x64: Lower fcvt_to_{u,s}int{,_sat} in ISLE (#4704)

https://github.com/bytecodealliance/wasmtime/pull/4704
This commit is contained in:
Trevor Elliott
2022-08-16 09:03:50 -07:00
committed by GitHub
parent 2ce03cce08
commit 3c1490dd59
6 changed files with 446 additions and 281 deletions

View File

@@ -557,232 +557,14 @@ fn lower_insn_to_regs(
| Opcode::SelectifSpectreGuard
| Opcode::FcvtFromSint
| Opcode::FcvtLowFromSint
| Opcode::FcvtFromUint => {
| Opcode::FcvtFromUint
| Opcode::FcvtToUint
| Opcode::FcvtToSint
| Opcode::FcvtToUintSat
| Opcode::FcvtToSintSat => {
implemented_in_isle(ctx);
}
Opcode::FcvtToUint | Opcode::FcvtToUintSat | Opcode::FcvtToSint | Opcode::FcvtToSintSat => {
let src = put_input_in_reg(ctx, inputs[0]);
let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap();
let input_ty = ctx.input_ty(insn, 0);
if !input_ty.is_vector() {
let src_size = if input_ty == types::F32 {
OperandSize::Size32
} else {
assert_eq!(input_ty, types::F64);
OperandSize::Size64
};
let output_ty = ty.unwrap();
let dst_size = if output_ty == types::I32 {
OperandSize::Size32
} else {
assert_eq!(output_ty, types::I64);
OperandSize::Size64
};
let to_signed = op == Opcode::FcvtToSint || op == Opcode::FcvtToSintSat;
let is_sat = op == Opcode::FcvtToUintSat || op == Opcode::FcvtToSintSat;
let src_copy = ctx.alloc_tmp(input_ty).only_reg().unwrap();
ctx.emit(Inst::gen_move(src_copy, src, input_ty));
let tmp_xmm = ctx.alloc_tmp(input_ty).only_reg().unwrap();
let tmp_gpr = ctx.alloc_tmp(output_ty).only_reg().unwrap();
if to_signed {
ctx.emit(Inst::cvt_float_to_sint_seq(
src_size, dst_size, is_sat, src_copy, dst, tmp_gpr, tmp_xmm,
));
} else {
ctx.emit(Inst::cvt_float_to_uint_seq(
src_size, dst_size, is_sat, src_copy, dst, tmp_gpr, tmp_xmm,
));
}
} else {
if op == Opcode::FcvtToSintSat {
// Sets destination to zero if float is NaN
assert_eq!(types::F32X4, ctx.input_ty(insn, 0));
let tmp = ctx.alloc_tmp(types::I32X4).only_reg().unwrap();
ctx.emit(Inst::xmm_unary_rm_r(
SseOpcode::Movapd,
RegMem::reg(src),
tmp,
));
ctx.emit(Inst::gen_move(dst, src, input_ty));
let cond = FcmpImm::from(FloatCC::Equal);
ctx.emit(Inst::xmm_rm_r_imm(
SseOpcode::Cmpps,
RegMem::reg(tmp.to_reg()),
tmp,
cond.encode(),
OperandSize::Size32,
));
ctx.emit(Inst::xmm_rm_r(
SseOpcode::Andps,
RegMem::reg(tmp.to_reg()),
dst,
));
// Sets top bit of tmp if float is positive
// Setting up to set top bit on negative float values
ctx.emit(Inst::xmm_rm_r(
SseOpcode::Pxor,
RegMem::reg(dst.to_reg()),
tmp,
));
// Convert the packed float to packed doubleword.
ctx.emit(Inst::xmm_unary_rm_r(
SseOpcode::Cvttps2dq,
RegMem::reg(dst.to_reg()),
dst,
));
// Set top bit only if < 0
// Saturate lane with sign (top) bit.
ctx.emit(Inst::xmm_rm_r(
SseOpcode::Pand,
RegMem::reg(dst.to_reg()),
tmp,
));
ctx.emit(Inst::xmm_rmi_reg(SseOpcode::Psrad, RegMemImm::imm(31), tmp));
// On overflow 0x80000000 is returned to a lane.
// Below sets positive overflow lanes to 0x7FFFFFFF
// Keeps negative overflow lanes as is.
ctx.emit(Inst::xmm_rm_r(
SseOpcode::Pxor,
RegMem::reg(tmp.to_reg()),
dst,
));
} else if op == Opcode::FcvtToUintSat {
// The algorithm for converting floats to unsigned ints is a little tricky. The
// complication arises because we are converting from a signed 64-bit int with a positive
// integer range from 1..INT_MAX (0x1..0x7FFFFFFF) to an unsigned integer with an extended
// range from (INT_MAX+1)..UINT_MAX. It's this range from (INT_MAX+1)..UINT_MAX
// (0x80000000..0xFFFFFFFF) that needs to be accounted for as a special case since our
// conversion instruction (cvttps2dq) only converts as high as INT_MAX (0x7FFFFFFF), but
// which conveniently setting underflows and overflows (smaller than MIN_INT or larger than
// MAX_INT) to be INT_MAX+1 (0x80000000). Nothing that the range (INT_MAX+1)..UINT_MAX includes
// precisely INT_MAX values we can correctly account for and convert every value in this range
// if we simply subtract INT_MAX+1 before doing the cvttps2dq conversion. After the subtraction
// every value originally (INT_MAX+1)..UINT_MAX is now the range (0..INT_MAX).
// After the conversion we add INT_MAX+1 back to this converted value, noting again that
// values we are trying to account for were already set to INT_MAX+1 during the original conversion.
// We simply have to create a mask and make sure we are adding together only the lanes that need
// to be accounted for. Digesting it all the steps then are:
//
// Step 1 - Account for NaN and negative floats by setting these src values to zero.
// Step 2 - Make a copy (tmp1) of the src value since we need to convert twice for
// reasons described above.
// Step 3 - Convert the original src values. This will convert properly all floats up to INT_MAX
// Step 4 - Subtract INT_MAX from the copy set (tmp1). Note, all zero and negative values are those
// values that were originally in the range (0..INT_MAX). This will come in handy during
// step 7 when we zero negative lanes.
// Step 5 - Create a bit mask for tmp1 that will correspond to all lanes originally less than
// UINT_MAX that are now less than INT_MAX thanks to the subtraction.
// Step 6 - Convert the second set of values (tmp1)
// Step 7 - Prep the converted second set by zeroing out negative lanes (these have already been
// converted correctly with the first set) and by setting overflow lanes to 0x7FFFFFFF
// as this will allow us to properly saturate overflow lanes when adding to 0x80000000
// Step 8 - Add the orginal converted src and the converted tmp1 where float values originally less
// than and equal to INT_MAX will be unchanged, float values originally between INT_MAX+1 and
// UINT_MAX will add together (INT_MAX) + (SRC - INT_MAX), and float values originally
// greater than UINT_MAX will be saturated to UINT_MAX (0xFFFFFFFF) after adding (0x8000000 + 0x7FFFFFFF).
//
//
// The table below illustrates the result after each step where it matters for the converted set.
// Note the original value range (original src set) is the final dst in Step 8:
//
// Original src set:
// | Original Value Range | Step 1 | Step 3 | Step 8 |
// | -FLT_MIN..FLT_MAX | 0.0..FLT_MAX | 0..INT_MAX(w/overflow) | 0..UINT_MAX(w/saturation) |
//
// Copied src set (tmp1):
// | Step 2 | Step 4 |
// | 0.0..FLT_MAX | (0.0-(INT_MAX+1))..(FLT_MAX-(INT_MAX+1)) |
//
// | Step 6 | Step 7 |
// | (0-(INT_MAX+1))..(UINT_MAX-(INT_MAX+1))(w/overflow) | ((INT_MAX+1)-(INT_MAX+1))..(INT_MAX+1) |
// Create temporaries
assert_eq!(types::F32X4, ctx.input_ty(insn, 0));
let tmp1 = ctx.alloc_tmp(types::I32X4).only_reg().unwrap();
let tmp2 = ctx.alloc_tmp(types::I32X4).only_reg().unwrap();
// Converting to unsigned int so if float src is negative or NaN
// will first set to zero.
ctx.emit(Inst::xmm_rm_r(SseOpcode::Pxor, RegMem::from(tmp2), tmp2));
ctx.emit(Inst::gen_move(dst, src, input_ty));
ctx.emit(Inst::xmm_rm_r(SseOpcode::Maxps, RegMem::from(tmp2), dst));
// Set tmp2 to INT_MAX+1. It is important to note here that after it looks
// like we are only converting INT_MAX (0x7FFFFFFF) but in fact because
// single precision IEEE-754 floats can only accurately represent contingous
// integers up to 2^23 and outside of this range it rounds to the closest
// integer that it can represent. In the case of INT_MAX, this value gets
// represented as 0x4f000000 which is the integer value (INT_MAX+1).
ctx.emit(Inst::xmm_rm_r(SseOpcode::Pcmpeqd, RegMem::from(tmp2), tmp2));
ctx.emit(Inst::xmm_rmi_reg(SseOpcode::Psrld, RegMemImm::imm(1), tmp2));
ctx.emit(Inst::xmm_unary_rm_r(
SseOpcode::Cvtdq2ps,
RegMem::from(tmp2),
tmp2,
));
// Make a copy of these lanes and then do the first conversion.
// Overflow lanes greater than the maximum allowed signed value will
// set to 0x80000000. Negative and NaN lanes will be 0x0
ctx.emit(Inst::xmm_mov(SseOpcode::Movaps, RegMem::from(dst), tmp1));
ctx.emit(Inst::xmm_unary_rm_r(
SseOpcode::Cvttps2dq,
RegMem::from(dst),
dst,
));
// Set lanes to src - max_signed_int
ctx.emit(Inst::xmm_rm_r(SseOpcode::Subps, RegMem::from(tmp2), tmp1));
// Create mask for all positive lanes to saturate (i.e. greater than
// or equal to the maxmimum allowable unsigned int).
let cond = FcmpImm::from(FloatCC::LessThanOrEqual);
ctx.emit(Inst::xmm_rm_r_imm(
SseOpcode::Cmpps,
RegMem::from(tmp1),
tmp2,
cond.encode(),
OperandSize::Size32,
));
// Convert those set of lanes that have the max_signed_int factored out.
ctx.emit(Inst::xmm_unary_rm_r(
SseOpcode::Cvttps2dq,
RegMem::from(tmp1),
tmp1,
));
// Prepare converted lanes by zeroing negative lanes and prepping lanes
// that have positive overflow (based on the mask) by setting these lanes
// to 0x7FFFFFFF
ctx.emit(Inst::xmm_rm_r(SseOpcode::Pxor, RegMem::from(tmp2), tmp1));
ctx.emit(Inst::xmm_rm_r(SseOpcode::Pxor, RegMem::from(tmp2), tmp2));
ctx.emit(Inst::xmm_rm_r(SseOpcode::Pmaxsd, RegMem::from(tmp2), tmp1));
// Add this second set of converted lanes to the original to properly handle
// values greater than max signed int.
ctx.emit(Inst::xmm_rm_r(SseOpcode::Paddd, RegMem::from(tmp1), dst));
} else {
// Since this branch is also guarded by a check for vector types
// neither Opcode::FcvtToUint nor Opcode::FcvtToSint can reach here
// due to vector varients not existing. The first two branches will
// cover all reachable cases.
unreachable!();
}
}
}
Opcode::IaddPairwise => {
if let (Some(swiden_low), Some(swiden_high)) = (
matches_input(ctx, inputs[0], Opcode::SwidenLow),