Move the ctrl_typevar function into dfg.

Soon, InstructionData won't have sufficient information to compute this.

Give TargetIsa::encode() an explicit ctrl_typevar argument. This
function does not require the instruction to be inserted in the DFG
tables.
This commit is contained in:
Jakob Stoklund Olesen
2017-04-12 13:14:03 -07:00
parent e653d44f39
commit 28ff7b7925
11 changed files with 69 additions and 53 deletions

View File

@@ -60,10 +60,11 @@ impl TargetIsa for Isa {
}
fn encode(&self,
dfg: &ir::DataFlowGraph,
inst: &ir::InstructionData)
_dfg: &ir::DataFlowGraph,
inst: &ir::InstructionData,
ctrl_typevar: ir::Type)
-> Result<Encoding, Legalize> {
lookup_enclist(inst.ctrl_typevar(dfg),
lookup_enclist(ctrl_typevar,
inst.opcode(),
self.cpumode,
&enc_tables::LEVEL2[..])

View File

@@ -53,10 +53,11 @@ impl TargetIsa for Isa {
}
fn encode(&self,
dfg: &ir::DataFlowGraph,
inst: &ir::InstructionData)
_dfg: &ir::DataFlowGraph,
inst: &ir::InstructionData,
ctrl_typevar: ir::Type)
-> Result<Encoding, Legalize> {
lookup_enclist(inst.ctrl_typevar(dfg),
lookup_enclist(ctrl_typevar,
inst.opcode(),
&enc_tables::LEVEL1_A64[..],
&enc_tables::LEVEL2[..])

View File

@@ -60,10 +60,11 @@ impl TargetIsa for Isa {
}
fn encode(&self,
dfg: &ir::DataFlowGraph,
inst: &ir::InstructionData)
_dfg: &ir::DataFlowGraph,
inst: &ir::InstructionData,
ctrl_typevar: ir::Type)
-> Result<Encoding, Legalize> {
lookup_enclist(inst.ctrl_typevar(dfg),
lookup_enclist(ctrl_typevar,
inst.opcode(),
self.cpumode,
&enc_tables::LEVEL2[..])

View File

@@ -46,7 +46,7 @@ pub use isa::registers::{RegInfo, RegUnit, RegClass, RegClassIndex};
use binemit::CodeSink;
use settings;
use ir::{Function, Inst, InstructionData, DataFlowGraph, Signature};
use ir::{Function, Inst, InstructionData, DataFlowGraph, Signature, Type};
pub mod riscv;
pub mod intel;
@@ -141,7 +141,11 @@ pub trait TargetIsa {
/// Otherwise, return `None`.
///
/// This is also the main entry point for determining if an instruction is legal.
fn encode(&self, dfg: &DataFlowGraph, inst: &InstructionData) -> Result<Encoding, Legalize>;
fn encode(&self,
dfg: &DataFlowGraph,
inst: &InstructionData,
ctrl_typevar: Type)
-> Result<Encoding, Legalize>;
/// Get a data structure describing the instruction encodings in this ISA.
fn encoding_info(&self) -> EncInfo;

View File

@@ -11,7 +11,7 @@ use binemit::CodeSink;
use isa::enc_tables::{self as shared_enc_tables, lookup_enclist, general_encoding};
use isa::Builder as IsaBuilder;
use isa::{TargetIsa, RegInfo, EncInfo, Encoding, Legalize};
use ir::{Function, Inst, InstructionData, DataFlowGraph, Signature};
use ir::{Function, Inst, InstructionData, DataFlowGraph, Signature, Type};
#[allow(dead_code)]
struct Isa {
@@ -60,8 +60,12 @@ impl TargetIsa for Isa {
enc_tables::INFO.clone()
}
fn encode(&self, dfg: &DataFlowGraph, inst: &InstructionData) -> Result<Encoding, Legalize> {
lookup_enclist(inst.ctrl_typevar(dfg),
fn encode(&self,
_dfg: &DataFlowGraph,
inst: &InstructionData,
ctrl_typevar: Type)
-> Result<Encoding, Legalize> {
lookup_enclist(ctrl_typevar,
inst.opcode(),
self.cpumode,
&enc_tables::LEVEL2[..])
@@ -120,7 +124,8 @@ mod tests {
};
// ADDI is I/0b00100
assert_eq!(encstr(&*isa, isa.encode(&dfg, &inst64).unwrap()), "I#04");
assert_eq!(encstr(&*isa, isa.encode(&dfg, &inst64, types::I64).unwrap()),
"I#04");
// Try to encode iadd_imm.i64 vx1, -10000.
let inst64_large = InstructionData::BinaryImm {
@@ -131,7 +136,8 @@ mod tests {
};
// Immediate is out of range for ADDI.
assert_eq!(isa.encode(&dfg, &inst64_large), Err(isa::Legalize::Expand));
assert_eq!(isa.encode(&dfg, &inst64_large, types::I64),
Err(isa::Legalize::Expand));
// Create an iadd_imm.i32 which is encodable in RV64.
let inst32 = InstructionData::BinaryImm {
@@ -142,7 +148,8 @@ mod tests {
};
// ADDIW is I/0b00110
assert_eq!(encstr(&*isa, isa.encode(&dfg, &inst32).unwrap()), "I#06");
assert_eq!(encstr(&*isa, isa.encode(&dfg, &inst32, types::I32).unwrap()),
"I#06");
}
// Same as above, but for RV32.
@@ -167,7 +174,8 @@ mod tests {
};
// In 32-bit mode, an i64 bit add should be narrowed.
assert_eq!(isa.encode(&dfg, &inst64), Err(isa::Legalize::Narrow));
assert_eq!(isa.encode(&dfg, &inst64, types::I64),
Err(isa::Legalize::Narrow));
// Try to encode iadd_imm.i64 vx1, -10000.
let inst64_large = InstructionData::BinaryImm {
@@ -178,7 +186,8 @@ mod tests {
};
// In 32-bit mode, an i64 bit add should be narrowed.
assert_eq!(isa.encode(&dfg, &inst64_large), Err(isa::Legalize::Narrow));
assert_eq!(isa.encode(&dfg, &inst64_large, types::I64),
Err(isa::Legalize::Narrow));
// Create an iadd_imm.i32 which is encodable in RV32.
let inst32 = InstructionData::BinaryImm {
@@ -189,7 +198,8 @@ mod tests {
};
// ADDI is I/0b00100
assert_eq!(encstr(&*isa, isa.encode(&dfg, &inst32).unwrap()), "I#04");
assert_eq!(encstr(&*isa, isa.encode(&dfg, &inst32, types::I32).unwrap()),
"I#04");
// Create an imul.i32 which is encodable in RV32, but only when use_m is true.
let mul32 = InstructionData::Binary {
@@ -198,7 +208,8 @@ mod tests {
args: [arg32, arg32],
};
assert_eq!(isa.encode(&dfg, &mul32), Err(isa::Legalize::Expand));
assert_eq!(isa.encode(&dfg, &mul32, types::I32),
Err(isa::Legalize::Expand));
}
#[test]
@@ -224,6 +235,7 @@ mod tests {
ty: types::I32,
args: [arg32, arg32],
};
assert_eq!(encstr(&*isa, isa.encode(&dfg, &mul32).unwrap()), "R#10c");
assert_eq!(encstr(&*isa, isa.encode(&dfg, &mul32, types::I32).unwrap()),
"R#10c");
}
}