Convert legalizer::split and generated legalization code to FuncCursor.
This commit is contained in:
@@ -325,13 +325,15 @@ fn convert_to_abi<PutArg>(
|
||||
match legalize_abi_value(ty, &arg_type) {
|
||||
ValueConversion::IntSplit => {
|
||||
let curpos = pos.position();
|
||||
let (lo, hi) = isplit(&mut pos.func.dfg, &mut pos.func.layout, cfg, curpos, value);
|
||||
let srcloc = pos.srcloc();
|
||||
let (lo, hi) = isplit(&mut pos.func, cfg, curpos, srcloc, value);
|
||||
convert_to_abi(pos, cfg, lo, put_arg);
|
||||
convert_to_abi(pos, cfg, hi, put_arg);
|
||||
}
|
||||
ValueConversion::VectorSplit => {
|
||||
let curpos = pos.position();
|
||||
let (lo, hi) = vsplit(&mut pos.func.dfg, &mut pos.func.layout, cfg, curpos, value);
|
||||
let srcloc = pos.srcloc();
|
||||
let (lo, hi) = vsplit(&mut pos.func, cfg, curpos, srcloc, value);
|
||||
convert_to_abi(pos, cfg, lo, put_arg);
|
||||
convert_to_abi(pos, cfg, hi, put_arg);
|
||||
}
|
||||
|
||||
@@ -64,7 +64,7 @@
|
||||
//! It is possible to have circular dependencies of EBB arguments that are never used by any real
|
||||
//! instructions. These loops will remain in the program.
|
||||
|
||||
use cursor::{Cursor, CursorPosition};
|
||||
use cursor::{Cursor, CursorPosition, FuncCursor};
|
||||
use flowgraph::ControlFlowGraph;
|
||||
use ir::{self, Ebb, Inst, Value, Type, Opcode, ValueDef, InstructionData, InstBuilder};
|
||||
use std::iter;
|
||||
@@ -72,25 +72,25 @@ use std::iter;
|
||||
/// Split `value` into two values using the `isplit` semantics. Do this by reusing existing values
|
||||
/// if possible.
|
||||
pub fn isplit(
|
||||
dfg: &mut ir::DataFlowGraph,
|
||||
layout: &mut ir::Layout,
|
||||
func: &mut ir::Function,
|
||||
cfg: &ControlFlowGraph,
|
||||
pos: CursorPosition,
|
||||
srcloc: ir::SourceLoc,
|
||||
value: Value,
|
||||
) -> (Value, Value) {
|
||||
split_any(dfg, layout, cfg, pos, value, Opcode::Iconcat)
|
||||
split_any(func, cfg, pos, srcloc, value, Opcode::Iconcat)
|
||||
}
|
||||
|
||||
/// Split `value` into halves using the `vsplit` semantics. Do this by reusing existing values if
|
||||
/// possible.
|
||||
pub fn vsplit(
|
||||
dfg: &mut ir::DataFlowGraph,
|
||||
layout: &mut ir::Layout,
|
||||
func: &mut ir::Function,
|
||||
cfg: &ControlFlowGraph,
|
||||
pos: CursorPosition,
|
||||
srcloc: ir::SourceLoc,
|
||||
value: Value,
|
||||
) -> (Value, Value) {
|
||||
split_any(dfg, layout, cfg, pos, value, Opcode::Vconcat)
|
||||
split_any(func, cfg, pos, srcloc, value, Opcode::Vconcat)
|
||||
}
|
||||
|
||||
/// After splitting an EBB argument, we need to go back and fix up all of the predecessor
|
||||
@@ -112,54 +112,53 @@ struct Repair {
|
||||
|
||||
/// Generic version of `isplit` and `vsplit` controlled by the `concat` opcode.
|
||||
fn split_any(
|
||||
dfg: &mut ir::DataFlowGraph,
|
||||
layout: &mut ir::Layout,
|
||||
func: &mut ir::Function,
|
||||
cfg: &ControlFlowGraph,
|
||||
pos: CursorPosition,
|
||||
srcloc: ir::SourceLoc,
|
||||
value: Value,
|
||||
concat: Opcode,
|
||||
) -> (Value, Value) {
|
||||
let mut repairs = Vec::new();
|
||||
let mut pos = ir::Cursor::new(layout, None).at_position(pos);
|
||||
let result = split_value(dfg, &mut pos, value, concat, &mut repairs);
|
||||
let pos = &mut FuncCursor::new(func).at_position(pos).with_srcloc(srcloc);
|
||||
let result = split_value(pos, value, concat, &mut repairs);
|
||||
|
||||
// We have split the value requested, and now we may need to fix some EBB predecessors.
|
||||
while let Some(repair) = repairs.pop() {
|
||||
for &(_, inst) in cfg.get_predecessors(repair.ebb) {
|
||||
let branch_opc = dfg[inst].opcode();
|
||||
let branch_opc = pos.func.dfg[inst].opcode();
|
||||
assert!(
|
||||
branch_opc.is_branch(),
|
||||
"Predecessor not a branch: {}",
|
||||
dfg.display_inst(inst, None)
|
||||
pos.func.dfg.display_inst(inst, None)
|
||||
);
|
||||
let fixed_args = branch_opc.constraints().fixed_value_arguments();
|
||||
let mut args = dfg[inst].take_value_list().expect(
|
||||
let mut args = pos.func.dfg[inst].take_value_list().expect(
|
||||
"Branches must have value lists.",
|
||||
);
|
||||
let num_args = args.len(&dfg.value_lists);
|
||||
let num_args = args.len(&pos.func.dfg.value_lists);
|
||||
// Get the old value passed to the EBB argument we're repairing.
|
||||
let old_arg = args.get(fixed_args + repair.num, &dfg.value_lists).expect(
|
||||
"Too few branch arguments",
|
||||
);
|
||||
let old_arg = args.get(fixed_args + repair.num, &pos.func.dfg.value_lists)
|
||||
.expect("Too few branch arguments");
|
||||
|
||||
// It's possible that the CFG's predecessor list has duplicates. Detect them here.
|
||||
if dfg.value_type(old_arg) == repair.split_type {
|
||||
dfg[inst].put_value_list(args);
|
||||
if pos.func.dfg.value_type(old_arg) == repair.split_type {
|
||||
pos.func.dfg[inst].put_value_list(args);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Split the old argument, possibly causing more repairs to be scheduled.
|
||||
pos.goto_inst(inst);
|
||||
let (lo, hi) = split_value(dfg, &mut pos, old_arg, repair.concat, &mut repairs);
|
||||
let (lo, hi) = split_value(pos, old_arg, repair.concat, &mut repairs);
|
||||
|
||||
// The `lo` part replaces the original argument.
|
||||
*args.get_mut(fixed_args + repair.num, &mut dfg.value_lists)
|
||||
*args.get_mut(fixed_args + repair.num, &mut pos.func.dfg.value_lists)
|
||||
.unwrap() = lo;
|
||||
|
||||
// The `hi` part goes at the end. Since multiple repairs may have been scheduled to the
|
||||
// same EBB, there could be multiple arguments missing.
|
||||
if num_args > fixed_args + repair.hi_num {
|
||||
*args.get_mut(fixed_args + repair.hi_num, &mut dfg.value_lists)
|
||||
*args.get_mut(fixed_args + repair.hi_num, &mut pos.func.dfg.value_lists)
|
||||
.unwrap() = hi;
|
||||
} else {
|
||||
// We need to append one or more arguments. If we're adding more than one argument,
|
||||
@@ -167,12 +166,12 @@ fn split_any(
|
||||
// instead of `hi`.
|
||||
args.extend(
|
||||
iter::repeat(hi).take(1 + fixed_args + repair.hi_num - num_args),
|
||||
&mut dfg.value_lists,
|
||||
&mut pos.func.dfg.value_lists,
|
||||
);
|
||||
}
|
||||
|
||||
// Put the value list back after manipulating it.
|
||||
dfg[inst].put_value_list(args);
|
||||
pos.func.dfg[inst].put_value_list(args);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -186,20 +185,19 @@ fn split_any(
|
||||
///
|
||||
/// Return the two new values representing the parts of `value`.
|
||||
fn split_value(
|
||||
dfg: &mut ir::DataFlowGraph,
|
||||
pos: &mut ir::Cursor,
|
||||
pos: &mut FuncCursor,
|
||||
value: Value,
|
||||
concat: Opcode,
|
||||
repairs: &mut Vec<Repair>,
|
||||
) -> (Value, Value) {
|
||||
let value = dfg.resolve_copies(value);
|
||||
let value = pos.func.dfg.resolve_copies(value);
|
||||
let mut reuse = None;
|
||||
|
||||
match dfg.value_def(value) {
|
||||
match pos.func.dfg.value_def(value) {
|
||||
ValueDef::Res(inst, num) => {
|
||||
// This is an instruction result. See if the value was created by a `concat`
|
||||
// instruction.
|
||||
if let InstructionData::Binary { opcode, args, .. } = dfg[inst] {
|
||||
if let InstructionData::Binary { opcode, args, .. } = pos.func.dfg[inst] {
|
||||
assert_eq!(num, 0);
|
||||
if opcode == concat {
|
||||
reuse = Some((args[0], args[1]));
|
||||
@@ -209,10 +207,10 @@ fn split_value(
|
||||
ValueDef::Arg(ebb, num) => {
|
||||
// This is an EBB argument. We can split the argument value unless this is the entry
|
||||
// block.
|
||||
if pos.layout.entry_block() != Some(ebb) {
|
||||
if pos.func.layout.entry_block() != Some(ebb) {
|
||||
// We are going to replace the argument at `num` with two new arguments.
|
||||
// Determine the new value types.
|
||||
let ty = dfg.value_type(value);
|
||||
let ty = pos.func.dfg.value_type(value);
|
||||
let split_type = match concat {
|
||||
Opcode::Iconcat => ty.half_width().expect("Invalid type for isplit"),
|
||||
Opcode::Vconcat => ty.half_vector().expect("Invalid type for vsplit"),
|
||||
@@ -225,9 +223,9 @@ fn split_value(
|
||||
//
|
||||
// Replace the original `value` with the low part, and append the high part at the
|
||||
// end of the argument list.
|
||||
let lo = dfg.replace_ebb_arg(value, split_type);
|
||||
let hi_num = dfg.num_ebb_args(ebb);
|
||||
let hi = dfg.append_ebb_arg(ebb, split_type);
|
||||
let lo = pos.func.dfg.replace_ebb_arg(value, split_type);
|
||||
let hi_num = pos.func.dfg.num_ebb_args(ebb);
|
||||
let hi = pos.func.dfg.append_ebb_arg(ebb, split_type);
|
||||
reuse = Some((lo, hi));
|
||||
|
||||
|
||||
@@ -238,7 +236,7 @@ fn split_value(
|
||||
// Note that it is safe to move `pos` here since `reuse` was set above, so we don't
|
||||
// need to insert a split instruction before returning.
|
||||
pos.goto_first_inst(ebb);
|
||||
dfg.ins(pos).with_result(value).Binary(
|
||||
pos.ins().with_result(value).Binary(
|
||||
concat,
|
||||
split_type,
|
||||
lo,
|
||||
@@ -259,8 +257,8 @@ fn split_value(
|
||||
// No, we'll just have to insert the requested split instruction at `pos`. Note that `pos`
|
||||
// has not been moved by the EBB argument code above when `reuse` is `None`.
|
||||
match concat {
|
||||
Opcode::Iconcat => dfg.ins(pos).isplit(value),
|
||||
Opcode::Vconcat => dfg.ins(pos).vsplit(value),
|
||||
Opcode::Iconcat => pos.ins().isplit(value),
|
||||
Opcode::Vconcat => pos.ins().vsplit(value),
|
||||
_ => panic!("Unhandled concat opcode: {}", concat),
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user