Merge pull request #3070 from sparker-arm/simd-extmul-aarch64

Enable simd_extmul_* for AArch64
This commit is contained in:
Chris Fallin
2021-07-28 11:10:57 -07:00
committed by GitHub
7 changed files with 738 additions and 235 deletions

View File

@@ -287,6 +287,30 @@ fn enc_vec_rrr(top11: u32, rm: Reg, bit15_10: u32, rn: Reg, rd: Writable<Reg>) -
| machreg_to_vec(rd.to_reg()) | machreg_to_vec(rd.to_reg())
} }
fn enc_vec_rrr_long(
q: u32,
u: u32,
size: u32,
bit14: u32,
rm: Reg,
rn: Reg,
rd: Writable<Reg>,
) -> u32 {
debug_assert_eq!(q & 0b1, q);
debug_assert_eq!(u & 0b1, u);
debug_assert_eq!(size & 0b11, size);
debug_assert_eq!(bit14 & 0b1, bit14);
0b0_0_0_01110_00_1_00000_100000_00000_00000
| q << 30
| u << 29
| size << 22
| bit14 << 14
| (machreg_to_vec(rm) << 16)
| (machreg_to_vec(rn) << 5)
| machreg_to_vec(rd.to_reg())
}
fn enc_bit_rr(size: u32, opcode2: u32, opcode1: u32, rn: Reg, rd: Writable<Reg>) -> u32 { fn enc_bit_rr(size: u32, opcode2: u32, opcode1: u32, rn: Reg, rd: Writable<Reg>) -> u32 {
(0b01011010110 << 21) (0b01011010110 << 21)
| size << 31 | size << 31
@@ -2173,6 +2197,34 @@ impl MachInstEmit for Inst {
sink.put4(enc_vec_rr_pair(bits_12_16, rd, rn)); sink.put4(enc_vec_rr_pair(bits_12_16, rd, rn));
} }
&Inst::VecRRRLong {
rd,
rn,
rm,
alu_op,
high_half,
} => {
let (u, size, bit14) = match alu_op {
VecRRRLongOp::Smull8 => (0b0, 0b00, 0b1),
VecRRRLongOp::Smull16 => (0b0, 0b01, 0b1),
VecRRRLongOp::Smull32 => (0b0, 0b10, 0b1),
VecRRRLongOp::Umull8 => (0b1, 0b00, 0b1),
VecRRRLongOp::Umull16 => (0b1, 0b01, 0b1),
VecRRRLongOp::Umull32 => (0b1, 0b10, 0b1),
VecRRRLongOp::Umlal8 => (0b1, 0b00, 0b0),
VecRRRLongOp::Umlal16 => (0b1, 0b01, 0b0),
VecRRRLongOp::Umlal32 => (0b1, 0b10, 0b0),
};
sink.put4(enc_vec_rrr_long(
high_half as u32,
u,
size,
bit14,
rm,
rn,
rd,
));
}
&Inst::VecRRR { &Inst::VecRRR {
rd, rd,
rn, rn,
@@ -2242,13 +2294,7 @@ impl MachInstEmit for Inst {
VecALUOp::Fmin => (0b000_01110_10_1, 0b111101), VecALUOp::Fmin => (0b000_01110_10_1, 0b111101),
VecALUOp::Fmul => (0b001_01110_00_1, 0b110111), VecALUOp::Fmul => (0b001_01110_00_1, 0b110111),
VecALUOp::Addp => (0b000_01110_00_1 | enc_size << 1, 0b101111), VecALUOp::Addp => (0b000_01110_00_1 | enc_size << 1, 0b101111),
VecALUOp::Umlal => {
debug_assert!(!size.is_128bits());
(0b001_01110_00_1 | enc_size << 1, 0b100000)
}
VecALUOp::Zip1 => (0b01001110_00_0 | enc_size << 1, 0b001110), VecALUOp::Zip1 => (0b01001110_00_0 | enc_size << 1, 0b001110),
VecALUOp::Smull => (0b000_01110_00_1 | enc_size << 1, 0b110000),
VecALUOp::Smull2 => (0b010_01110_00_1 | enc_size << 1, 0b110000),
VecALUOp::Sqrdmulh => { VecALUOp::Sqrdmulh => {
debug_assert!( debug_assert!(
size.lane_size() == ScalarSize::Size16 size.lane_size() == ScalarSize::Size16
@@ -2258,12 +2304,12 @@ impl MachInstEmit for Inst {
(0b001_01110_00_1 | enc_size << 1, 0b101101) (0b001_01110_00_1 | enc_size << 1, 0b101101)
} }
}; };
let top11 = match alu_op { let top11 = if is_float {
VecALUOp::Smull | VecALUOp::Smull2 => top11, top11 | enc_float_size << 1
_ if is_float => top11 | (q << 9) | enc_float_size << 1, } else {
_ => top11 | (q << 9), top11
}; };
sink.put4(enc_vec_rrr(top11, rm, bit15_10, rn, rd)); sink.put4(enc_vec_rrr(top11 | q << 9, rm, bit15_10, rn, rd));
} }
&Inst::VecLoadReplicate { rd, rn, size } => { &Inst::VecLoadReplicate { rd, rn, size } => {
let (q, size) = size.enc_size(); let (q, size) = size.enc_size();

View File

@@ -3651,18 +3651,6 @@ fn test_aarch64_binemit() {
"addp v8.4s, v12.4s, v14.4s", "addp v8.4s, v12.4s, v14.4s",
)); ));
insns.push((
Inst::VecRRR {
alu_op: VecALUOp::Umlal,
rd: writable_vreg(9),
rn: vreg(20),
rm: vreg(17),
size: VectorSize::Size32x2,
},
"8982B12E",
"umlal v9.2d, v20.2s, v17.2s",
));
insns.push(( insns.push((
Inst::VecRRR { Inst::VecRRR {
alu_op: VecALUOp::Zip1, alu_op: VecALUOp::Zip1,
@@ -3712,77 +3700,221 @@ fn test_aarch64_binemit() {
)); ));
insns.push(( insns.push((
Inst::VecRRR { Inst::VecRRRLong {
alu_op: VecALUOp::Smull, alu_op: VecRRRLongOp::Smull8,
rd: writable_vreg(16), rd: writable_vreg(16),
rn: vreg(12), rn: vreg(12),
rm: vreg(1), rm: vreg(1),
size: VectorSize::Size8x16, high_half: false,
}, },
"90C1210E", "90C1210E",
"smull v16.8h, v12.8b, v1.8b", "smull v16.8h, v12.8b, v1.8b",
)); ));
insns.push(( insns.push((
Inst::VecRRR { Inst::VecRRRLong {
alu_op: VecALUOp::Smull, alu_op: VecRRRLongOp::Umull8,
rd: writable_vreg(15),
rn: vreg(11),
rm: vreg(2),
high_half: false,
},
"6FC1222E",
"umull v15.8h, v11.8b, v2.8b",
));
insns.push((
Inst::VecRRRLong {
alu_op: VecRRRLongOp::Umlal8,
rd: writable_vreg(4),
rn: vreg(8),
rm: vreg(16),
high_half: false,
},
"0481302E",
"umlal v4.8h, v8.8b, v16.8b",
));
insns.push((
Inst::VecRRRLong {
alu_op: VecRRRLongOp::Smull16,
rd: writable_vreg(2), rd: writable_vreg(2),
rn: vreg(13), rn: vreg(13),
rm: vreg(6), rm: vreg(6),
size: VectorSize::Size16x8, high_half: false,
}, },
"A2C1660E", "A2C1660E",
"smull v2.4s, v13.4h, v6.4h", "smull v2.4s, v13.4h, v6.4h",
)); ));
insns.push(( insns.push((
Inst::VecRRR { Inst::VecRRRLong {
alu_op: VecALUOp::Smull, alu_op: VecRRRLongOp::Umull16,
rd: writable_vreg(3),
rn: vreg(14),
rm: vreg(7),
high_half: false,
},
"C3C1672E",
"umull v3.4s, v14.4h, v7.4h",
));
insns.push((
Inst::VecRRRLong {
alu_op: VecRRRLongOp::Umlal16,
rd: writable_vreg(7),
rn: vreg(14),
rm: vreg(21),
high_half: false,
},
"C781752E",
"umlal v7.4s, v14.4h, v21.4h",
));
insns.push((
Inst::VecRRRLong {
alu_op: VecRRRLongOp::Smull32,
rd: writable_vreg(8), rd: writable_vreg(8),
rn: vreg(12), rn: vreg(12),
rm: vreg(14), rm: vreg(14),
size: VectorSize::Size32x4, high_half: false,
}, },
"88C1AE0E", "88C1AE0E",
"smull v8.2d, v12.2s, v14.2s", "smull v8.2d, v12.2s, v14.2s",
)); ));
insns.push(( insns.push((
Inst::VecRRR { Inst::VecRRRLong {
alu_op: VecALUOp::Smull2, alu_op: VecRRRLongOp::Umull32,
rd: writable_vreg(9),
rn: vreg(5),
rm: vreg(6),
high_half: false,
},
"A9C0A62E",
"umull v9.2d, v5.2s, v6.2s",
));
insns.push((
Inst::VecRRRLong {
alu_op: VecRRRLongOp::Umlal32,
rd: writable_vreg(9),
rn: vreg(20),
rm: vreg(17),
high_half: false,
},
"8982B12E",
"umlal v9.2d, v20.2s, v17.2s",
));
insns.push((
Inst::VecRRRLong {
alu_op: VecRRRLongOp::Smull8,
rd: writable_vreg(16), rd: writable_vreg(16),
rn: vreg(12), rn: vreg(12),
rm: vreg(1), rm: vreg(1),
size: VectorSize::Size8x16, high_half: true,
}, },
"90C1214E", "90C1214E",
"smull2 v16.8h, v12.16b, v1.16b", "smull2 v16.8h, v12.16b, v1.16b",
)); ));
insns.push(( insns.push((
Inst::VecRRR { Inst::VecRRRLong {
alu_op: VecALUOp::Smull2, alu_op: VecRRRLongOp::Umull8,
rd: writable_vreg(29),
rn: vreg(22),
rm: vreg(10),
high_half: true,
},
"DDC22A6E",
"umull2 v29.8h, v22.16b, v10.16b",
));
insns.push((
Inst::VecRRRLong {
alu_op: VecRRRLongOp::Umlal8,
rd: writable_vreg(1),
rn: vreg(5),
rm: vreg(15),
high_half: true,
},
"A1802F6E",
"umlal2 v1.8h, v5.16b, v15.16b",
));
insns.push((
Inst::VecRRRLong {
alu_op: VecRRRLongOp::Smull16,
rd: writable_vreg(2), rd: writable_vreg(2),
rn: vreg(13), rn: vreg(13),
rm: vreg(6), rm: vreg(6),
size: VectorSize::Size16x8, high_half: true,
}, },
"A2C1664E", "A2C1664E",
"smull2 v2.4s, v13.8h, v6.8h", "smull2 v2.4s, v13.8h, v6.8h",
)); ));
insns.push(( insns.push((
Inst::VecRRR { Inst::VecRRRLong {
alu_op: VecALUOp::Smull2, alu_op: VecRRRLongOp::Umull16,
rd: writable_vreg(19),
rn: vreg(18),
rm: vreg(17),
high_half: true,
},
"53C2716E",
"umull2 v19.4s, v18.8h, v17.8h",
));
insns.push((
Inst::VecRRRLong {
alu_op: VecRRRLongOp::Umlal16,
rd: writable_vreg(11),
rn: vreg(10),
rm: vreg(12),
high_half: true,
},
"4B816C6E",
"umlal2 v11.4s, v10.8h, v12.8h",
));
insns.push((
Inst::VecRRRLong {
alu_op: VecRRRLongOp::Smull32,
rd: writable_vreg(8), rd: writable_vreg(8),
rn: vreg(12), rn: vreg(12),
rm: vreg(14), rm: vreg(14),
size: VectorSize::Size32x4, high_half: true,
}, },
"88C1AE4E", "88C1AE4E",
"smull2 v8.2d, v12.4s, v14.4s", "smull2 v8.2d, v12.4s, v14.4s",
)); ));
insns.push((
Inst::VecRRRLong {
alu_op: VecRRRLongOp::Umull32,
rd: writable_vreg(4),
rn: vreg(12),
rm: vreg(16),
high_half: true,
},
"84C1B06E",
"umull2 v4.2d, v12.4s, v16.4s",
));
insns.push((
Inst::VecRRRLong {
alu_op: VecRRRLongOp::Umlal32,
rd: writable_vreg(10),
rn: vreg(29),
rm: vreg(2),
high_half: true,
},
"AA83A26E",
"umlal2 v10.2d, v29.4s, v2.4s",
));
insns.push(( insns.push((
Inst::VecRRR { Inst::VecRRR {
alu_op: VecALUOp::Sqrdmulh, alu_op: VecALUOp::Sqrdmulh,

View File

@@ -303,14 +303,8 @@ pub enum VecALUOp {
Fmul, Fmul,
/// Add pairwise /// Add pairwise
Addp, Addp,
/// Unsigned multiply add long
Umlal,
/// Zip vectors (primary) [meaning, high halves] /// Zip vectors (primary) [meaning, high halves]
Zip1, Zip1,
/// Signed multiply long (low halves)
Smull,
/// Signed multiply long (high halves)
Smull2,
/// Signed saturating rounding doubling multiply returning high half /// Signed saturating rounding doubling multiply returning high half
Sqrdmulh, Sqrdmulh,
} }
@@ -402,6 +396,22 @@ pub enum VecRRNarrowOp {
Fcvtn64, Fcvtn64,
} }
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum VecRRRLongOp {
/// Signed multiply long.
Smull8,
Smull16,
Smull32,
/// Unsigned multiply long.
Umull8,
Umull16,
Umull32,
/// Unsigned multiply add long
Umlal8,
Umlal16,
Umlal32,
}
/// A vector operation on a pair of elements with one register. /// A vector operation on a pair of elements with one register.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)] #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum VecPairOp { pub enum VecPairOp {
@@ -1087,6 +1097,16 @@ pub enum Inst {
rn: Reg, rn: Reg,
}, },
/// 2-operand vector instruction that produces a result with twice the
/// lane width and half the number of lanes.
VecRRRLong {
alu_op: VecRRRLongOp,
rd: Writable<Reg>,
rn: Reg,
rm: Reg,
high_half: bool,
},
/// A vector ALU op. /// A vector ALU op.
VecRRR { VecRRR {
alu_op: VecALUOp, alu_op: VecALUOp,
@@ -2134,10 +2154,22 @@ fn aarch64_get_regs(inst: &Inst, collector: &mut RegUsageCollector) {
collector.add_def(rd); collector.add_def(rd);
collector.add_use(rn); collector.add_use(rn);
} }
&Inst::VecRRRLong {
alu_op, rd, rn, rm, ..
} => {
match alu_op {
VecRRRLongOp::Umlal8 | VecRRRLongOp::Umlal16 | VecRRRLongOp::Umlal32 => {
collector.add_mod(rd)
}
_ => collector.add_def(rd),
};
collector.add_use(rn);
collector.add_use(rm);
}
&Inst::VecRRR { &Inst::VecRRR {
alu_op, rd, rn, rm, .. alu_op, rd, rn, rm, ..
} => { } => {
if alu_op == VecALUOp::Bsl || alu_op == VecALUOp::Umlal { if alu_op == VecALUOp::Bsl {
collector.add_mod(rd); collector.add_mod(rd);
} else { } else {
collector.add_def(rd); collector.add_def(rd);
@@ -2944,6 +2976,22 @@ fn aarch64_map_regs<RUM: RegUsageMapper>(inst: &mut Inst, mapper: &RUM) {
map_def(mapper, rd); map_def(mapper, rd);
map_use(mapper, rn); map_use(mapper, rn);
} }
&mut Inst::VecRRRLong {
alu_op,
ref mut rd,
ref mut rn,
ref mut rm,
..
} => {
match alu_op {
VecRRRLongOp::Umlal8 | VecRRRLongOp::Umlal16 | VecRRRLongOp::Umlal32 => {
map_mod(mapper, rd)
}
_ => map_def(mapper, rd),
};
map_use(mapper, rn);
map_use(mapper, rm);
}
&mut Inst::VecRRR { &mut Inst::VecRRR {
alu_op, alu_op,
ref mut rd, ref mut rd,
@@ -2951,7 +2999,7 @@ fn aarch64_map_regs<RUM: RegUsageMapper>(inst: &mut Inst, mapper: &RUM) {
ref mut rm, ref mut rm,
.. ..
} => { } => {
if alu_op == VecALUOp::Bsl || alu_op == VecALUOp::Umlal { if alu_op == VecALUOp::Bsl {
map_mod(mapper, rd); map_mod(mapper, rd);
} else { } else {
map_def(mapper, rd); map_def(mapper, rd);
@@ -4147,24 +4195,80 @@ impl Inst {
VecALUOp::Fmin => ("fmin", size), VecALUOp::Fmin => ("fmin", size),
VecALUOp::Fmul => ("fmul", size), VecALUOp::Fmul => ("fmul", size),
VecALUOp::Addp => ("addp", size), VecALUOp::Addp => ("addp", size),
VecALUOp::Umlal => ("umlal", size),
VecALUOp::Zip1 => ("zip1", size), VecALUOp::Zip1 => ("zip1", size),
VecALUOp::Smull => ("smull", size),
VecALUOp::Smull2 => ("smull2", size),
VecALUOp::Sqrdmulh => ("sqrdmulh", size), VecALUOp::Sqrdmulh => ("sqrdmulh", size),
}; };
let rd_size = match alu_op { let rd = show_vreg_vector(rd.to_reg(), mb_rru, size);
VecALUOp::Umlal | VecALUOp::Smull | VecALUOp::Smull2 => size.widen(), let rn = show_vreg_vector(rn, mb_rru, size);
_ => size, let rm = show_vreg_vector(rm, mb_rru, size);
format!("{} {}, {}, {}", op, rd, rn, rm)
}
&Inst::VecRRRLong {
rd,
rn,
rm,
alu_op,
high_half,
} => {
let (op, dest_size, src_size) = match (alu_op, high_half) {
(VecRRRLongOp::Smull8, false) => {
("smull", VectorSize::Size16x8, VectorSize::Size8x8)
}
(VecRRRLongOp::Smull8, true) => {
("smull2", VectorSize::Size16x8, VectorSize::Size8x16)
}
(VecRRRLongOp::Smull16, false) => {
("smull", VectorSize::Size32x4, VectorSize::Size16x4)
}
(VecRRRLongOp::Smull16, true) => {
("smull2", VectorSize::Size32x4, VectorSize::Size16x8)
}
(VecRRRLongOp::Smull32, false) => {
("smull", VectorSize::Size64x2, VectorSize::Size32x2)
}
(VecRRRLongOp::Smull32, true) => {
("smull2", VectorSize::Size64x2, VectorSize::Size32x4)
}
(VecRRRLongOp::Umull8, false) => {
("umull", VectorSize::Size16x8, VectorSize::Size8x8)
}
(VecRRRLongOp::Umull8, true) => {
("umull2", VectorSize::Size16x8, VectorSize::Size8x16)
}
(VecRRRLongOp::Umull16, false) => {
("umull", VectorSize::Size32x4, VectorSize::Size16x4)
}
(VecRRRLongOp::Umull16, true) => {
("umull2", VectorSize::Size32x4, VectorSize::Size16x8)
}
(VecRRRLongOp::Umull32, false) => {
("umull", VectorSize::Size64x2, VectorSize::Size32x2)
}
(VecRRRLongOp::Umull32, true) => {
("umull2", VectorSize::Size64x2, VectorSize::Size32x4)
}
(VecRRRLongOp::Umlal8, false) => {
("umlal", VectorSize::Size16x8, VectorSize::Size8x8)
}
(VecRRRLongOp::Umlal8, true) => {
("umlal2", VectorSize::Size16x8, VectorSize::Size8x16)
}
(VecRRRLongOp::Umlal16, false) => {
("umlal", VectorSize::Size32x4, VectorSize::Size16x4)
}
(VecRRRLongOp::Umlal16, true) => {
("umlal2", VectorSize::Size32x4, VectorSize::Size16x8)
}
(VecRRRLongOp::Umlal32, false) => {
("umlal", VectorSize::Size64x2, VectorSize::Size32x2)
}
(VecRRRLongOp::Umlal32, true) => {
("umlal2", VectorSize::Size64x2, VectorSize::Size32x4)
}
}; };
let rn_size = match alu_op { let rd = show_vreg_vector(rd.to_reg(), mb_rru, dest_size);
VecALUOp::Smull => size.halve(), let rn = show_vreg_vector(rn, mb_rru, src_size);
_ => size, let rm = show_vreg_vector(rm, mb_rru, src_size);
};
let rm_size = rn_size;
let rd = show_vreg_vector(rd.to_reg(), mb_rru, rd_size);
let rn = show_vreg_vector(rn, mb_rru, rn_size);
let rm = show_vreg_vector(rm, mb_rru, rm_size);
format!("{} {}, {}, {}", op, rd, rn, rm) format!("{} {}, {}, {}", op, rd, rn, rm)
} }
&Inst::VecMisc { op, rd, rn, size } => { &Inst::VecMisc { op, rd, rn, size } => {

View File

@@ -1253,6 +1253,153 @@ pub(crate) fn maybe_input_insn_via_conv<C: LowerCtx<I = Inst>>(
None None
} }
/// Pattern match an extending vector multiplication.
/// Returns a tuple of the opcode to use, the two input registers and whether
/// it's the 'high half' version of the instruction.
pub(crate) fn match_vec_long_mul<C: LowerCtx<I = Inst>>(
c: &mut C,
insn: IRInst,
ext_op: Opcode,
) -> Option<(VecRRRLongOp, regalloc::Reg, regalloc::Reg, bool)> {
let inputs = insn_inputs(c, insn);
if let Some(lhs) = maybe_input_insn(c, inputs[0], ext_op) {
if let Some(rhs) = maybe_input_insn(c, inputs[1], ext_op) {
let lhs_input = insn_inputs(c, lhs)[0];
let rhs_input = insn_inputs(c, rhs)[0];
let rn = put_input_in_reg(c, lhs_input, NarrowValueMode::None);
let rm = put_input_in_reg(c, rhs_input, NarrowValueMode::None);
let lane_type = c.output_ty(insn, 0).lane_type();
match (lane_type, ext_op) {
(I16, Opcode::SwidenLow) => return Some((VecRRRLongOp::Smull8, rn, rm, false)),
(I16, Opcode::SwidenHigh) => return Some((VecRRRLongOp::Smull8, rn, rm, true)),
(I16, Opcode::UwidenLow) => return Some((VecRRRLongOp::Umull8, rn, rm, false)),
(I16, Opcode::UwidenHigh) => return Some((VecRRRLongOp::Umull8, rn, rm, true)),
(I32, Opcode::SwidenLow) => return Some((VecRRRLongOp::Smull16, rn, rm, false)),
(I32, Opcode::SwidenHigh) => return Some((VecRRRLongOp::Smull16, rn, rm, true)),
(I32, Opcode::UwidenLow) => return Some((VecRRRLongOp::Umull16, rn, rm, false)),
(I32, Opcode::UwidenHigh) => return Some((VecRRRLongOp::Umull16, rn, rm, true)),
(I64, Opcode::SwidenLow) => return Some((VecRRRLongOp::Smull32, rn, rm, false)),
(I64, Opcode::SwidenHigh) => return Some((VecRRRLongOp::Smull32, rn, rm, true)),
(I64, Opcode::UwidenLow) => return Some((VecRRRLongOp::Umull32, rn, rm, false)),
(I64, Opcode::UwidenHigh) => return Some((VecRRRLongOp::Umull32, rn, rm, true)),
_ => {}
};
}
}
None
}
pub(crate) fn lower_i64x2_mul<C: LowerCtx<I = Inst>>(c: &mut C, insn: IRInst) {
let inputs = insn_inputs(c, insn);
let outputs = insn_outputs(c, insn);
let rd = get_output_reg(c, outputs[0]).regs()[0];
let rn = put_input_in_regs(c, inputs[0]).regs()[0];
let rm = put_input_in_regs(c, inputs[1]).regs()[0];
let tmp1 = c.alloc_tmp(I64X2).only_reg().unwrap();
let tmp2 = c.alloc_tmp(I64X2).only_reg().unwrap();
// This I64X2 multiplication is performed with several 32-bit
// operations.
// 64-bit numbers x and y, can be represented as:
// x = a + 2^32(b)
// y = c + 2^32(d)
// A 64-bit multiplication is:
// x * y = ac + 2^32(ad + bc) + 2^64(bd)
// note: `2^64(bd)` can be ignored, the value is too large to fit in
// 64 bits.
// This sequence implements a I64X2 multiply, where the registers
// `rn` and `rm` are split up into 32-bit components:
// rn = |d|c|b|a|
// rm = |h|g|f|e|
//
// rn * rm = |cg + 2^32(ch + dg)|ae + 2^32(af + be)|
//
// The sequence is:
// rev64 rd.4s, rm.4s
// mul rd.4s, rd.4s, rn.4s
// xtn tmp1.2s, rn.2d
// addp rd.4s, rd.4s, rd.4s
// xtn tmp2.2s, rm.2d
// shll rd.2d, rd.2s, #32
// umlal rd.2d, tmp2.2s, tmp1.2s
// Reverse the 32-bit elements in the 64-bit words.
// rd = |g|h|e|f|
c.emit(Inst::VecMisc {
op: VecMisc2::Rev64,
rd,
rn: rm,
size: VectorSize::Size32x4,
});
// Calculate the high half components.
// rd = |dg|ch|be|af|
//
// Note that this 32-bit multiply of the high half
// discards the bits that would overflow, same as
// if 64-bit operations were used. Also the Shll
// below would shift out the overflow bits anyway.
c.emit(Inst::VecRRR {
alu_op: VecALUOp::Mul,
rd,
rn: rd.to_reg(),
rm: rn,
size: VectorSize::Size32x4,
});
// Extract the low half components of rn.
// tmp1 = |c|a|
c.emit(Inst::VecRRNarrow {
op: VecRRNarrowOp::Xtn64,
rd: tmp1,
rn,
high_half: false,
});
// Sum the respective high half components.
// rd = |dg+ch|be+af||dg+ch|be+af|
c.emit(Inst::VecRRR {
alu_op: VecALUOp::Addp,
rd: rd,
rn: rd.to_reg(),
rm: rd.to_reg(),
size: VectorSize::Size32x4,
});
// Extract the low half components of rm.
// tmp2 = |g|e|
c.emit(Inst::VecRRNarrow {
op: VecRRNarrowOp::Xtn64,
rd: tmp2,
rn: rm,
high_half: false,
});
// Shift the high half components, into the high half.
// rd = |dg+ch << 32|be+af << 32|
c.emit(Inst::VecRRLong {
op: VecRRLongOp::Shll32,
rd,
rn: rd.to_reg(),
high_half: false,
});
// Multiply the low components together, and accumulate with the high
// half.
// rd = |rd[1] + cg|rd[0] + ae|
c.emit(Inst::VecRRRLong {
alu_op: VecRRRLongOp::Umlal32,
rd,
rn: tmp2.to_reg(),
rm: tmp1.to_reg(),
high_half: false,
});
}
/// Specifies what [lower_icmp] should do when lowering /// Specifies what [lower_icmp] should do when lowering
#[derive(Debug, Clone, PartialEq)] #[derive(Debug, Clone, PartialEq)]
pub(crate) enum IcmpOutput { pub(crate) enum IcmpOutput {

View File

@@ -244,174 +244,79 @@ pub(crate) fn lower_insn_to_regs<C: LowerCtx<I = Inst>>(
} }
Opcode::Imul => { Opcode::Imul => {
let lhs = put_input_in_regs(ctx, inputs[0]);
let rhs = put_input_in_regs(ctx, inputs[1]);
let dst = get_output_reg(ctx, outputs[0]);
let rd = dst.regs()[0];
let rn = lhs.regs()[0];
let rm = rhs.regs()[0];
let ty = ty.unwrap(); let ty = ty.unwrap();
match ty { if ty == I128 {
I128 => { let lhs = put_input_in_regs(ctx, inputs[0]);
assert_eq!(lhs.len(), 2); let rhs = put_input_in_regs(ctx, inputs[1]);
assert_eq!(rhs.len(), 2); let dst = get_output_reg(ctx, outputs[0]);
assert_eq!(dst.len(), 2); assert_eq!(lhs.len(), 2);
assert_eq!(rhs.len(), 2);
assert_eq!(dst.len(), 2);
// 128bit mul formula: // 128bit mul formula:
// dst_lo = lhs_lo * rhs_lo // dst_lo = lhs_lo * rhs_lo
// dst_hi = umulhi(lhs_lo, rhs_lo) + (lhs_lo * rhs_hi) + (lhs_hi * rhs_lo) // dst_hi = umulhi(lhs_lo, rhs_lo) + (lhs_lo * rhs_hi) + (lhs_hi * rhs_lo)
// //
// We can convert the above formula into the following // We can convert the above formula into the following
// umulh dst_hi, lhs_lo, rhs_lo // umulh dst_hi, lhs_lo, rhs_lo
// madd dst_hi, lhs_lo, rhs_hi, dst_hi // madd dst_hi, lhs_lo, rhs_hi, dst_hi
// madd dst_hi, lhs_hi, rhs_lo, dst_hi // madd dst_hi, lhs_hi, rhs_lo, dst_hi
// mul dst_lo, lhs_lo, rhs_lo // mul dst_lo, lhs_lo, rhs_lo
ctx.emit(Inst::AluRRR { ctx.emit(Inst::AluRRR {
alu_op: ALUOp::UMulH, alu_op: ALUOp::UMulH,
rd: dst.regs()[1], rd: dst.regs()[1],
rn: lhs.regs()[0], rn: lhs.regs()[0],
rm: rhs.regs()[0], rm: rhs.regs()[0],
}); });
ctx.emit(Inst::AluRRRR { ctx.emit(Inst::AluRRRR {
alu_op: ALUOp3::MAdd64, alu_op: ALUOp3::MAdd64,
rd: dst.regs()[1], rd: dst.regs()[1],
rn: lhs.regs()[0], rn: lhs.regs()[0],
rm: rhs.regs()[1], rm: rhs.regs()[1],
ra: dst.regs()[1].to_reg(), ra: dst.regs()[1].to_reg(),
}); });
ctx.emit(Inst::AluRRRR { ctx.emit(Inst::AluRRRR {
alu_op: ALUOp3::MAdd64, alu_op: ALUOp3::MAdd64,
rd: dst.regs()[1], rd: dst.regs()[1],
rn: lhs.regs()[1], rn: lhs.regs()[1],
rm: rhs.regs()[0], rm: rhs.regs()[0],
ra: dst.regs()[1].to_reg(), ra: dst.regs()[1].to_reg(),
}); });
ctx.emit(Inst::AluRRRR { ctx.emit(Inst::AluRRRR {
alu_op: ALUOp3::MAdd64, alu_op: ALUOp3::MAdd64,
rd: dst.regs()[0], rd: dst.regs()[0],
rn: lhs.regs()[0], rn: lhs.regs()[0],
rm: rhs.regs()[0], rm: rhs.regs()[0],
ra: zero_reg(), ra: zero_reg(),
}); });
} else if ty.is_vector() {
for ext_op in &[
Opcode::SwidenLow,
Opcode::SwidenHigh,
Opcode::UwidenLow,
Opcode::UwidenHigh,
] {
if let Some((alu_op, rn, rm, high_half)) =
match_vec_long_mul(ctx, insn, *ext_op)
{
let rd = get_output_reg(ctx, outputs[0]).only_reg().unwrap();
ctx.emit(Inst::VecRRRLong {
alu_op,
rd,
rn,
rm,
high_half,
});
return Ok(());
}
} }
ty if !ty.is_vector() => { if ty == I64X2 {
let alu_op = choose_32_64(ty, ALUOp3::MAdd32, ALUOp3::MAdd64); lower_i64x2_mul(ctx, insn);
ctx.emit(Inst::AluRRRR { } else {
alu_op, let rn = put_input_in_reg(ctx, inputs[0], NarrowValueMode::None);
rd, let rm = put_input_in_reg(ctx, inputs[1], NarrowValueMode::None);
rn, let rd = get_output_reg(ctx, outputs[0]).only_reg().unwrap();
rm,
ra: zero_reg(),
});
}
I64X2 => {
let tmp1 = ctx.alloc_tmp(I64X2).only_reg().unwrap();
let tmp2 = ctx.alloc_tmp(I64X2).only_reg().unwrap();
// This I64X2 multiplication is performed with several 32-bit
// operations.
// 64-bit numbers x and y, can be represented as:
// x = a + 2^32(b)
// y = c + 2^32(d)
// A 64-bit multiplication is:
// x * y = ac + 2^32(ad + bc) + 2^64(bd)
// note: `2^64(bd)` can be ignored, the value is too large to fit in
// 64 bits.
// This sequence implements a I64X2 multiply, where the registers
// `rn` and `rm` are split up into 32-bit components:
// rn = |d|c|b|a|
// rm = |h|g|f|e|
//
// rn * rm = |cg + 2^32(ch + dg)|ae + 2^32(af + be)|
//
// The sequence is:
// rev64 rd.4s, rm.4s
// mul rd.4s, rd.4s, rn.4s
// xtn tmp1.2s, rn.2d
// addp rd.4s, rd.4s, rd.4s
// xtn tmp2.2s, rm.2d
// shll rd.2d, rd.2s, #32
// umlal rd.2d, tmp2.2s, tmp1.2s
// Reverse the 32-bit elements in the 64-bit words.
// rd = |g|h|e|f|
ctx.emit(Inst::VecMisc {
op: VecMisc2::Rev64,
rd,
rn: rm,
size: VectorSize::Size32x4,
});
// Calculate the high half components.
// rd = |dg|ch|be|af|
//
// Note that this 32-bit multiply of the high half
// discards the bits that would overflow, same as
// if 64-bit operations were used. Also the Shll
// below would shift out the overflow bits anyway.
ctx.emit(Inst::VecRRR {
alu_op: VecALUOp::Mul,
rd,
rn: rd.to_reg(),
rm: rn,
size: VectorSize::Size32x4,
});
// Extract the low half components of rn.
// tmp1 = |c|a|
ctx.emit(Inst::VecRRNarrow {
op: VecRRNarrowOp::Xtn64,
rd: tmp1,
rn,
high_half: false,
});
// Sum the respective high half components.
// rd = |dg+ch|be+af||dg+ch|be+af|
ctx.emit(Inst::VecRRR {
alu_op: VecALUOp::Addp,
rd: rd,
rn: rd.to_reg(),
rm: rd.to_reg(),
size: VectorSize::Size32x4,
});
// Extract the low half components of rm.
// tmp2 = |g|e|
ctx.emit(Inst::VecRRNarrow {
op: VecRRNarrowOp::Xtn64,
rd: tmp2,
rn: rm,
high_half: false,
});
// Shift the high half components, into the high half.
// rd = |dg+ch << 32|be+af << 32|
ctx.emit(Inst::VecRRLong {
op: VecRRLongOp::Shll32,
rd,
rn: rd.to_reg(),
high_half: false,
});
// Multiply the low components together, and accumulate with the high
// half.
// rd = |rd[1] + cg|rd[0] + ae|
ctx.emit(Inst::VecRRR {
alu_op: VecALUOp::Umlal,
rd,
rn: tmp2.to_reg(),
rm: tmp1.to_reg(),
size: VectorSize::Size32x2,
});
}
ty if ty.is_vector() => {
ctx.emit(Inst::VecRRR { ctx.emit(Inst::VecRRR {
alu_op: VecALUOp::Mul, alu_op: VecALUOp::Mul,
rd, rd,
@@ -420,7 +325,18 @@ pub(crate) fn lower_insn_to_regs<C: LowerCtx<I = Inst>>(
size: VectorSize::from_ty(ty), size: VectorSize::from_ty(ty),
}); });
} }
_ => panic!("Unable to emit mul for {}", ty), } else {
let alu_op = choose_32_64(ty, ALUOp3::MAdd32, ALUOp3::MAdd64);
let rn = put_input_in_reg(ctx, inputs[0], NarrowValueMode::None);
let rm = put_input_in_reg(ctx, inputs[1], NarrowValueMode::None);
let rd = get_output_reg(ctx, outputs[0]).only_reg().unwrap();
ctx.emit(Inst::AluRRRR {
alu_op,
rd,
rn,
rm,
ra: zero_reg(),
});
} }
} }
@@ -2740,19 +2656,19 @@ pub(crate) fn lower_insn_to_regs<C: LowerCtx<I = Inst>>(
// => smull tmp, a, b // => smull tmp, a, b
// smull2 y, a, b // smull2 y, a, b
// addp y, tmp, y // addp y, tmp, y
ctx.emit(Inst::VecRRR { ctx.emit(Inst::VecRRRLong {
alu_op: VecALUOp::Smull, alu_op: VecRRRLongOp::Smull16,
rd: tmp, rd: tmp,
rn: r_a, rn: r_a,
rm: r_b, rm: r_b,
size: VectorSize::Size16x8, high_half: false,
}); });
ctx.emit(Inst::VecRRR { ctx.emit(Inst::VecRRRLong {
alu_op: VecALUOp::Smull2, alu_op: VecRRRLongOp::Smull16,
rd: r_y, rd: r_y,
rn: r_a, rn: r_a,
rm: r_b, rm: r_b,
size: VectorSize::Size16x8, high_half: true,
}); });
ctx.emit(Inst::VecRRR { ctx.emit(Inst::VecRRR {
alu_op: VecALUOp::Addp, alu_op: VecALUOp::Addp,

View File

@@ -0,0 +1,159 @@
test compile
set unwind_info=false
target aarch64
function %fn1(i8x16, i8x16) -> i16x8 {
block0(v0: i8x16, v1: i8x16):
v2 = swiden_low v0
v3 = swiden_low v1
v4 = imul v2, v3
return v4
}
; check-not: sxtl
; check: smull v0.8h, v0.8b, v1.8b
; nextln: ldp fp, lr, [sp], #16
; nextln: ret
function %fn2(i8x16, i8x16) -> i16x8 {
block0(v0: i8x16, v1: i8x16):
v2 = swiden_high v0
v3 = swiden_high v1
v4 = imul v2, v3
return v4
}
; check-not: sxtl
; check: smull2 v0.8h, v0.16b, v1.16b
; nextln: ldp fp, lr, [sp], #16
; nextln: ret
function %fn3(i16x8, i16x8) -> i32x4 {
block0(v0: i16x8, v1: i16x8):
v2 = swiden_low v0
v3 = swiden_low v1
v4 = imul v2, v3
return v4
}
; check-not: sxtl
; check: smull v0.4s, v0.4h, v1.4h
; nextln: ldp fp, lr, [sp], #16
; nextln: ret
function %fn4(i16x8, i16x8) -> i32x4 {
block0(v0: i16x8, v1: i16x8):
v2 = swiden_high v0
v3 = swiden_high v1
v4 = imul v2, v3
return v4
}
; check-not: sxtl
; check: smull2 v0.4s, v0.8h, v1.8h
; nextln: ldp fp, lr, [sp], #16
; nextln: ret
function %fn5(i32x4, i32x4) -> i64x2 {
block0(v0: i32x4, v1: i32x4):
v2 = swiden_low v0
v3 = swiden_low v1
v4 = imul v2, v3
return v4
}
; check-not: sxtl
; check: smull v0.2d, v0.2s, v1.2s
; nextln: ldp fp, lr, [sp], #16
; nextln: ret
function %fn6(i32x4, i32x4) -> i64x2 {
block0(v0: i32x4, v1: i32x4):
v2 = swiden_high v0
v3 = swiden_high v1
v4 = imul v2, v3
return v4
}
; check-not: sxtl
; check: smull2 v0.2d, v0.4s, v1.4s
; nextln: ldp fp, lr, [sp], #16
; nextln: ret
function %fn7(i8x16, i8x16) -> i16x8 {
block0(v0: i8x16, v1: i8x16):
v2 = uwiden_low v0
v3 = uwiden_low v1
v4 = imul v2, v3
return v4
}
; check-not: uxtl
; check: umull v0.8h, v0.8b, v1.8b
; nextln: ldp fp, lr, [sp], #16
; nextln: ret
function %fn8(i8x16, i8x16) -> i16x8 {
block0(v0: i8x16, v1: i8x16):
v2 = uwiden_high v0
v3 = uwiden_high v1
v4 = imul v2, v3
return v4
}
; check-not: uxtl
; check: umull2 v0.8h, v0.16b, v1.16b
; nextln: ldp fp, lr, [sp], #16
; nextln: ret
function %fn9(i16x8, i16x8) -> i32x4 {
block0(v0: i16x8, v1: i16x8):
v2 = uwiden_low v0
v3 = uwiden_low v1
v4 = imul v2, v3
return v4
}
; check-not: uxtl
; check: umull v0.4s, v0.4h, v1.4h
; nextln: ldp fp, lr, [sp], #16
; nextln: ret
function %fn10(i16x8, i16x8) -> i32x4 {
block0(v0: i16x8, v1: i16x8):
v2 = uwiden_high v0
v3 = uwiden_high v1
v4 = imul v2, v3
return v4
}
; check-not: uxtl
; check: umull2 v0.4s, v0.8h, v1.8h
; nextln: ldp fp, lr, [sp], #16
; nextln: ret
function %fn11(i32x4, i32x4) -> i64x2 {
block0(v0: i32x4, v1: i32x4):
v2 = uwiden_low v0
v3 = uwiden_low v1
v4 = imul v2, v3
return v4
}
; check-not: uxtl
; check: umull v0.2d, v0.2s, v1.2s
; nextln: ldp fp, lr, [sp], #16
; nextln: ret
function %fn12(i32x4, i32x4) -> i64x2 {
block0(v0: i32x4, v1: i32x4):
v2 = uwiden_high v0
v3 = uwiden_high v1
v4 = imul v2, v3
return v4
}
; check-not: uxtl2
; check: umull2 v0.2d, v0.4s, v1.4s
; nextln: ldp fp, lr, [sp], #16
; nextln: ret

View File

@@ -1908,7 +1908,6 @@ pub fn translate_operator<FE: FuncEnvironment + ?Sized>(
} }
Operator::I16x8Q15MulrSatS => { Operator::I16x8Q15MulrSatS => {
let (a, b) = pop2_with_bitcast(state, I16X8, builder); let (a, b) = pop2_with_bitcast(state, I16X8, builder);
state.push1(builder.ins().sqmul_round_sat(a, b)) state.push1(builder.ins().sqmul_round_sat(a, b))
} }
Operator::I16x8ExtMulLowI8x16S => { Operator::I16x8ExtMulLowI8x16S => {