Rename the 'cretonne' crate to 'cretonne-codegen'.

This fixes the next part of #287.
This commit is contained in:
Dan Gohman
2018-04-17 08:48:02 -07:00
parent 7767186dd0
commit 24fa169e1f
254 changed files with 265 additions and 264 deletions

View File

@@ -0,0 +1,683 @@
//! Legalize ABI boundaries.
//!
//! This legalizer sub-module contains code for dealing with ABI boundaries:
//!
//! - Function arguments passed to the entry block.
//! - Function arguments passed to call instructions.
//! - Return values from call instructions.
//! - Return values passed to return instructions.
//!
//! The ABI boundary legalization happens in two phases:
//!
//! 1. The `legalize_signatures` function rewrites all the preamble signatures with ABI information
//! and possibly new argument types. It also rewrites the entry block arguments to match.
//! 2. The `handle_call_abi` and `handle_return_abi` functions rewrite call and return instructions
//! to match the new ABI signatures.
//!
//! Between the two phases, preamble signatures and call/return arguments don't match. This
//! intermediate state doesn't type check.
use abi::{legalize_abi_value, ValueConversion};
use cursor::{Cursor, FuncCursor};
use flowgraph::ControlFlowGraph;
use ir::instructions::CallInfo;
use ir::{AbiParam, ArgumentLoc, ArgumentPurpose, DataFlowGraph, Ebb, Function, Inst, InstBuilder,
SigRef, Signature, Type, Value, ValueLoc};
use isa::TargetIsa;
use legalizer::split::{isplit, vsplit};
use std::vec::Vec;
/// Legalize all the function signatures in `func`.
///
/// This changes all signatures to be ABI-compliant with full `ArgumentLoc` annotations. It doesn't
/// change the entry block arguments, calls, or return instructions, so this can leave the function
/// in a state with type discrepancies.
pub fn legalize_signatures(func: &mut Function, isa: &TargetIsa) {
isa.legalize_signature(&mut func.signature, true);
func.signature.compute_argument_bytes();
for sig_data in func.dfg.signatures.values_mut() {
isa.legalize_signature(sig_data, false);
sig_data.compute_argument_bytes();
}
if let Some(entry) = func.layout.entry_block() {
legalize_entry_params(func, entry);
spill_entry_params(func, entry);
}
}
/// Legalize the entry block parameters after `func`'s signature has been legalized.
///
/// The legalized signature may contain more parameters than the original signature, and the
/// parameter types have been changed. This function goes through the parameters of the entry EBB
/// and replaces them with parameters of the right type for the ABI.
///
/// The original entry EBB parameters are computed from the new ABI parameters by code inserted at
/// the top of the entry block.
fn legalize_entry_params(func: &mut Function, entry: Ebb) {
let mut has_sret = false;
let mut has_link = false;
let mut has_vmctx = false;
let mut has_sigid = false;
// Insert position for argument conversion code.
// We want to insert instructions before the first instruction in the entry block.
// If the entry block is empty, append instructions to it instead.
let mut pos = FuncCursor::new(func).at_first_inst(entry);
// Keep track of the argument types in the ABI-legalized signature.
let mut abi_arg = 0;
// Process the EBB parameters one at a time, possibly replacing one argument with multiple new
// ones. We do this by detaching the entry EBB parameters first.
let ebb_params = pos.func.dfg.detach_ebb_params(entry);
let mut old_arg = 0;
while let Some(arg) = ebb_params.get(old_arg, &pos.func.dfg.value_lists) {
old_arg += 1;
let abi_type = pos.func.signature.params[abi_arg];
let arg_type = pos.func.dfg.value_type(arg);
if arg_type == abi_type.value_type {
// No value translation is necessary, this argument matches the ABI type.
// Just use the original EBB argument value. This is the most common case.
pos.func.dfg.attach_ebb_param(entry, arg);
match abi_type.purpose {
ArgumentPurpose::Normal => {}
ArgumentPurpose::FramePointer => {}
ArgumentPurpose::CalleeSaved => {}
ArgumentPurpose::StructReturn => {
debug_assert!(!has_sret, "Multiple sret arguments found");
has_sret = true;
}
ArgumentPurpose::VMContext => {
debug_assert!(!has_vmctx, "Multiple vmctx arguments found");
has_vmctx = true;
}
ArgumentPurpose::SignatureId => {
debug_assert!(!has_sigid, "Multiple sigid arguments found");
has_sigid = true;
}
_ => panic!("Unexpected special-purpose arg {}", abi_type),
}
abi_arg += 1;
} else {
// Compute the value we want for `arg` from the legalized ABI parameters.
let mut get_arg = |func: &mut Function, ty| {
let abi_type = func.signature.params[abi_arg];
debug_assert_eq!(
abi_type.purpose,
ArgumentPurpose::Normal,
"Can't legalize special-purpose argument"
);
if ty == abi_type.value_type {
abi_arg += 1;
Ok(func.dfg.append_ebb_param(entry, ty))
} else {
Err(abi_type)
}
};
let converted = convert_from_abi(&mut pos, arg_type, Some(arg), &mut get_arg);
// The old `arg` is no longer an attached EBB argument, but there are probably still
// uses of the value.
debug_assert_eq!(pos.func.dfg.resolve_aliases(arg), converted);
}
}
// The legalized signature may contain additional parameters representing special-purpose
// registers.
for &arg in &pos.func.signature.params[abi_arg..] {
match arg.purpose {
// Any normal parameters should have been processed above.
ArgumentPurpose::Normal => {
panic!("Leftover arg: {}", arg);
}
// The callee-save parameters should not appear until after register allocation is
// done.
ArgumentPurpose::FramePointer |
ArgumentPurpose::CalleeSaved => {
panic!("Premature callee-saved arg {}", arg);
}
// These can be meaningfully added by `legalize_signature()`.
ArgumentPurpose::Link => {
debug_assert!(!has_link, "Multiple link parameters found");
has_link = true;
}
ArgumentPurpose::StructReturn => {
debug_assert!(!has_sret, "Multiple sret parameters found");
has_sret = true;
}
ArgumentPurpose::VMContext => {
debug_assert!(!has_vmctx, "Multiple vmctx parameters found");
has_vmctx = true;
}
ArgumentPurpose::SignatureId => {
debug_assert!(!has_sigid, "Multiple sigid parameters found");
has_sigid = true;
}
}
// Just create entry block values to match here. We will use them in `handle_return_abi()`
// below.
pos.func.dfg.append_ebb_param(entry, arg.value_type);
}
}
/// Legalize the results returned from a call instruction to match the ABI signature.
///
/// The cursor `pos` points to a call instruction with at least one return value. The cursor will
/// be left pointing after the instructions inserted to convert the return values.
///
/// This function is very similar to the `legalize_entry_params` function above.
///
/// Returns the possibly new instruction representing the call.
fn legalize_inst_results<ResType>(pos: &mut FuncCursor, mut get_abi_type: ResType) -> Inst
where
ResType: FnMut(&Function, usize) -> AbiParam,
{
let call = pos.current_inst().expect(
"Cursor must point to a call instruction",
);
// We theoretically allow for call instructions that return a number of fixed results before
// the call return values. In practice, it doesn't happen.
let fixed_results = pos.func.dfg[call].opcode().constraints().fixed_results();
debug_assert_eq!(fixed_results, 0, "Fixed results on calls not supported");
let results = pos.func.dfg.detach_results(call);
let mut next_res = 0;
let mut abi_res = 0;
// Point immediately after the call.
pos.next_inst();
while let Some(res) = results.get(next_res, &pos.func.dfg.value_lists) {
next_res += 1;
let res_type = pos.func.dfg.value_type(res);
if res_type == get_abi_type(pos.func, abi_res).value_type {
// No value translation is necessary, this result matches the ABI type.
pos.func.dfg.attach_result(call, res);
abi_res += 1;
} else {
let mut get_res = |func: &mut Function, ty| {
let abi_type = get_abi_type(func, abi_res);
if ty == abi_type.value_type {
let last_res = func.dfg.append_result(call, ty);
abi_res += 1;
Ok(last_res)
} else {
Err(abi_type)
}
};
let v = convert_from_abi(pos, res_type, Some(res), &mut get_res);
debug_assert_eq!(pos.func.dfg.resolve_aliases(res), v);
}
}
call
}
/// Compute original value of type `ty` from the legalized ABI arguments.
///
/// The conversion is recursive, controlled by the `get_arg` closure which is called to retrieve an
/// ABI argument. It returns:
///
/// - `Ok(arg)` if the requested type matches the next ABI argument.
/// - `Err(arg_type)` if further conversions are needed from the ABI argument `arg_type`.
///
/// If the `into_result` value is provided, the converted result will be written into that value.
fn convert_from_abi<GetArg>(
pos: &mut FuncCursor,
ty: Type,
into_result: Option<Value>,
get_arg: &mut GetArg,
) -> Value
where
GetArg: FnMut(&mut Function, Type) -> Result<Value, AbiParam>,
{
// Terminate the recursion when we get the desired type.
let arg_type = match get_arg(pos.func, ty) {
Ok(v) => {
debug_assert_eq!(pos.func.dfg.value_type(v), ty);
debug_assert_eq!(into_result, None);
return v;
}
Err(t) => t,
};
// Reconstruct how `ty` was legalized into the `arg_type` argument.
let conversion = legalize_abi_value(ty, &arg_type);
dbg!("convert_from_abi({}): {:?}", ty, conversion);
// The conversion describes value to ABI argument. We implement the reverse conversion here.
match conversion {
// Construct a `ty` by concatenating two ABI integers.
ValueConversion::IntSplit => {
let abi_ty = ty.half_width().expect("Invalid type for conversion");
let lo = convert_from_abi(pos, abi_ty, None, get_arg);
let hi = convert_from_abi(pos, abi_ty, None, get_arg);
dbg!(
"intsplit {}: {}, {}: {}",
lo,
pos.func.dfg.value_type(lo),
hi,
pos.func.dfg.value_type(hi)
);
pos.ins().with_results([into_result]).iconcat(lo, hi)
}
// Construct a `ty` by concatenating two halves of a vector.
ValueConversion::VectorSplit => {
let abi_ty = ty.half_vector().expect("Invalid type for conversion");
let lo = convert_from_abi(pos, abi_ty, None, get_arg);
let hi = convert_from_abi(pos, abi_ty, None, get_arg);
pos.ins().with_results([into_result]).vconcat(lo, hi)
}
// Construct a `ty` by bit-casting from an integer type.
ValueConversion::IntBits => {
debug_assert!(!ty.is_int());
let abi_ty = Type::int(ty.bits()).expect("Invalid type for conversion");
let arg = convert_from_abi(pos, abi_ty, None, get_arg);
pos.ins().with_results([into_result]).bitcast(ty, arg)
}
// ABI argument is a sign-extended version of the value we want.
ValueConversion::Sext(abi_ty) => {
let arg = convert_from_abi(pos, abi_ty, None, get_arg);
// TODO: Currently, we don't take advantage of the ABI argument being sign-extended.
// We could insert an `assert_sreduce` which would fold with a following `sextend` of
// this value.
pos.ins().with_results([into_result]).ireduce(ty, arg)
}
ValueConversion::Uext(abi_ty) => {
let arg = convert_from_abi(pos, abi_ty, None, get_arg);
// TODO: Currently, we don't take advantage of the ABI argument being sign-extended.
// We could insert an `assert_ureduce` which would fold with a following `uextend` of
// this value.
pos.ins().with_results([into_result]).ireduce(ty, arg)
}
}
}
/// Convert `value` to match an ABI signature by inserting instructions at `pos`.
///
/// This may require expanding the value to multiple ABI arguments. The conversion process is
/// recursive and controlled by the `put_arg` closure. When a candidate argument value is presented
/// to the closure, it will perform one of two actions:
///
/// 1. If the suggested argument has an acceptable value type, consume it by adding it to the list
/// of arguments and return `Ok(())`.
/// 2. If the suggested argument doesn't have the right value type, don't change anything, but
/// return the `Err(AbiParam)` that is needed.
///
fn convert_to_abi<PutArg>(
pos: &mut FuncCursor,
cfg: &ControlFlowGraph,
value: Value,
put_arg: &mut PutArg,
) where
PutArg: FnMut(&mut Function, Value) -> Result<(), AbiParam>,
{
// Start by invoking the closure to either terminate the recursion or get the argument type
// we're trying to match.
let arg_type = match put_arg(pos.func, value) {
Ok(_) => return,
Err(t) => t,
};
let ty = pos.func.dfg.value_type(value);
match legalize_abi_value(ty, &arg_type) {
ValueConversion::IntSplit => {
let curpos = pos.position();
let srcloc = pos.srcloc();
let (lo, hi) = isplit(&mut pos.func, cfg, curpos, srcloc, value);
convert_to_abi(pos, cfg, lo, put_arg);
convert_to_abi(pos, cfg, hi, put_arg);
}
ValueConversion::VectorSplit => {
let curpos = pos.position();
let srcloc = pos.srcloc();
let (lo, hi) = vsplit(&mut pos.func, cfg, curpos, srcloc, value);
convert_to_abi(pos, cfg, lo, put_arg);
convert_to_abi(pos, cfg, hi, put_arg);
}
ValueConversion::IntBits => {
debug_assert!(!ty.is_int());
let abi_ty = Type::int(ty.bits()).expect("Invalid type for conversion");
let arg = pos.ins().bitcast(abi_ty, value);
convert_to_abi(pos, cfg, arg, put_arg);
}
ValueConversion::Sext(abi_ty) => {
let arg = pos.ins().sextend(abi_ty, value);
convert_to_abi(pos, cfg, arg, put_arg);
}
ValueConversion::Uext(abi_ty) => {
let arg = pos.ins().uextend(abi_ty, value);
convert_to_abi(pos, cfg, arg, put_arg);
}
}
}
/// Check if a sequence of arguments match a desired sequence of argument types.
fn check_arg_types(dfg: &DataFlowGraph, args: &[Value], types: &[AbiParam]) -> bool {
let arg_types = args.iter().map(|&v| dfg.value_type(v));
let sig_types = types.iter().map(|&at| at.value_type);
arg_types.eq(sig_types)
}
/// Check if the arguments of the call `inst` match the signature.
///
/// Returns `Ok(())` if the signature matches and no changes are needed, or `Err(sig_ref)` if the
/// signature doesn't match.
fn check_call_signature(dfg: &DataFlowGraph, inst: Inst) -> Result<(), SigRef> {
// Extract the signature and argument values.
let (sig_ref, args) = match dfg[inst].analyze_call(&dfg.value_lists) {
CallInfo::Direct(func, args) => (dfg.ext_funcs[func].signature, args),
CallInfo::Indirect(sig_ref, args) => (sig_ref, args),
CallInfo::NotACall => panic!("Expected call, got {:?}", dfg[inst]),
};
let sig = &dfg.signatures[sig_ref];
if check_arg_types(dfg, args, &sig.params[..]) &&
check_arg_types(dfg, dfg.inst_results(inst), &sig.returns[..])
{
// All types check out.
Ok(())
} else {
// Call types need fixing.
Err(sig_ref)
}
}
/// Check if the arguments of the return `inst` match the signature.
fn check_return_signature(dfg: &DataFlowGraph, inst: Inst, sig: &Signature) -> bool {
check_arg_types(dfg, dfg.inst_variable_args(inst), &sig.returns)
}
/// Insert ABI conversion code for the arguments to the call or return instruction at `pos`.
///
/// - `abi_args` is the number of arguments that the ABI signature requires.
/// - `get_abi_type` is a closure that can provide the desired `AbiParam` for a given ABI
/// argument number in `0..abi_args`.
///
fn legalize_inst_arguments<ArgType>(
pos: &mut FuncCursor,
cfg: &ControlFlowGraph,
abi_args: usize,
mut get_abi_type: ArgType,
) where
ArgType: FnMut(&Function, usize) -> AbiParam,
{
let inst = pos.current_inst().expect(
"Cursor must point to a call instruction",
);
// Lift the value list out of the call instruction so we modify it.
let mut vlist = pos.func.dfg[inst].take_value_list().expect(
"Call must have a value list",
);
// The value list contains all arguments to the instruction, including the callee on an
// indirect call which isn't part of the call arguments that must match the ABI signature.
// Figure out how many fixed values are at the front of the list. We won't touch those.
let fixed_values = pos.func.dfg[inst]
.opcode()
.constraints()
.fixed_value_arguments();
let have_args = vlist.len(&pos.func.dfg.value_lists) - fixed_values;
// Grow the value list to the right size and shift all the existing arguments to the right.
// This lets us write the new argument values into the list without overwriting the old
// arguments.
//
// Before:
//
// <--> fixed_values
// <-----------> have_args
// [FFFFOOOOOOOOOOOOO]
//
// After grow_at():
//
// <--> fixed_values
// <-----------> have_args
// <------------------> abi_args
// [FFFF-------OOOOOOOOOOOOO]
// ^
// old_arg_offset
//
// After writing the new arguments:
//
// <--> fixed_values
// <------------------> abi_args
// [FFFFNNNNNNNNNNNNNNNNNNNN]
//
vlist.grow_at(
fixed_values,
abi_args - have_args,
&mut pos.func.dfg.value_lists,
);
let old_arg_offset = fixed_values + abi_args - have_args;
let mut abi_arg = 0;
for old_arg in 0..have_args {
let old_value = vlist
.get(old_arg_offset + old_arg, &pos.func.dfg.value_lists)
.unwrap();
let mut put_arg = |func: &mut Function, arg| {
let abi_type = get_abi_type(func, abi_arg);
if func.dfg.value_type(arg) == abi_type.value_type {
// This is the argument type we need.
vlist.as_mut_slice(&mut func.dfg.value_lists)[fixed_values + abi_arg] = arg;
abi_arg += 1;
Ok(())
} else {
Err(abi_type)
}
};
convert_to_abi(pos, cfg, old_value, &mut put_arg);
}
// Put the modified value list back.
pos.func.dfg[inst].put_value_list(vlist);
}
/// Insert ABI conversion code before and after the call instruction at `pos`.
///
/// Instructions inserted before the call will compute the appropriate ABI values for the
/// callee's new ABI-legalized signature. The function call arguments are rewritten in place to
/// match the new signature.
///
/// Instructions will be inserted after the call to convert returned ABI values back to the
/// original return values. The call's result values will be adapted to match the new signature.
///
/// Returns `true` if any instructions were inserted.
pub fn handle_call_abi(mut inst: Inst, func: &mut Function, cfg: &ControlFlowGraph) -> bool {
let pos = &mut FuncCursor::new(func).at_inst(inst);
pos.use_srcloc(inst);
// Start by checking if the argument types already match the signature.
let sig_ref = match check_call_signature(&pos.func.dfg, inst) {
Ok(_) => return spill_call_arguments(pos),
Err(s) => s,
};
// OK, we need to fix the call arguments to match the ABI signature.
let abi_args = pos.func.dfg.signatures[sig_ref].params.len();
legalize_inst_arguments(pos, cfg, abi_args, |func, abi_arg| {
func.dfg.signatures[sig_ref].params[abi_arg]
});
if !pos.func.dfg.signatures[sig_ref].returns.is_empty() {
inst = legalize_inst_results(pos, |func, abi_res| {
func.dfg.signatures[sig_ref].returns[abi_res]
});
}
debug_assert!(
check_call_signature(&pos.func.dfg, inst).is_ok(),
"Signature still wrong: {}, {}{}",
pos.func.dfg.display_inst(inst, None),
sig_ref,
pos.func.dfg.signatures[sig_ref]
);
// Go back and insert spills for any stack arguments.
pos.goto_inst(inst);
spill_call_arguments(pos);
// Yes, we changed stuff.
true
}
/// Insert ABI conversion code before and after the return instruction at `inst`.
///
/// Return `true` if any instructions were inserted.
pub fn handle_return_abi(inst: Inst, func: &mut Function, cfg: &ControlFlowGraph) -> bool {
// Check if the returned types already match the signature.
if check_return_signature(&func.dfg, inst, &func.signature) {
return false;
}
// Count the special-purpose return values (`link`, `sret`, and `vmctx`) that were appended to
// the legalized signature.
let special_args = func.signature
.returns
.iter()
.rev()
.take_while(|&rt| {
rt.purpose == ArgumentPurpose::Link || rt.purpose == ArgumentPurpose::StructReturn ||
rt.purpose == ArgumentPurpose::VMContext
})
.count();
let abi_args = func.signature.returns.len() - special_args;
let pos = &mut FuncCursor::new(func).at_inst(inst);
pos.use_srcloc(inst);
legalize_inst_arguments(pos, cfg, abi_args, |func, abi_arg| {
func.signature.returns[abi_arg]
});
debug_assert_eq!(pos.func.dfg.inst_variable_args(inst).len(), abi_args);
// Append special return arguments for any `sret`, `link`, and `vmctx` return values added to
// the legalized signature. These values should simply be propagated from the entry block
// arguments.
if special_args > 0 {
dbg!(
"Adding {} special-purpose arguments to {}",
special_args,
pos.func.dfg.display_inst(inst, None)
);
let mut vlist = pos.func.dfg[inst].take_value_list().unwrap();
for arg in &pos.func.signature.returns[abi_args..] {
match arg.purpose {
ArgumentPurpose::Link |
ArgumentPurpose::StructReturn |
ArgumentPurpose::VMContext => {}
ArgumentPurpose::Normal => panic!("unexpected return value {}", arg),
_ => panic!("Unsupported special purpose return value {}", arg),
}
// A `link`/`sret`/`vmctx` return value can only appear in a signature that has a
// unique matching argument. They are appended at the end, so search the signature from
// the end.
let idx = pos.func
.signature
.params
.iter()
.rposition(|t| t.purpose == arg.purpose)
.expect("No matching special purpose argument.");
// Get the corresponding entry block value and add it to the return instruction's
// arguments.
let val = pos.func.dfg.ebb_params(
pos.func.layout.entry_block().unwrap(),
)
[idx];
debug_assert_eq!(pos.func.dfg.value_type(val), arg.value_type);
vlist.push(val, &mut pos.func.dfg.value_lists);
}
pos.func.dfg[inst].put_value_list(vlist);
}
debug_assert!(
check_return_signature(&pos.func.dfg, inst, &pos.func.signature),
"Signature still wrong: {} / signature {}",
pos.func.dfg.display_inst(inst, None),
pos.func.signature
);
// Yes, we changed stuff.
true
}
/// Assign stack slots to incoming function parameters on the stack.
///
/// Values that are passed into the function on the stack must be assigned to an `IncomingArg`
/// stack slot already during legalization.
fn spill_entry_params(func: &mut Function, entry: Ebb) {
for (abi, &arg) in func.signature.params.iter().zip(func.dfg.ebb_params(entry)) {
if let ArgumentLoc::Stack(offset) = abi.location {
let ss = func.stack_slots.make_incoming_arg(abi.value_type, offset);
func.locations[arg] = ValueLoc::Stack(ss);
}
}
}
/// Assign stack slots to outgoing function arguments on the stack.
///
/// Values that are passed to a called function on the stack must be assigned to a matching
/// `OutgoingArg` stack slot. The assignment must happen immediately before the call.
///
/// TODO: The outgoing stack slots can be written a bit earlier, as long as there are no branches
/// or calls between writing the stack slots and the call instruction. Writing the slots earlier
/// could help reduce register pressure before the call.
fn spill_call_arguments(pos: &mut FuncCursor) -> bool {
let inst = pos.current_inst().expect(
"Cursor must point to a call instruction",
);
let sig_ref = pos.func.dfg.call_signature(inst).expect(
"Call instruction expected.",
);
// Start by building a list of stack slots and arguments to be replaced.
// This requires borrowing `pos.func.dfg`, so we can't change anything.
let arglist = {
let locations = &pos.func.locations;
let stack_slots = &mut pos.func.stack_slots;
pos.func
.dfg
.inst_variable_args(inst)
.iter()
.zip(&pos.func.dfg.signatures[sig_ref].params)
.enumerate()
.filter_map(|(idx, (&arg, abi))| {
match abi.location {
ArgumentLoc::Stack(offset) => {
// Assign `arg` to a new stack slot, unless it's already in the correct
// slot. The legalization needs to be idempotent, so we should see a
// correct outgoing slot on the second pass.
let ss = stack_slots.get_outgoing_arg(abi.value_type, offset);
if locations[arg] != ValueLoc::Stack(ss) {
Some((idx, arg, ss))
} else {
None
}
}
_ => None,
}
})
.collect::<Vec<_>>()
};
if arglist.is_empty() {
return false;
}
// Insert the spill instructions and rewrite call arguments.
for (idx, arg, ss) in arglist {
let stack_val = pos.ins().spill(arg);
pos.func.locations[stack_val] = ValueLoc::Stack(ss);
pos.func.dfg.inst_variable_args_mut(inst)[idx] = stack_val;
}
// We changed stuff.
true
}