ad6a8
4 changed files with 74 additions and 52 deletions

View File

@@ -1066,21 +1066,24 @@ pub fn translate_operator<FE: FuncEnvironment + ?Sized>(
let heap = state.get_heap(builder.func, memarg.memory, environ)?; let heap = state.get_heap(builder.func, memarg.memory, environ)?;
let timeout = state.pop1(); // 64 (fixed) let timeout = state.pop1(); // 64 (fixed)
let expected = state.pop1(); // 32 or 64 (per the `Ixx` in `IxxAtomicWait`) let expected = state.pop1(); // 32 or 64 (per the `Ixx` in `IxxAtomicWait`)
let (_flags, addr) = prepare_atomic_addr(
memarg,
u8::try_from(implied_ty.bytes()).unwrap(),
builder,
state,
environ,
)?;
assert!(builder.func.dfg.value_type(expected) == implied_ty); assert!(builder.func.dfg.value_type(expected) == implied_ty);
let addr = state.pop1();
let effective_addr = if memarg.offset == 0 {
addr
} else {
let index_type = builder.func.heaps[heap].index_type;
let offset = builder.ins().iconst(index_type, memarg.offset as i64);
builder
.ins()
.uadd_overflow_trap(addr, offset, ir::TrapCode::HeapOutOfBounds)
};
// `fn translate_atomic_wait` can inspect the type of `expected` to figure out what // `fn translate_atomic_wait` can inspect the type of `expected` to figure out what
// code it needs to generate, if it wants. // code it needs to generate, if it wants.
let res = environ.translate_atomic_wait( let res = environ.translate_atomic_wait(
builder.cursor(), builder.cursor(),
heap_index, heap_index,
heap, heap,
addr, effective_addr,
expected, expected,
timeout, timeout,
)?; )?;
@@ -1090,12 +1093,23 @@ pub fn translate_operator<FE: FuncEnvironment + ?Sized>(
let heap_index = MemoryIndex::from_u32(memarg.memory); let heap_index = MemoryIndex::from_u32(memarg.memory);
let heap = state.get_heap(builder.func, memarg.memory, environ)?; let heap = state.get_heap(builder.func, memarg.memory, environ)?;
let count = state.pop1(); // 32 (fixed) let count = state.pop1(); // 32 (fixed)
let addr = state.pop1();
// `memory.atomic.notify` is defined to have an access size of 4 let effective_addr = if memarg.offset == 0 {
// bytes in the spec, even though it doesn't necessarily access memory. addr
let (_flags, addr) = prepare_atomic_addr(memarg, 4, builder, state, environ)?; } else {
let res = let index_type = builder.func.heaps[heap].index_type;
environ.translate_atomic_notify(builder.cursor(), heap_index, heap, addr, count)?; let offset = builder.ins().iconst(index_type, memarg.offset as i64);
builder
.ins()
.uadd_overflow_trap(addr, offset, ir::TrapCode::HeapOutOfBounds)
};
let res = environ.translate_atomic_notify(
builder.cursor(),
heap_index,
heap,
effective_addr,
count,
)?;
state.push1(res); state.push1(res);
} }
Operator::I32AtomicLoad { memarg } => { Operator::I32AtomicLoad { memarg } => {
@@ -2324,13 +2338,12 @@ fn prepare_addr<FE: FuncEnvironment + ?Sized>(
Ok((flags, addr)) Ok((flags, addr))
} }
fn prepare_atomic_addr<FE: FuncEnvironment + ?Sized>( fn align_atomic_addr(
memarg: &MemArg, memarg: &MemArg,
loaded_bytes: u8, loaded_bytes: u8,
builder: &mut FunctionBuilder, builder: &mut FunctionBuilder,
state: &mut FuncTranslationState, state: &mut FuncTranslationState,
environ: &mut FE, ) {
) -> WasmResult<(MemFlags, Value)> {
// Atomic addresses must all be aligned correctly, and for now we check // Atomic addresses must all be aligned correctly, and for now we check
// alignment before we check out-of-bounds-ness. The order of this check may // alignment before we check out-of-bounds-ness. The order of this check may
// need to be updated depending on the outcome of the official threads // need to be updated depending on the outcome of the official threads
@@ -2358,7 +2371,16 @@ fn prepare_atomic_addr<FE: FuncEnvironment + ?Sized>(
let f = builder.ins().icmp_imm(IntCC::NotEqual, misalignment, 0); let f = builder.ins().icmp_imm(IntCC::NotEqual, misalignment, 0);
builder.ins().trapnz(f, ir::TrapCode::HeapMisaligned); builder.ins().trapnz(f, ir::TrapCode::HeapMisaligned);
} }
}
fn prepare_atomic_addr<FE: FuncEnvironment + ?Sized>(
memarg: &MemArg,
loaded_bytes: u8,
builder: &mut FunctionBuilder,
state: &mut FuncTranslationState,
environ: &mut FE,
) -> WasmResult<(MemFlags, Value)> {
align_atomic_addr(memarg, loaded_bytes, builder, state);
prepare_addr(memarg, loaded_bytes, builder, state, environ) prepare_addr(memarg, loaded_bytes, builder, state, environ)
} }

View File

@@ -1981,6 +1981,7 @@ impl<'module_environment> cranelift_wasm::FuncEnvironment for FuncEnvironment<'m
expected: ir::Value, expected: ir::Value,
timeout: ir::Value, timeout: ir::Value,
) -> WasmResult<ir::Value> { ) -> WasmResult<ir::Value> {
let addr = self.cast_memory_index_to_i64(&mut pos, addr, memory_index);
let implied_ty = pos.func.dfg.value_type(expected); let implied_ty = pos.func.dfg.value_type(expected);
let (func_sig, memory_index, func_idx) = let (func_sig, memory_index, func_idx) =
self.get_memory_atomic_wait(&mut pos.func, memory_index, implied_ty); self.get_memory_atomic_wait(&mut pos.func, memory_index, implied_ty);
@@ -2006,6 +2007,7 @@ impl<'module_environment> cranelift_wasm::FuncEnvironment for FuncEnvironment<'m
addr: ir::Value, addr: ir::Value,
count: ir::Value, count: ir::Value,
) -> WasmResult<ir::Value> { ) -> WasmResult<ir::Value> {
let addr = self.cast_memory_index_to_i64(&mut pos, addr, memory_index);
let func_sig = self let func_sig = self
.builtin_function_signatures .builtin_function_signatures
.memory_atomic_notify(&mut pos.func); .memory_atomic_notify(&mut pos.func);

View File

@@ -42,11 +42,11 @@ macro_rules! foreach_builtin_function {
/// Returns an index for Wasm's `global.get` instruction for `externref`s. /// Returns an index for Wasm's `global.get` instruction for `externref`s.
externref_global_set(vmctx: vmctx, global: i32, val: reference); externref_global_set(vmctx: vmctx, global: i32, val: reference);
/// Returns an index for wasm's `memory.atomic.notify` instruction. /// Returns an index for wasm's `memory.atomic.notify` instruction.
memory_atomic_notify(vmctx: vmctx, memory: i32, addr: pointer, count: i32) -> i32; memory_atomic_notify(vmctx: vmctx, memory: i32, addr: i64, count: i32) -> i32;
/// Returns an index for wasm's `memory.atomic.wait32` instruction. /// Returns an index for wasm's `memory.atomic.wait32` instruction.
memory_atomic_wait32(vmctx: vmctx, memory: i32, addr: pointer, expected: i32, timeout: i64) -> i32; memory_atomic_wait32(vmctx: vmctx, memory: i32, addr: i64, expected: i32, timeout: i64) -> i32;
/// Returns an index for wasm's `memory.atomic.wait64` instruction. /// Returns an index for wasm's `memory.atomic.wait64` instruction.
memory_atomic_wait64(vmctx: vmctx, memory: i32, addr: pointer, expected: i64, timeout: i64) -> i32; memory_atomic_wait64(vmctx: vmctx, memory: i32, addr: i64, expected: i64, timeout: i64) -> i32;
/// Invoked when fuel has run out while executing a function. /// Invoked when fuel has run out while executing a function.
out_of_gas(vmctx: vmctx); out_of_gas(vmctx: vmctx);
/// Invoked when we reach a new epoch. /// Invoked when we reach a new epoch.

View File

@@ -434,17 +434,12 @@ unsafe fn externref_global_set(vmctx: *mut VMContext, index: u32, externref: *mu
unsafe fn memory_atomic_notify( unsafe fn memory_atomic_notify(
vmctx: *mut VMContext, vmctx: *mut VMContext,
memory_index: u32, memory_index: u32,
addr: *mut u8, addr: u64,
_count: u32, _count: u32,
) -> Result<u32, TrapReason> { ) -> Result<u32, TrapReason> {
let addr = addr as usize;
let memory = MemoryIndex::from_u32(memory_index); let memory = MemoryIndex::from_u32(memory_index);
let instance = (*vmctx).instance(); let instance = (*vmctx).instance();
// this should never overflow since addr + 4 either hits a guard page validate_atomic_addr(instance, memory, addr, 4, 4)?;
// or it's been validated to be in-bounds already. Double-check for now
// just to be sure.
let addr_to_check = addr.checked_add(4).unwrap();
validate_atomic_addr(instance, memory, addr_to_check)?;
Err( Err(
anyhow::anyhow!("unimplemented: wasm atomics (fn memory_atomic_notify) unsupported",) anyhow::anyhow!("unimplemented: wasm atomics (fn memory_atomic_notify) unsupported",)
.into(), .into(),
@@ -455,17 +450,13 @@ unsafe fn memory_atomic_notify(
unsafe fn memory_atomic_wait32( unsafe fn memory_atomic_wait32(
vmctx: *mut VMContext, vmctx: *mut VMContext,
memory_index: u32, memory_index: u32,
addr: *mut u8, addr: u64,
_expected: u32, _expected: u32,
_timeout: u64, _timeout: u64,
) -> Result<u32, TrapReason> { ) -> Result<u32, TrapReason> {
let addr = addr as usize;
let memory = MemoryIndex::from_u32(memory_index); let memory = MemoryIndex::from_u32(memory_index);
let instance = (*vmctx).instance(); let instance = (*vmctx).instance();
// see wasmtime_memory_atomic_notify for why this shouldn't overflow validate_atomic_addr(instance, memory, addr, 4, 4)?;
// but we still double-check
let addr_to_check = addr.checked_add(4).unwrap();
validate_atomic_addr(instance, memory, addr_to_check)?;
Err( Err(
anyhow::anyhow!("unimplemented: wasm atomics (fn memory_atomic_wait32) unsupported",) anyhow::anyhow!("unimplemented: wasm atomics (fn memory_atomic_wait32) unsupported",)
.into(), .into(),
@@ -476,40 +467,47 @@ unsafe fn memory_atomic_wait32(
unsafe fn memory_atomic_wait64( unsafe fn memory_atomic_wait64(
vmctx: *mut VMContext, vmctx: *mut VMContext,
memory_index: u32, memory_index: u32,
addr: *mut u8, addr: u64,
_expected: u64, _expected: u64,
_timeout: u64, _timeout: u64,
) -> Result<u32, TrapReason> { ) -> Result<u32, TrapReason> {
let addr = addr as usize;
let memory = MemoryIndex::from_u32(memory_index); let memory = MemoryIndex::from_u32(memory_index);
let instance = (*vmctx).instance(); let instance = (*vmctx).instance();
// see wasmtime_memory_atomic_notify for why this shouldn't overflow validate_atomic_addr(instance, memory, addr, 8, 8)?;
// but we still double-check
let addr_to_check = addr.checked_add(8).unwrap();
validate_atomic_addr(instance, memory, addr_to_check)?;
Err( Err(
anyhow::anyhow!("unimplemented: wasm atomics (fn memory_atomic_wait64) unsupported",) anyhow::anyhow!("unimplemented: wasm atomics (fn memory_atomic_wait64) unsupported",)
.into(), .into(),
) )
} }
/// For atomic operations we still check the actual address despite this also macro_rules! ensure {
/// being checked via the `heap_addr` instruction in cranelift. The reason for ($cond:expr, $trap:expr) => {
/// that is because the `heap_addr` instruction can defer to a later segfault to if !($cond) {
/// actually recognize the out-of-bounds whereas once we're running Rust code return Err($trap);
/// here we don't want to segfault. }
/// };
/// In the situations where bounds checks were elided in JIT code (because oob }
/// would then be later guaranteed to segfault) this manual check is here
/// so we don't segfault from Rust. /// In the configurations where bounds checks were elided in JIT code (because
/// we are using static memories with virtual memory guard pages) this manual
/// check is here so we don't segfault from Rust. For other configurations,
/// these checks are required anyways.
unsafe fn validate_atomic_addr( unsafe fn validate_atomic_addr(
instance: &Instance, instance: &Instance,
memory: MemoryIndex, memory: MemoryIndex,
addr: usize, addr: u64,
access_size: u64,
access_alignment: u64,
) -> Result<(), TrapCode> { ) -> Result<(), TrapCode> {
if addr > instance.get_memory(memory).current_length() { debug_assert!(access_alignment.is_power_of_two());
return Err(TrapCode::HeapOutOfBounds); ensure!(addr % access_alignment == 0, TrapCode::HeapMisaligned);
}
let length = u64::try_from(instance.get_memory(memory).current_length()).unwrap();
ensure!(
addr.saturating_add(access_size) < length,
TrapCode::HeapOutOfBounds
);
Ok(()) Ok(())
} }