Implement wasm trap handlers. (#27)

* Implement wasm trap handlers.

This adds signal handlers based on SpiderMonkey's signal-handler code.
The functionality for looking up the trap code and wasm bytecode offset
isn't yet implemented, but this is a start.

I considered rewriting this code in Rust, but decided against it for now
as C++ allows us to talk to the relevant OS APIs more directly.

Fixes #15.

* Compile with -std=c++11.

* Refactor InstallState initialization.

* Compile with -fPIC.

* Factor out the code for calling a wasm function with a given index.

* Fix unclear wording in a comment.
This commit is contained in:
Dan Gohman
2018-11-27 06:05:58 -08:00
committed by GitHub
parent 8e1e75f1f4
commit 35627cf37f
9 changed files with 1132 additions and 19 deletions

View File

@@ -13,9 +13,16 @@ readme = "README.md"
cranelift-codegen = "0.25.0"
cranelift-entity = "0.25.0"
cranelift-wasm = "0.25.0"
region = "1.0.0"
wasmtime-environ = { path = "../environ" }
region = "1.0.0"
memmap = "0.7.0"
lazy_static = "1.2.0"
libc = "0.2.44"
[build-dependencies]
cmake = "0.1.35"
bindgen = "0.43.2"
regex = "1.0.6"
[features]
default = ["std"]

38
lib/execute/build.rs Normal file
View File

@@ -0,0 +1,38 @@
extern crate bindgen;
extern crate cmake;
extern crate regex;
use cmake::Config;
use regex::Regex;
use std::env;
use std::path::PathBuf;
fn main() {
let dst = Config::new("signalhandlers").build();
println!("cargo:rustc-link-search=native={}", dst.display());
println!("cargo:rustc-link-lib=static=SignalHandlers");
let mut bindings_builder = bindgen::Builder::default()
.header("signalhandlers/SignalHandlers.h")
.whitelist_type("CodeSegment")
.whitelist_type("TrapContext")
.whitelist_type("jmp_buf")
.whitelist_function("EnsureEagerSignalHandlers");
// If we're compiling for Darwin, compile in extra Darwin support routines.
if Regex::new(r"-darwin[[:digit:].]*$")
.unwrap()
.is_match(&env::var("TARGET").unwrap())
{
bindings_builder = bindings_builder.whitelist_function("EnsureDarwinMachPorts");
}
let out_path = PathBuf::from(env::var("OUT_DIR").unwrap());
bindings_builder
.generate()
.expect("Unable to generate bindings")
.write_to_file(out_path.join("signalhandlers.rs"))
.expect("Couldn't write bindings!");
}

View File

@@ -0,0 +1,8 @@
cmake_minimum_required(VERSION 3.0)
project(SignalHandlers CXX)
set(CMAKE_CXX_FLAGS "-std=c++11 -fno-exceptions -fno-rtti -fPIC")
add_library(SignalHandlers STATIC SignalHandlers.cpp)
install(TARGETS SignalHandlers DESTINATION .)

View File

@@ -0,0 +1,785 @@
//! This file is largely derived from the code in WasmSignalHandlers.cpp in SpiderMonkey:
//!
//! https://dxr.mozilla.org/mozilla-central/source/js/src/wasm/WasmSignalHandlers.cpp
#include "SignalHandlers.h"
#include <stdint.h>
#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#if defined(_WIN32)
# include <winternl.h> // must include before util/Windows.h's `#undef`s
# include "util/Windows.h"
#elif defined(__APPLE__)
# include <mach/exc.h>
# include <mach/mach.h>
#else
# include <signal.h>
#endif
// =============================================================================
// This following pile of macros and includes defines the ToRegisterState() and
// the ContextToPC() functions from the (highly) platform-specific CONTEXT
// struct which is provided to the signal handler.
// =============================================================================
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
# include <sys/ucontext.h> // for ucontext_t, mcontext_t
#endif
#if defined(__x86_64__)
# if defined(__DragonFly__)
# include <machine/npx.h> // for union savefpu
# elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || \
defined(__NetBSD__) || defined(__OpenBSD__)
# include <machine/fpu.h> // for struct savefpu/fxsave64
# endif
#endif
#if defined(_WIN32)
# define EIP_sig(p) ((p)->Eip)
# define EBP_sig(p) ((p)->Ebp)
# define ESP_sig(p) ((p)->Esp)
# define RIP_sig(p) ((p)->Rip)
# define RSP_sig(p) ((p)->Rsp)
# define RBP_sig(p) ((p)->Rbp)
# define R11_sig(p) ((p)->R11)
# define R13_sig(p) ((p)->R13)
# define R14_sig(p) ((p)->R14)
# define R15_sig(p) ((p)->R15)
# define EPC_sig(p) ((p)->Pc)
# define RFP_sig(p) ((p)->Fp)
# define R31_sig(p) ((p)->Sp)
# define RLR_sig(p) ((p)->Lr)
#elif defined(__OpenBSD__)
# define EIP_sig(p) ((p)->sc_eip)
# define EBP_sig(p) ((p)->sc_ebp)
# define ESP_sig(p) ((p)->sc_esp)
# define RIP_sig(p) ((p)->sc_rip)
# define RSP_sig(p) ((p)->sc_rsp)
# define RBP_sig(p) ((p)->sc_rbp)
# define R11_sig(p) ((p)->sc_r11)
# if defined(__arm__)
# define R13_sig(p) ((p)->sc_usr_sp)
# define R14_sig(p) ((p)->sc_usr_lr)
# define R15_sig(p) ((p)->sc_pc)
# else
# define R13_sig(p) ((p)->sc_r13)
# define R14_sig(p) ((p)->sc_r14)
# define R15_sig(p) ((p)->sc_r15)
# endif
# if defined(__aarch64__)
# define EPC_sig(p) ((p)->sc_elr)
# define RFP_sig(p) ((p)->sc_x[29])
# define RLR_sig(p) ((p)->sc_lr)
# define R31_sig(p) ((p)->sc_sp)
# endif
# if defined(__mips__)
# define EPC_sig(p) ((p)->sc_pc)
# define RFP_sig(p) ((p)->sc_regs[30])
# endif
#elif defined(__linux__) || defined(__sun)
# if defined(__linux__)
# define EIP_sig(p) ((p)->uc_mcontext.gregs[REG_EIP])
# define EBP_sig(p) ((p)->uc_mcontext.gregs[REG_EBP])
# define ESP_sig(p) ((p)->uc_mcontext.gregs[REG_ESP])
# else
# define EIP_sig(p) ((p)->uc_mcontext.gregs[REG_PC])
# define EBP_sig(p) ((p)->uc_mcontext.gregs[REG_EBP])
# define ESP_sig(p) ((p)->uc_mcontext.gregs[REG_ESP])
# endif
# define RIP_sig(p) ((p)->uc_mcontext.gregs[REG_RIP])
# define RSP_sig(p) ((p)->uc_mcontext.gregs[REG_RSP])
# define RBP_sig(p) ((p)->uc_mcontext.gregs[REG_RBP])
# if defined(__linux__) && defined(__arm__)
# define R11_sig(p) ((p)->uc_mcontext.arm_fp)
# define R13_sig(p) ((p)->uc_mcontext.arm_sp)
# define R14_sig(p) ((p)->uc_mcontext.arm_lr)
# define R15_sig(p) ((p)->uc_mcontext.arm_pc)
# else
# define R11_sig(p) ((p)->uc_mcontext.gregs[REG_R11])
# define R13_sig(p) ((p)->uc_mcontext.gregs[REG_R13])
# define R14_sig(p) ((p)->uc_mcontext.gregs[REG_R14])
# define R15_sig(p) ((p)->uc_mcontext.gregs[REG_R15])
# endif
# if defined(__linux__) && defined(__aarch64__)
# define EPC_sig(p) ((p)->uc_mcontext.pc)
# define RFP_sig(p) ((p)->uc_mcontext.regs[29])
# define RLR_sig(p) ((p)->uc_mcontext.regs[30])
# define R31_sig(p) ((p)->uc_mcontext.regs[31])
# endif
# if defined(__linux__) && defined(__mips__)
# define EPC_sig(p) ((p)->uc_mcontext.pc)
# define RFP_sig(p) ((p)->uc_mcontext.gregs[30])
# define RSP_sig(p) ((p)->uc_mcontext.gregs[29])
# define R31_sig(p) ((p)->uc_mcontext.gregs[31])
# endif
# if defined(__linux__) && (defined(__sparc__) && defined(__arch64__))
# define PC_sig(p) ((p)->uc_mcontext.mc_gregs[MC_PC])
# define FP_sig(p) ((p)->uc_mcontext.mc_fp)
# define SP_sig(p) ((p)->uc_mcontext.mc_i7)
# endif
# if defined(__linux__) && \
(defined(__ppc64__) || defined (__PPC64__) || defined(__ppc64le__) || defined (__PPC64LE__))
# define R01_sig(p) ((p)->uc_mcontext.gp_regs[1])
# define R32_sig(p) ((p)->uc_mcontext.gp_regs[32])
# endif
#elif defined(__NetBSD__)
# define EIP_sig(p) ((p)->uc_mcontext.__gregs[_REG_EIP])
# define EBP_sig(p) ((p)->uc_mcontext.__gregs[_REG_EBP])
# define ESP_sig(p) ((p)->uc_mcontext.__gregs[_REG_ESP])
# define RIP_sig(p) ((p)->uc_mcontext.__gregs[_REG_RIP])
# define RSP_sig(p) ((p)->uc_mcontext.__gregs[_REG_RSP])
# define RBP_sig(p) ((p)->uc_mcontext.__gregs[_REG_RBP])
# define R11_sig(p) ((p)->uc_mcontext.__gregs[_REG_R11])
# define R13_sig(p) ((p)->uc_mcontext.__gregs[_REG_R13])
# define R14_sig(p) ((p)->uc_mcontext.__gregs[_REG_R14])
# define R15_sig(p) ((p)->uc_mcontext.__gregs[_REG_R15])
# if defined(__aarch64__)
# define EPC_sig(p) ((p)->uc_mcontext.__gregs[_REG_PC])
# define RFP_sig(p) ((p)->uc_mcontext.__gregs[_REG_X29])
# define RLR_sig(p) ((p)->uc_mcontext.__gregs[_REG_X30])
# define R31_sig(p) ((p)->uc_mcontext.__gregs[_REG_SP])
# endif
# if defined(__mips__)
# define EPC_sig(p) ((p)->uc_mcontext.__gregs[_REG_EPC])
# define RFP_sig(p) ((p)->uc_mcontext.__gregs[_REG_S8])
# endif
#elif defined(__DragonFly__) || defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
# define EIP_sig(p) ((p)->uc_mcontext.mc_eip)
# define EBP_sig(p) ((p)->uc_mcontext.mc_ebp)
# define ESP_sig(p) ((p)->uc_mcontext.mc_esp)
# define RIP_sig(p) ((p)->uc_mcontext.mc_rip)
# define RSP_sig(p) ((p)->uc_mcontext.mc_rsp)
# define RBP_sig(p) ((p)->uc_mcontext.mc_rbp)
# if defined(__FreeBSD__) && defined(__arm__)
# define R11_sig(p) ((p)->uc_mcontext.__gregs[_REG_R11])
# define R13_sig(p) ((p)->uc_mcontext.__gregs[_REG_R13])
# define R14_sig(p) ((p)->uc_mcontext.__gregs[_REG_R14])
# define R15_sig(p) ((p)->uc_mcontext.__gregs[_REG_R15])
# else
# define R11_sig(p) ((p)->uc_mcontext.mc_r11)
# define R13_sig(p) ((p)->uc_mcontext.mc_r13)
# define R14_sig(p) ((p)->uc_mcontext.mc_r14)
# define R15_sig(p) ((p)->uc_mcontext.mc_r15)
# endif
# if defined(__FreeBSD__) && defined(__aarch64__)
# define EPC_sig(p) ((p)->uc_mcontext.mc_gpregs.gp_elr)
# define RFP_sig(p) ((p)->uc_mcontext.mc_gpregs.gp_x[29])
# define RLR_sig(p) ((p)->uc_mcontext.mc_gpregs.gp_lr)
# define R31_sig(p) ((p)->uc_mcontext.mc_gpregs.gp_sp)
# endif
# if defined(__FreeBSD__) && defined(__mips__)
# define EPC_sig(p) ((p)->uc_mcontext.mc_pc)
# define RFP_sig(p) ((p)->uc_mcontext.mc_regs[30])
# endif
#elif defined(__APPLE__)
# define EIP_sig(p) ((p)->thread.uts.ts32.__eip)
# define EBP_sig(p) ((p)->thread.uts.ts32.__ebp)
# define ESP_sig(p) ((p)->thread.uts.ts32.__esp)
# define RIP_sig(p) ((p)->thread.__rip)
# define RBP_sig(p) ((p)->thread.__rbp)
# define RSP_sig(p) ((p)->thread.__rsp)
# define R11_sig(p) ((p)->thread.__r[11])
# define R13_sig(p) ((p)->thread.__sp)
# define R14_sig(p) ((p)->thread.__lr)
# define R15_sig(p) ((p)->thread.__pc)
#else
# error "Don't know how to read/write to the thread state via the mcontext_t."
#endif
#if defined(ANDROID)
// Not all versions of the Android NDK define ucontext_t or mcontext_t.
// Detect this and provide custom but compatible definitions. Note that these
// follow the GLibc naming convention to access register values from
// mcontext_t.
//
// See: https://chromiumcodereview.appspot.com/10829122/
// See: http://code.google.com/p/android/issues/detail?id=34784
# if !defined(__BIONIC_HAVE_UCONTEXT_T)
# if defined(__arm__)
// GLibc on ARM defines mcontext_t has a typedef for 'struct sigcontext'.
// Old versions of the C library <signal.h> didn't define the type.
# if !defined(__BIONIC_HAVE_STRUCT_SIGCONTEXT)
# include <asm/sigcontext.h>
# endif
typedef struct sigcontext mcontext_t;
typedef struct ucontext {
uint32_t uc_flags;
struct ucontext* uc_link;
stack_t uc_stack;
mcontext_t uc_mcontext;
// Other fields are not used so don't define them here.
} ucontext_t;
# elif defined(__mips__)
typedef struct {
uint32_t regmask;
uint32_t status;
uint64_t pc;
uint64_t gregs[32];
uint64_t fpregs[32];
uint32_t acx;
uint32_t fpc_csr;
uint32_t fpc_eir;
uint32_t used_math;
uint32_t dsp;
uint64_t mdhi;
uint64_t mdlo;
uint32_t hi1;
uint32_t lo1;
uint32_t hi2;
uint32_t lo2;
uint32_t hi3;
uint32_t lo3;
} mcontext_t;
typedef struct ucontext {
uint32_t uc_flags;
struct ucontext* uc_link;
stack_t uc_stack;
mcontext_t uc_mcontext;
// Other fields are not used so don't define them here.
} ucontext_t;
# elif defined(__i386__)
// x86 version for Android.
typedef struct {
uint32_t gregs[19];
void* fpregs;
uint32_t oldmask;
uint32_t cr2;
} mcontext_t;
typedef uint32_t kernel_sigset_t[2]; // x86 kernel uses 64-bit signal masks
typedef struct ucontext {
uint32_t uc_flags;
struct ucontext* uc_link;
stack_t uc_stack;
mcontext_t uc_mcontext;
// Other fields are not used by V8, don't define them here.
} ucontext_t;
enum { REG_EIP = 14 };
# endif // defined(__i386__)
# endif // !defined(__BIONIC_HAVE_UCONTEXT_T)
#endif // defined(ANDROID)
#if defined(__APPLE__)
# if defined(__x86_64__)
struct macos_x64_context {
x86_thread_state64_t thread;
x86_float_state64_t float_;
};
# define CONTEXT macos_x64_context
# elif defined(__i386__)
struct macos_x86_context {
x86_thread_state_t thread;
x86_float_state_t float_;
};
# define CONTEXT macos_x86_context
# elif defined(__arm__)
struct macos_arm_context {
arm_thread_state_t thread;
arm_neon_state_t float_;
};
# define CONTEXT macos_arm_context
# else
# error Unsupported architecture
# endif
#elif !defined(_WIN32)
# define CONTEXT ucontext_t
#endif
#if defined(_M_X64) || defined(__x86_64__)
# define PC_sig(p) RIP_sig(p)
# define FP_sig(p) RBP_sig(p)
# define SP_sig(p) RSP_sig(p)
#elif defined(_M_IX86) || defined(__i386__)
# define PC_sig(p) EIP_sig(p)
# define FP_sig(p) EBP_sig(p)
# define SP_sig(p) ESP_sig(p)
#elif defined(__arm__)
# define FP_sig(p) R11_sig(p)
# define SP_sig(p) R13_sig(p)
# define LR_sig(p) R14_sig(p)
# define PC_sig(p) R15_sig(p)
#elif defined(_M_ARM64) || defined(__aarch64__)
# define PC_sig(p) EPC_sig(p)
# define FP_sig(p) RFP_sig(p)
# define SP_sig(p) R31_sig(p)
# define LR_sig(p) RLR_sig(p)
#elif defined(__mips__)
# define PC_sig(p) EPC_sig(p)
# define FP_sig(p) RFP_sig(p)
# define SP_sig(p) RSP_sig(p)
# define LR_sig(p) R31_sig(p)
#elif defined(__ppc64__) || defined (__PPC64__) || defined(__ppc64le__) || defined (__PPC64LE__)
# define PC_sig(p) R32_sig(p)
# define SP_sig(p) R01_sig(p)
# define FP_sig(p) R01_sig(p)
#endif
static void
SetContextPC(CONTEXT* context, const uint8_t* pc)
{
#ifdef PC_sig
PC_sig(context) = reinterpret_cast<greg_t>(pc);
#else
abort();
#endif
}
static const uint8_t*
ContextToPC(CONTEXT* context)
{
#ifdef PC_sig
return reinterpret_cast<const uint8_t*>(PC_sig(context));
#else
abort();
#endif
}
// =============================================================================
// All signals/exceptions funnel down to this one trap-handling function which
// tests whether the pc is in a wasm module and, if so, whether there is
// actually a trap expected at this pc. These tests both avoid real bugs being
// silently converted to wasm traps and provides the trapping wasm bytecode
// offset we need to report in the error.
//
// Crashing inside wasm trap handling (due to a bug in trap handling or exposed
// during trap handling) must be reported like a normal crash, not cause the
// crash report to be lost. On Windows and non-Mach Unix, a crash during the
// handler reenters the handler, possibly repeatedly until exhausting the stack,
// and so we prevent recursion with the thread-local sAlreadyHandlingTrap. On
// Mach, the wasm exception handler has its own thread and is installed only on
// the thread-level debugging ports of our threads, so a crash on
// exception handler thread will not recurse; it will bubble up to the
// process-level debugging ports (where Breakpad is installed).
// =============================================================================
static thread_local bool sAlreadyHandlingTrap;
namespace {
struct AutoHandlingTrap
{
AutoHandlingTrap() {
assert(!sAlreadyHandlingTrap);
sAlreadyHandlingTrap = true;
}
~AutoHandlingTrap() {
assert(sAlreadyHandlingTrap);
sAlreadyHandlingTrap = false;
}
};
}
static
#if defined(__GNUC__) || defined(__clang__)
__attribute__ ((warn_unused_result))
#endif
bool
HandleTrap(CONTEXT* context)
{
assert(sAlreadyHandlingTrap);
const uint8_t* pc = ContextToPC(context);
const CodeSegment* codeSegment = LookupCodeSegment(pc);
if (!codeSegment) {
return false;
}
RecordTrap(pc, codeSegment);
// For now, just call Unwind directly, rather than redirecting the PC there,
// so that it runs on the alternate signal handler stack. To run on the main
// stack, reroute the context PC like this:
// SetContextPC(context, reinterpret_cast<const uint8_t*>(&Unwind));
Unwind();
return true;
}
// =============================================================================
// The following platform-specific handlers funnel all signals/exceptions into
// the shared HandleTrap() above.
// =============================================================================
#if defined(_WIN32)
// Obtained empirically from thread_local codegen on x86/x64/arm64.
// Compiled in all user binaries, so should be stable over time.
static const unsigned sThreadLocalArrayPointerIndex = 11;
static LONG WINAPI
WasmTrapHandler(LPEXCEPTION_POINTERS exception)
{
// Make sure TLS is initialized before reading sAlreadyHandlingTrap.
if (!NtCurrentTeb()->Reserved1[sThreadLocalArrayPointerIndex]) {
return EXCEPTION_CONTINUE_SEARCH;
}
if (sAlreadyHandlingTrap) {
return EXCEPTION_CONTINUE_SEARCH;
}
AutoHandlingTrap aht;
EXCEPTION_RECORD* record = exception->ExceptionRecord;
if (record->ExceptionCode != EXCEPTION_ACCESS_VIOLATION &&
record->ExceptionCode != EXCEPTION_ILLEGAL_INSTRUCTION)
{
return EXCEPTION_CONTINUE_SEARCH;
}
if (!HandleTrap(exception->ContextRecord)) {
return EXCEPTION_CONTINUE_SEARCH;
}
return EXCEPTION_CONTINUE_EXECUTION;
}
#elif defined(__APPLE__)
// On OSX we are forced to use the lower-level Mach exception mechanism instead
// of Unix signals because breakpad uses Mach exceptions and would otherwise
// report a crash before wasm gets a chance to handle the exception.
// This definition was generated by mig (the Mach Interface Generator) for the
// routine 'exception_raise' (exc.defs).
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
/* start of the kernel processed data */
mach_msg_body_t msgh_body;
mach_msg_port_descriptor_t thread;
mach_msg_port_descriptor_t task;
/* end of the kernel processed data */
NDR_record_t NDR;
exception_type_t exception;
mach_msg_type_number_t codeCnt;
int64_t code[2];
} Request__mach_exception_raise_t;
#pragma pack()
// The full Mach message also includes a trailer.
struct ExceptionRequest
{
Request__mach_exception_raise_t body;
mach_msg_trailer_t trailer;
};
static bool
HandleMachException(const ExceptionRequest& request)
{
// Get the port of the thread from the message.
mach_port_t cxThread = request.body.thread.name;
// Read out the thread's register state.
CONTEXT context;
# if defined(__x86_64__)
unsigned int thread_state_count = x86_THREAD_STATE64_COUNT;
unsigned int float_state_count = x86_FLOAT_STATE64_COUNT;
int thread_state = x86_THREAD_STATE64;
int float_state = x86_FLOAT_STATE64;
# elif defined(__i386__)
unsigned int thread_state_count = x86_THREAD_STATE_COUNT;
unsigned int float_state_count = x86_FLOAT_STATE_COUNT;
int thread_state = x86_THREAD_STATE;
int float_state = x86_FLOAT_STATE;
# elif defined(__arm__)
unsigned int thread_state_count = ARM_THREAD_STATE_COUNT;
unsigned int float_state_count = ARM_NEON_STATE_COUNT;
int thread_state = ARM_THREAD_STATE;
int float_state = ARM_NEON_STATE;
# else
# error Unsupported architecture
# endif
kern_return_t kret;
kret = thread_get_state(cxThread, thread_state,
(thread_state_t)&context.thread, &thread_state_count);
if (kret != KERN_SUCCESS) {
return false;
}
kret = thread_get_state(cxThread, float_state,
(thread_state_t)&context.float_, &float_state_count);
if (kret != KERN_SUCCESS) {
return false;
}
if (request.body.exception != EXC_BAD_ACCESS &&
request.body.exception != EXC_BAD_INSTRUCTION)
{
return false;
}
{
AutoNoteSingleThreadedRegion anstr;
AutoHandlingTrap aht;
if (!HandleTrap(&context)) {
return false;
}
}
// Update the thread state with the new pc and register values.
kret = thread_set_state(cxThread, float_state, (thread_state_t)&context.float_, float_state_count);
if (kret != KERN_SUCCESS) {
return false;
}
kret = thread_set_state(cxThread, thread_state, (thread_state_t)&context.thread, thread_state_count);
if (kret != KERN_SUCCESS) {
return false;
}
return true;
}
static mach_port_t sMachDebugPort = MACH_PORT_NULL;
static void
MachExceptionHandlerThread(void *arg)
{
// Taken from mach_exc in /usr/include/mach/mach_exc.defs.
static const unsigned EXCEPTION_MSG_ID = 2405;
while (true) {
ExceptionRequest request;
kern_return_t kret = mach_msg(&request.body.Head, MACH_RCV_MSG, 0, sizeof(request),
sMachDebugPort, MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL);
// If we fail even receiving the message, we can't even send a reply!
// Rather than hanging the faulting thread (hanging the browser), crash.
if (kret != KERN_SUCCESS) {
fprintf(stderr, "MachExceptionHandlerThread: mach_msg failed with %d\n", (int)kret);
abort();
}
if (request.body.Head.msgh_id != EXCEPTION_MSG_ID) {
fprintf(stderr, "Unexpected msg header id %d\n", (int)request.body.Head.msgh_bits);
abort();
}
// Some thread just commited an EXC_BAD_ACCESS and has been suspended by
// the kernel. The kernel is waiting for us to reply with instructions.
// Our default is the "not handled" reply (by setting the RetCode field
// of the reply to KERN_FAILURE) which tells the kernel to continue
// searching at the process and system level. If this is an
// expected exception, we handle it and return KERN_SUCCESS.
bool handled = HandleMachException(request);
kern_return_t replyCode = handled ? KERN_SUCCESS : KERN_FAILURE;
// This magic incantation to send a reply back to the kernel was
// derived from the exc_server generated by
// 'mig -v /usr/include/mach/mach_exc.defs'.
__Reply__exception_raise_t reply;
reply.Head.msgh_bits = MACH_MSGH_BITS(MACH_MSGH_BITS_REMOTE(request.body.Head.msgh_bits), 0);
reply.Head.msgh_size = sizeof(reply);
reply.Head.msgh_remote_port = request.body.Head.msgh_remote_port;
reply.Head.msgh_local_port = MACH_PORT_NULL;
reply.Head.msgh_id = request.body.Head.msgh_id + 100;
reply.NDR = NDR_record;
reply.RetCode = replyCode;
mach_msg(&reply.Head, MACH_SEND_MSG, sizeof(reply), 0, MACH_PORT_NULL,
MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL);
}
}
#else // If not Windows or Mac, assume Unix
#ifdef __mips__
static const uint32_t kWasmTrapSignal = SIGFPE;
#else
static const uint32_t kWasmTrapSignal = SIGILL;
#endif
static struct sigaction sPrevSEGVHandler;
static struct sigaction sPrevSIGBUSHandler;
static struct sigaction sPrevWasmTrapHandler;
static void
WasmTrapHandler(int signum, siginfo_t* info, void* context)
{
if (!sAlreadyHandlingTrap) {
AutoHandlingTrap aht;
assert(signum == SIGSEGV || signum == SIGBUS || signum == kWasmTrapSignal);
if (HandleTrap(static_cast<CONTEXT*>(context))) {
return;
}
}
struct sigaction* previousSignal = nullptr;
switch (signum) {
case SIGSEGV: previousSignal = &sPrevSEGVHandler; break;
case SIGBUS: previousSignal = &sPrevSIGBUSHandler; break;
case kWasmTrapSignal: previousSignal = &sPrevWasmTrapHandler; break;
}
assert(previousSignal);
// This signal is not for any JIT code we expect, so we need to forward
// the signal to the next handler. If there is no next handler (SIG_IGN or
// SIG_DFL), then it's time to crash. To do this, we set the signal back to
// its original disposition and return. This will cause the faulting op to
// be re-executed which will crash in the normal way. The advantage of
// doing this to calling _exit() is that we remove ourselves from the crash
// stack which improves crash reports. If there is a next handler, call it.
// It will either crash synchronously, fix up the instruction so that
// execution can continue and return, or trigger a crash by returning the
// signal to it's original disposition and returning.
//
// Note: the order of these tests matter.
if (previousSignal->sa_flags & SA_SIGINFO) {
previousSignal->sa_sigaction(signum, info, context);
} else if (previousSignal->sa_handler == SIG_DFL || previousSignal->sa_handler == SIG_IGN) {
sigaction(signum, previousSignal, nullptr);
} else {
previousSignal->sa_handler(signum);
}
}
# endif // _WIN32 || __APPLE__ || assume unix
#if defined(ANDROID) && defined(MOZ_LINKER)
extern "C" MFBT_API bool IsSignalHandlingBroken();
#endif
bool
EnsureEagerSignalHandlers()
{
#if defined(ANDROID) && defined(MOZ_LINKER)
// Signal handling is broken on some android systems.
if (IsSignalHandlingBroken()) {
return false;
}
#endif
sAlreadyHandlingTrap = false;
// Install whatever exception/signal handler is appropriate for the OS.
#if defined(_WIN32)
# if defined(MOZ_ASAN)
// Under ASan we need to let the ASan runtime's ShadowExceptionHandler stay
// in the first handler position. This requires some coordination with
// MemoryProtectionExceptionHandler::isDisabled().
const bool firstHandler = false;
# else
// Otherwise, WasmTrapHandler needs to go first, so that we can recover
// from wasm faults and continue execution without triggering handlers
// such as MemoryProtectionExceptionHandler that assume we are crashing.
const bool firstHandler = true;
# endif
if (!AddVectoredExceptionHandler(firstHandler, WasmTrapHandler)) {
// Windows has all sorts of random security knobs for disabling things
// so make this a dynamic failure that disables wasm, not an abort().
return false;
}
#elif defined(__APPLE__)
// All the Mach setup in EnsureLazyProcessSignalHandlers.
#else
// SA_ONSTACK allows us to handle signals on an alternate stack, so that
// the handler can run in response to running out of stack space on the
// main stack. Rust installs an alternate stack with sigaltstack, so we
// rely on that.
// SA_NODEFER allows us to reenter the signal handler if we crash while
// handling the signal, and fall through to the Breakpad handler by testing
// handlingSegFault.
// Allow handling OOB with signals on all architectures
struct sigaction faultHandler;
faultHandler.sa_flags = SA_SIGINFO | SA_NODEFER | SA_ONSTACK;
faultHandler.sa_sigaction = WasmTrapHandler;
sigemptyset(&faultHandler.sa_mask);
if (sigaction(SIGSEGV, &faultHandler, &sPrevSEGVHandler)) {
perror("unable to install segv handler");
abort();
}
# if defined(__arm__)
// On Arm Handle Unaligned Accesses
struct sigaction busHandler;
busHandler.sa_flags = SA_SIGINFO | SA_NODEFER | SA_ONSTACK;
busHandler.sa_sigaction = WasmTrapHandler;
sigemptyset(&busHandler.sa_mask);
if (sigaction(SIGBUS, &busHandler, &sPrevSIGBUSHandler)) {
perror("unable to install sigbus handler");
abort();
}
# endif
// Install a handler to handle the instructions that are emitted to implement
// wasm traps.
struct sigaction trapHandler;
trapHandler.sa_flags = SA_SIGINFO | SA_NODEFER | SA_ONSTACK;
trapHandler.sa_sigaction = WasmTrapHandler;
sigemptyset(&trapHandler.sa_mask);
if (sigaction(kWasmTrapSignal, &trapHandler, &sPrevWasmTrapHandler)) {
perror("unable to install wasm trap handler");
abort();
}
#endif
return true;
}
#ifdef __APPLE__
bool
EnsureDarwinMachPorts()
{
pthread_attr_t handlerThreadAttr;
int r = pthread_attr_init(&handlerThreadAttr);
if (r != 0) {
return false;
}
// Create the port that all of our threads will redirect their traps to.
kern_return_t kret;
kret = mach_port_allocate(mach_task_self(), MACH_PORT_RIGHT_RECEIVE, &sMachDebugPort);
if (kret != KERN_SUCCESS) {
return false;
}
kret = mach_port_insert_right(mach_task_self(), sMachDebugPort, sMachDebugPort,
MACH_MSG_TYPE_MAKE_SEND);
if (kret != KERN_SUCCESS) {
return false;
}
// Create the thread that will wait on and service sMachDebugPort.
// It's not useful to destroy this thread on process shutdown so
// immediately detach on successful start.
pthread_t handlerThread;
r = pthread_create(&handlerThread, &handlerThreadAttr, MachExceptionHandlerThread, nullptr);
if (r != 0) {
return false;
}
r = pthread_detach(&handlerThread);
assert(r != 0);
// In addition to the process-wide signal handler setup, OSX needs each
// thread configured to send its exceptions to sMachDebugPort. While there
// are also task-level (i.e. process-level) exception ports, those are
// "claimed" by breakpad and chaining Mach exceptions is dark magic that we
// avoid by instead intercepting exceptions at the thread level before they
// propagate to the process-level. This works because there are no other
// uses of thread-level exception ports.
assert(sMachDebugPort != MACH_PORT_NULL);
thread_port_t thisThread = mach_thread_self();
kern_return_t kret = thread_set_exception_ports(thisThread,
EXC_MASK_BAD_ACCESS | EXC_MASK_BAD_INSTRUCTION,
sMachDebugPort,
EXCEPTION_DEFAULT | MACH_EXCEPTION_CODES,
THREAD_STATE_NONE);
mach_port_deallocate(mach_task_self(), thisThread);
if (kret != KERN_SUCCESS) {
return false;
}
return true;
}
#endif

View File

@@ -0,0 +1,55 @@
#ifndef signal_handlers_h
#define signal_handlers_h
#include <stdint.h>
#include <setjmp.h>
#ifndef __cplusplus
#include <stdbool.h>
#endif
#ifdef __cplusplus
extern "C" {
#endif
struct CodeSegment;
// Record the Trap code and wasm bytecode offset in TLS somewhere
void RecordTrap(const uint8_t* pc, const struct CodeSegment* codeSegment);
// Initiate an unwind.
void Unwind(void);
// Return the CodeSegment containing the given pc, if any exist in the process.
// This method does not take a lock.
const struct CodeSegment*
LookupCodeSegment(const void* pc);
// Trap initialization state.
struct TrapContext {
bool triedToInstallSignalHandlers;
bool haveSignalHandlers;
};
// This function performs the low-overhead signal handler initialization that we
// want to do eagerly to ensure a more-deterministic global process state. This
// is especially relevant for signal handlers since handler ordering depends on
// installation order: the wasm signal handler must run *before* the other crash
// handlers and since POSIX signal handlers work LIFO, this function needs to be
// called at the end of the startup process, after other handlers have been
// installed. This function can thus be called multiple times, having no effect
// after the first call.
bool
EnsureEagerSignalHandlers(void);
// Assuming EnsureEagerProcessSignalHandlers() has already been called,
// this function performs the full installation of signal handlers which must
// be performed per-thread. This operation may incur some overhead and
// so should be done only when needed to use wasm.
bool
EnsureDarwinMachPorts(struct TrapContext* cx);
#ifdef __cplusplus
} // extern "C"
#endif
#endif // signal_handlers_h

View File

@@ -1,15 +1,17 @@
use cranelift_codegen::binemit::Reloc;
use cranelift_codegen::isa::TargetIsa;
use cranelift_entity::{EntityRef, PrimaryMap};
use cranelift_wasm::{DefinedFuncIndex, MemoryIndex, TableIndex};
use cranelift_wasm::{DefinedFuncIndex, FuncIndex, MemoryIndex, TableIndex};
use instance::Instance;
use memory::LinearMemory;
use region::protect;
use region::Protection;
use signalhandlers::{ensure_eager_signal_handlers, ensure_full_signal_handlers, TrapContext};
use std::mem::transmute;
use std::ptr::{self, write_unaligned};
use std::string::String;
use std::vec::Vec;
use traphandlers::call_wasm;
use wasmtime_environ::{
compile_module, Compilation, Export, Module, ModuleTranslation, Relocation, RelocationTarget,
};
@@ -165,22 +167,10 @@ pub fn finish_instantiation(
.map(LinearMemory::base_addr)
.collect::<Vec<_>>();
let vmctx = make_vmctx(instance, &mut mem_base_addrs);
let mut vmctx = make_vmctx(instance, &mut mem_base_addrs);
if let Some(start_index) = module.start_func {
let code_buf =
&compilation.functions[module
.defined_func_index(start_index)
.expect("imported start functions not supported yet")];
// Rather than writing inline assembly to jump to the code region, we use the fact that
// the Rust ABI for calling a function with no arguments and no return matches the one of
// the generated code. Thanks to this, we can transmute the code region into a first-class
// Rust function and call it.
unsafe {
let start_func = transmute::<_, fn(*const *mut u8)>(code_buf.as_ptr());
start_func(vmctx.as_ptr());
}
execute_by_index(module, compilation, &mut vmctx, start_index)?;
}
Ok(vmctx)
@@ -199,18 +189,39 @@ pub fn execute(
None => return Err(format!("no export named \"{}\"", function)),
};
execute_by_index(module, compilation, vmctx, fn_index)
}
fn execute_by_index(
module: &Module,
compilation: &Compilation,
vmctx: &mut Vec<*mut u8>,
fn_index: FuncIndex,
) -> Result<(), String> {
let code_buf =
&compilation.functions[module
.defined_func_index(fn_index)
.expect("imported start functions not supported yet")];
let mut traps = TrapContext {
triedToInstallSignalHandlers: false,
haveSignalHandlers: false,
};
// Rather than writing inline assembly to jump to the code region, we use the fact that
// the Rust ABI for calling a function with no arguments and no return matches the one of
// the generated code. Thanks to this, we can transmute the code region into a first-class
// the Rust ABI for calling a function with no arguments and no return values matches the one
// of the generated code. Thanks to this, we can transmute the code region into a first-class
// Rust function and call it.
unsafe {
// Ensure that our signal handlers are ready for action.
ensure_eager_signal_handlers();
ensure_full_signal_handlers(&mut traps);
if !traps.haveSignalHandlers {
return Err("failed to install signal handlers".to_string());
}
let func = transmute::<_, fn(*const *mut u8)>(code_buf.as_ptr());
func(vmctx.as_ptr());
call_wasm(|| func(vmctx.as_mut_ptr()))?;
}
Ok(())
}

View File

@@ -36,13 +36,19 @@ extern crate wasmtime_environ;
#[cfg(not(feature = "std"))]
#[macro_use]
extern crate alloc;
#[macro_use]
extern crate lazy_static;
extern crate libc;
mod execute;
mod instance;
mod memory;
mod signalhandlers;
mod traphandlers;
pub use execute::{compile_and_link_module, execute, finish_instantiation};
pub use instance::Instance;
pub use traphandlers::{call_wasm, LookupCodeSegment, RecordTrap, Unwind};
#[cfg(not(feature = "std"))]
mod std {

View File

@@ -0,0 +1,101 @@
//! Interface to low-level signal-handling mechanisms.
#![allow(non_upper_case_globals)]
#![allow(non_camel_case_types)]
#![allow(non_snake_case)]
use std::borrow::{Borrow, BorrowMut};
use std::sync::RwLock;
include!(concat!(env!("OUT_DIR"), "/signalhandlers.rs"));
struct InstallState {
tried: bool,
success: bool,
}
impl InstallState {
fn new() -> Self {
Self {
tried: false,
success: false,
}
}
}
lazy_static! {
static ref EAGER_INSTALL_STATE: RwLock<InstallState> = RwLock::new(InstallState::new());
static ref LAZY_INSTALL_STATE: RwLock<InstallState> = RwLock::new(InstallState::new());
}
/// This function performs the low-overhead signal handler initialization that we
/// want to do eagerly to ensure a more-deterministic global process state. This
/// is especially relevant for signal handlers since handler ordering depends on
/// installation order: the wasm signal handler must run *before* the other crash
/// handlers and since POSIX signal handlers work LIFO, this function needs to be
/// called at the end of the startup process, after other handlers have been
/// installed. This function can thus be called multiple times, having no effect
/// after the first call.
pub fn ensure_eager_signal_handlers() {
let mut locked = EAGER_INSTALL_STATE.write().unwrap();
let state = locked.borrow_mut();
if state.tried {
return;
}
state.tried = true;
assert!(state.success == false);
if !unsafe { EnsureEagerSignalHandlers() } {
return;
}
state.success = true;
}
#[cfg(any(target_os = "macos", target_os = "ios"))]
fn ensure_darwin_mach_ports() {
let mut locked = LAZY_INSTALL_STATE.write().unwrap();
let state = locked.borrow_mut();
if state.tried {
return;
}
state.tried = true;
assert!(state.success == false);
if !unsafe { EnsureDarwinMachPorts() } {
return;
}
state.success = true;
}
/// Assuming `EnsureEagerProcessSignalHandlers` has already been called,
/// this function performs the full installation of signal handlers which must
/// be performed per-thread. This operation may incur some overhead and
/// so should be done only when needed to use wasm.
pub fn ensure_full_signal_handlers(cx: &mut TrapContext) {
if cx.triedToInstallSignalHandlers {
return;
}
cx.triedToInstallSignalHandlers = true;
assert!(!cx.haveSignalHandlers);
{
let locked = EAGER_INSTALL_STATE.read().unwrap();
let state = locked.borrow();
assert!(state.tried);
if !state.success {
return;
}
}
#[cfg(any(target_os = "macos", target_os = "ios"))]
ensure_darwin_mach_ports();
cx.haveSignalHandlers = true;
}

View File

@@ -0,0 +1,102 @@
//! WebAssembly trap handling, which is built on top of the lower-level
//! signalhandling mechanisms.
use libc::c_int;
use signalhandlers::{jmp_buf, CodeSegment};
use std::cell::{Cell, RefCell};
use std::mem;
use std::ptr;
// Currently we uset setjmp/longjmp to unwind out of a signal handler
// and back to the point where WebAssembly was called (via `call_wasm`).
// This works because WebAssembly code currently does not use any EH
// or require any cleanups, and we never unwind through non-wasm frames.
// In the future, we'll likely replace this with fancier stack unwinding.
extern "C" {
fn setjmp(env: *mut jmp_buf) -> c_int;
fn longjmp(env: *const jmp_buf, val: c_int) -> !;
}
#[derive(Copy, Clone, Debug)]
struct TrapData {
pc: *const u8,
}
thread_local! {
static TRAP_DATA: Cell<TrapData> = Cell::new(TrapData { pc: ptr::null() });
static JMP_BUFS: RefCell<Vec<jmp_buf>> = RefCell::new(Vec::new());
}
/// Record the Trap code and wasm bytecode offset in TLS somewhere
#[doc(hidden)]
#[allow(non_snake_case)]
#[no_mangle]
pub extern "C" fn RecordTrap(pc: *const u8, _codeSegment: *const CodeSegment) {
// TODO: Look up the wasm bytecode offset and trap code and record them instead.
TRAP_DATA.with(|data| data.set(TrapData { pc }));
}
/// Initiate an unwind.
#[doc(hidden)]
#[allow(non_snake_case)]
#[no_mangle]
pub extern "C" fn Unwind() {
JMP_BUFS.with(|bufs| unsafe {
let buf = bufs.borrow_mut().pop().unwrap();
longjmp(&buf, 1);
})
}
/// Return the CodeSegment containing the given pc, if any exist in the process.
/// This method does not take a lock.
#[doc(hidden)]
#[allow(non_snake_case)]
#[no_mangle]
pub extern "C" fn LookupCodeSegment(_pc: *const ::std::os::raw::c_void) -> *const CodeSegment {
// TODO: Implement this.
unsafe { mem::transmute(-1isize) }
}
/// A simple guard to ensure that `JMP_BUFS` is reset when we're done.
struct ScopeGuard {
orig_num_bufs: usize,
}
impl ScopeGuard {
fn new() -> Self {
Self {
orig_num_bufs: JMP_BUFS.with(|bufs| bufs.borrow().len()),
}
}
}
impl Drop for ScopeGuard {
fn drop(&mut self) {
let orig_num_bufs = self.orig_num_bufs;
// TODO: Use `shrink_to` once it stablizes.
JMP_BUFS.with(|bufs| {
bufs.borrow_mut()
.resize(orig_num_bufs, unsafe { mem::uninitialized() })
});
}
}
/// Call the wasm function poined to by `f`.
pub fn call_wasm<F>(f: F) -> Result<(), String>
where
F: FnOnce(),
{
// In case wasm code calls Rust that panics and unwinds past this point,
// ensure that JMP_BUFS is unwound to its incoming state.
let _ = ScopeGuard::new();
JMP_BUFS.with(|bufs| {
let mut buf = unsafe { mem::uninitialized() };
if unsafe { setjmp(&mut buf) } != 0 {
return TRAP_DATA.with(|data| Err(format!("wasm trap at {:?}", data.get().pc)));
}
bufs.borrow_mut().push(buf);
f();
Ok(())
})
}