[meta] Rename cdsl/inst to cdsl/instructions;
This commit is contained in:
661
cranelift/codegen/meta/src/cdsl/instructions.rs
Normal file
661
cranelift/codegen/meta/src/cdsl/instructions.rs
Normal file
@@ -0,0 +1,661 @@
|
||||
use crate::cdsl::camel_case;
|
||||
use crate::cdsl::formats::{
|
||||
FormatField, FormatRegistry, InstructionFormat, InstructionFormatIndex,
|
||||
};
|
||||
use crate::cdsl::operands::Operand;
|
||||
use crate::cdsl::type_inference::Constraint;
|
||||
use crate::cdsl::types::{LaneType, ValueType};
|
||||
use crate::cdsl::typevar::TypeVar;
|
||||
|
||||
use std::fmt;
|
||||
use std::ops;
|
||||
use std::rc::Rc;
|
||||
use std::slice;
|
||||
|
||||
/// Every instruction must belong to exactly one instruction group. A given
|
||||
/// target architecture can support instructions from multiple groups, and it
|
||||
/// does not necessarily support all instructions in a group.
|
||||
pub struct InstructionGroup {
|
||||
_name: &'static str,
|
||||
_doc: &'static str,
|
||||
instructions: Vec<Instruction>,
|
||||
}
|
||||
|
||||
impl InstructionGroup {
|
||||
pub fn new(name: &'static str, doc: &'static str) -> Self {
|
||||
Self {
|
||||
_name: name,
|
||||
_doc: doc,
|
||||
instructions: Vec::new(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn push(&mut self, inst: Instruction) {
|
||||
self.instructions.push(inst);
|
||||
}
|
||||
|
||||
pub fn iter(&self) -> slice::Iter<Instruction> {
|
||||
self.instructions.iter()
|
||||
}
|
||||
|
||||
pub fn by_name(&self, name: &'static str) -> &Instruction {
|
||||
self.instructions
|
||||
.iter()
|
||||
.find(|inst| inst.name == name)
|
||||
.expect(&format!("unexisting instruction with name {}", name))
|
||||
}
|
||||
}
|
||||
|
||||
pub struct PolymorphicInfo {
|
||||
pub use_typevar_operand: bool,
|
||||
pub ctrl_typevar: TypeVar,
|
||||
pub other_typevars: Vec<TypeVar>,
|
||||
}
|
||||
|
||||
pub struct InstructionContent {
|
||||
/// Instruction mnemonic, also becomes opcode name.
|
||||
pub name: &'static str,
|
||||
pub camel_name: String,
|
||||
|
||||
/// Documentation string.
|
||||
doc: &'static str,
|
||||
|
||||
/// Input operands. This can be a mix of SSA value operands and other operand kinds.
|
||||
pub operands_in: Vec<Operand>,
|
||||
/// Output operands. The output operands must be SSA values or `variable_args`.
|
||||
pub operands_out: Vec<Operand>,
|
||||
/// Instruction-specific TypeConstraints.
|
||||
pub constraints: Vec<Constraint>,
|
||||
|
||||
/// Instruction format, automatically derived from the input operands.
|
||||
pub format: InstructionFormatIndex,
|
||||
|
||||
/// One of the input or output operands is a free type variable. None if the instruction is not
|
||||
/// polymorphic, set otherwise.
|
||||
pub polymorphic_info: Option<PolymorphicInfo>,
|
||||
|
||||
pub value_opnums: Vec<usize>,
|
||||
pub value_results: Vec<usize>,
|
||||
pub imm_opnums: Vec<usize>,
|
||||
|
||||
/// True for instructions that terminate the EBB.
|
||||
pub is_terminator: bool,
|
||||
/// True for all branch or jump instructions.
|
||||
pub is_branch: bool,
|
||||
/// True for all indirect branch or jump instructions.',
|
||||
pub is_indirect_branch: bool,
|
||||
/// Is this a call instruction?
|
||||
pub is_call: bool,
|
||||
/// Is this a return instruction?
|
||||
pub is_return: bool,
|
||||
/// Is this a ghost instruction?
|
||||
pub is_ghost: bool,
|
||||
/// Can this instruction read from memory?
|
||||
pub can_load: bool,
|
||||
/// Can this instruction write to memory?
|
||||
pub can_store: bool,
|
||||
/// Can this instruction cause a trap?
|
||||
pub can_trap: bool,
|
||||
/// Does this instruction have other side effects besides can_* flags?
|
||||
pub other_side_effects: bool,
|
||||
/// Does this instruction write to CPU flags?
|
||||
pub writes_cpu_flags: bool,
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct Instruction {
|
||||
content: Rc<InstructionContent>,
|
||||
}
|
||||
|
||||
impl ops::Deref for Instruction {
|
||||
type Target = InstructionContent;
|
||||
fn deref(&self) -> &Self::Target {
|
||||
&*self.content
|
||||
}
|
||||
}
|
||||
|
||||
impl Instruction {
|
||||
pub fn snake_name(&self) -> &'static str {
|
||||
if self.name == "return" {
|
||||
"return_"
|
||||
} else {
|
||||
self.name
|
||||
}
|
||||
}
|
||||
|
||||
pub fn doc_comment_first_line(&self) -> &'static str {
|
||||
for line in self.doc.split("\n") {
|
||||
let stripped = line.trim();
|
||||
if stripped.len() > 0 {
|
||||
return stripped;
|
||||
}
|
||||
}
|
||||
""
|
||||
}
|
||||
|
||||
pub fn all_typevars(&self) -> Vec<&TypeVar> {
|
||||
match &self.polymorphic_info {
|
||||
Some(poly) => {
|
||||
let mut result = vec![&poly.ctrl_typevar];
|
||||
result.extend(&poly.other_typevars);
|
||||
result
|
||||
}
|
||||
None => Vec::new(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn bind(&self, lane_type: impl Into<LaneType>) -> BoundInstruction {
|
||||
bind(self.clone(), lane_type.into(), Vec::new())
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Display for Instruction {
|
||||
fn fmt(&self, fmt: &mut fmt::Formatter) -> Result<(), fmt::Error> {
|
||||
if self.operands_out.len() > 0 {
|
||||
let operands_out = self
|
||||
.operands_out
|
||||
.iter()
|
||||
.map(|op| op.name)
|
||||
.collect::<Vec<_>>()
|
||||
.join(", ");
|
||||
fmt.write_str(&operands_out)?;
|
||||
fmt.write_str(" = ")?;
|
||||
}
|
||||
|
||||
fmt.write_str(self.name)?;
|
||||
|
||||
if self.operands_in.len() > 0 {
|
||||
let operands_in = self
|
||||
.operands_in
|
||||
.iter()
|
||||
.map(|op| op.name)
|
||||
.collect::<Vec<_>>()
|
||||
.join(", ");
|
||||
fmt.write_str(" ")?;
|
||||
fmt.write_str(&operands_in)?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
pub struct InstructionBuilder {
|
||||
name: &'static str,
|
||||
doc: &'static str,
|
||||
operands_in: Option<Vec<Operand>>,
|
||||
operands_out: Option<Vec<Operand>>,
|
||||
constraints: Option<Vec<Constraint>>,
|
||||
|
||||
// See Instruction comments for the meaning of these fields.
|
||||
is_terminator: bool,
|
||||
is_branch: bool,
|
||||
is_indirect_branch: bool,
|
||||
is_call: bool,
|
||||
is_return: bool,
|
||||
is_ghost: bool,
|
||||
can_load: bool,
|
||||
can_store: bool,
|
||||
can_trap: bool,
|
||||
other_side_effects: bool,
|
||||
}
|
||||
|
||||
impl InstructionBuilder {
|
||||
pub fn new(name: &'static str, doc: &'static str) -> Self {
|
||||
Self {
|
||||
name,
|
||||
doc,
|
||||
operands_in: None,
|
||||
operands_out: None,
|
||||
constraints: None,
|
||||
|
||||
is_terminator: false,
|
||||
is_branch: false,
|
||||
is_indirect_branch: false,
|
||||
is_call: false,
|
||||
is_return: false,
|
||||
is_ghost: false,
|
||||
can_load: false,
|
||||
can_store: false,
|
||||
can_trap: false,
|
||||
other_side_effects: false,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn operands_in(mut self, operands: Vec<&Operand>) -> Self {
|
||||
assert!(self.operands_in.is_none());
|
||||
self.operands_in = Some(operands.iter().map(|x| (*x).clone()).collect());
|
||||
self
|
||||
}
|
||||
pub fn operands_out(mut self, operands: Vec<&Operand>) -> Self {
|
||||
assert!(self.operands_out.is_none());
|
||||
self.operands_out = Some(operands.iter().map(|x| (*x).clone()).collect());
|
||||
self
|
||||
}
|
||||
pub fn constraints(mut self, constraints: Vec<Constraint>) -> Self {
|
||||
assert!(self.constraints.is_none());
|
||||
self.constraints = Some(constraints);
|
||||
self
|
||||
}
|
||||
|
||||
pub fn is_terminator(mut self, val: bool) -> Self {
|
||||
self.is_terminator = val;
|
||||
self
|
||||
}
|
||||
pub fn is_branch(mut self, val: bool) -> Self {
|
||||
self.is_branch = val;
|
||||
self
|
||||
}
|
||||
pub fn is_indirect_branch(mut self, val: bool) -> Self {
|
||||
self.is_indirect_branch = val;
|
||||
self
|
||||
}
|
||||
pub fn is_call(mut self, val: bool) -> Self {
|
||||
self.is_call = val;
|
||||
self
|
||||
}
|
||||
pub fn is_return(mut self, val: bool) -> Self {
|
||||
self.is_return = val;
|
||||
self
|
||||
}
|
||||
pub fn is_ghost(mut self, val: bool) -> Self {
|
||||
self.is_ghost = val;
|
||||
self
|
||||
}
|
||||
pub fn can_load(mut self, val: bool) -> Self {
|
||||
self.can_load = val;
|
||||
self
|
||||
}
|
||||
pub fn can_store(mut self, val: bool) -> Self {
|
||||
self.can_store = val;
|
||||
self
|
||||
}
|
||||
pub fn can_trap(mut self, val: bool) -> Self {
|
||||
self.can_trap = val;
|
||||
self
|
||||
}
|
||||
pub fn other_side_effects(mut self, val: bool) -> Self {
|
||||
self.other_side_effects = val;
|
||||
self
|
||||
}
|
||||
|
||||
pub fn finish(self, format_registry: &FormatRegistry) -> Instruction {
|
||||
let operands_in = self.operands_in.unwrap_or_else(Vec::new);
|
||||
let operands_out = self.operands_out.unwrap_or_else(Vec::new);
|
||||
|
||||
let format_index = format_registry.lookup(&operands_in);
|
||||
|
||||
let mut value_opnums = Vec::new();
|
||||
let mut imm_opnums = Vec::new();
|
||||
for (i, op) in operands_in.iter().enumerate() {
|
||||
if op.is_value() {
|
||||
value_opnums.push(i);
|
||||
} else if op.is_immediate() {
|
||||
imm_opnums.push(i);
|
||||
} else {
|
||||
assert!(op.is_varargs());
|
||||
}
|
||||
}
|
||||
|
||||
let mut value_results = Vec::new();
|
||||
for (i, op) in operands_out.iter().enumerate() {
|
||||
if op.is_value() {
|
||||
value_results.push(i);
|
||||
}
|
||||
}
|
||||
|
||||
let format = format_registry.get(format_index);
|
||||
let polymorphic_info =
|
||||
verify_polymorphic(&operands_in, &operands_out, &format, &value_opnums);
|
||||
|
||||
// Infer from output operands whether an instruciton clobbers CPU flags or not.
|
||||
let writes_cpu_flags = operands_out.iter().any(|op| op.is_cpu_flags());
|
||||
|
||||
Instruction {
|
||||
content: Rc::new(InstructionContent {
|
||||
name: self.name,
|
||||
camel_name: camel_case(self.name),
|
||||
doc: self.doc,
|
||||
operands_in,
|
||||
operands_out,
|
||||
constraints: self.constraints.unwrap_or_else(Vec::new),
|
||||
format: format_index,
|
||||
polymorphic_info,
|
||||
value_opnums,
|
||||
value_results,
|
||||
imm_opnums,
|
||||
is_terminator: self.is_terminator,
|
||||
is_branch: self.is_branch,
|
||||
is_indirect_branch: self.is_indirect_branch,
|
||||
is_call: self.is_call,
|
||||
is_return: self.is_return,
|
||||
is_ghost: self.is_ghost,
|
||||
can_load: self.can_load,
|
||||
can_store: self.can_store,
|
||||
can_trap: self.can_trap,
|
||||
other_side_effects: self.other_side_effects,
|
||||
writes_cpu_flags,
|
||||
}),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct BoundInstruction {
|
||||
pub inst: Instruction,
|
||||
pub value_types: Vec<ValueType>,
|
||||
}
|
||||
|
||||
impl BoundInstruction {
|
||||
pub fn bind(self, lane_type: impl Into<LaneType>) -> BoundInstruction {
|
||||
bind(self.inst, lane_type.into(), self.value_types)
|
||||
}
|
||||
}
|
||||
|
||||
/// Check if this instruction is polymorphic, and verify its use of type variables.
|
||||
fn verify_polymorphic(
|
||||
operands_in: &Vec<Operand>,
|
||||
operands_out: &Vec<Operand>,
|
||||
format: &InstructionFormat,
|
||||
value_opnums: &Vec<usize>,
|
||||
) -> Option<PolymorphicInfo> {
|
||||
// The instruction is polymorphic if it has one free input or output operand.
|
||||
let is_polymorphic = operands_in
|
||||
.iter()
|
||||
.any(|op| op.is_value() && op.type_var().unwrap().free_typevar().is_some())
|
||||
|| operands_out
|
||||
.iter()
|
||||
.any(|op| op.is_value() && op.type_var().unwrap().free_typevar().is_some());
|
||||
|
||||
if !is_polymorphic {
|
||||
return None;
|
||||
}
|
||||
|
||||
// Verify the use of type variables.
|
||||
let mut use_typevar_operand = false;
|
||||
let mut ctrl_typevar = None;
|
||||
let mut other_typevars = None;
|
||||
let mut maybe_error_message = None;
|
||||
|
||||
let tv_op = format.typevar_operand;
|
||||
if let Some(tv_op) = tv_op {
|
||||
if tv_op < value_opnums.len() {
|
||||
let op_num = value_opnums[tv_op];
|
||||
let tv = operands_in[op_num].type_var().unwrap();
|
||||
let free_typevar = tv.free_typevar();
|
||||
if (free_typevar.is_some() && tv == &free_typevar.unwrap())
|
||||
|| tv.singleton_type().is_some()
|
||||
{
|
||||
match verify_ctrl_typevar(tv, &value_opnums, &operands_in, &operands_out) {
|
||||
Ok(typevars) => {
|
||||
other_typevars = Some(typevars);
|
||||
ctrl_typevar = Some(tv.clone());
|
||||
use_typevar_operand = true;
|
||||
}
|
||||
Err(error_message) => {
|
||||
maybe_error_message = Some(error_message);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
if !use_typevar_operand {
|
||||
if operands_out.len() == 0 {
|
||||
match maybe_error_message {
|
||||
Some(msg) => panic!(msg),
|
||||
None => panic!("typevar_operand must be a free type variable"),
|
||||
}
|
||||
}
|
||||
|
||||
let tv = operands_out[0].type_var().unwrap();
|
||||
let free_typevar = tv.free_typevar();
|
||||
if free_typevar.is_some() && tv != &free_typevar.unwrap() {
|
||||
panic!("first result must be a free type variable");
|
||||
}
|
||||
|
||||
other_typevars =
|
||||
Some(verify_ctrl_typevar(tv, &value_opnums, &operands_in, &operands_out).unwrap());
|
||||
ctrl_typevar = Some(tv.clone());
|
||||
}
|
||||
|
||||
// rustc is not capable to determine this statically, so enforce it with options.
|
||||
assert!(ctrl_typevar.is_some());
|
||||
assert!(other_typevars.is_some());
|
||||
|
||||
Some(PolymorphicInfo {
|
||||
use_typevar_operand,
|
||||
ctrl_typevar: ctrl_typevar.unwrap(),
|
||||
other_typevars: other_typevars.unwrap(),
|
||||
})
|
||||
}
|
||||
|
||||
/// Verify that the use of TypeVars is consistent with `ctrl_typevar` as the controlling type
|
||||
/// variable.
|
||||
///
|
||||
/// All polymorhic inputs must either be derived from `ctrl_typevar` or be independent free type
|
||||
/// variables only used once.
|
||||
///
|
||||
/// All polymorphic results must be derived from `ctrl_typevar`.
|
||||
///
|
||||
/// Return a vector of other type variables used, or panics.
|
||||
fn verify_ctrl_typevar(
|
||||
ctrl_typevar: &TypeVar,
|
||||
value_opnums: &Vec<usize>,
|
||||
operands_in: &Vec<Operand>,
|
||||
operands_out: &Vec<Operand>,
|
||||
) -> Result<Vec<TypeVar>, String> {
|
||||
let mut other_typevars = Vec::new();
|
||||
|
||||
// Check value inputs.
|
||||
for &op_num in value_opnums {
|
||||
let typ = operands_in[op_num].type_var();
|
||||
|
||||
let tv = if let Some(typ) = typ {
|
||||
typ.free_typevar()
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
// Non-polymorphic or derived from ctrl_typevar is OK.
|
||||
let tv = match tv {
|
||||
Some(tv) => {
|
||||
if &tv == ctrl_typevar {
|
||||
continue;
|
||||
}
|
||||
tv
|
||||
}
|
||||
None => continue,
|
||||
};
|
||||
|
||||
// No other derived typevars allowed.
|
||||
if typ.is_some() && typ.unwrap() != &tv {
|
||||
return Err(format!(
|
||||
"{:?}: type variable {} must be derived from {:?}",
|
||||
operands_in[op_num],
|
||||
typ.unwrap().name,
|
||||
ctrl_typevar
|
||||
));
|
||||
}
|
||||
|
||||
// Other free type variables can only be used once each.
|
||||
for other_tv in &other_typevars {
|
||||
if &tv == other_tv {
|
||||
return Err(format!(
|
||||
"type variable {} can't be used more than once",
|
||||
tv.name
|
||||
));
|
||||
}
|
||||
}
|
||||
|
||||
other_typevars.push(tv);
|
||||
}
|
||||
|
||||
// Check outputs.
|
||||
for result in operands_out {
|
||||
if !result.is_value() {
|
||||
continue;
|
||||
}
|
||||
|
||||
let typ = result.type_var().unwrap();
|
||||
let tv = typ.free_typevar();
|
||||
|
||||
// Non-polymorphic or derived form ctrl_typevar is OK.
|
||||
if tv.is_none() || &tv.unwrap() == ctrl_typevar {
|
||||
continue;
|
||||
}
|
||||
|
||||
return Err("type variable in output not derived from ctrl_typevar".into());
|
||||
}
|
||||
|
||||
Ok(other_typevars)
|
||||
}
|
||||
|
||||
/// A basic node in an instruction predicate: either an atom, or an AND of two conditions.
|
||||
pub enum InstructionPredicateNode {
|
||||
/// Is the field member (first member) equal to the actual argument (which name is the second
|
||||
/// field)?
|
||||
IsFieldEqual(String, String),
|
||||
|
||||
/// Is the value argument (at the index designated by the first member) the same type as the
|
||||
/// type name (second member)?
|
||||
TypeVarCheck(usize, String),
|
||||
|
||||
/// Is the controlling type variable the same type as the one designated by the type name
|
||||
/// (only member)?
|
||||
CtrlTypeVarCheck(String),
|
||||
|
||||
/// A combination of two other predicates.
|
||||
And(Vec<InstructionPredicateNode>),
|
||||
}
|
||||
|
||||
impl InstructionPredicateNode {
|
||||
fn rust_predicate(&self) -> String {
|
||||
match self {
|
||||
InstructionPredicateNode::IsFieldEqual(field_name, arg) => {
|
||||
let new_args = vec![field_name.clone(), arg.clone()];
|
||||
format!("crate::predicates::is_equal({})", new_args.join(", "))
|
||||
}
|
||||
InstructionPredicateNode::TypeVarCheck(index, value_type_name) => format!(
|
||||
"func.dfg.value_type(args[{}]) == {}",
|
||||
index, value_type_name
|
||||
),
|
||||
InstructionPredicateNode::CtrlTypeVarCheck(value_type_name) => {
|
||||
format!("func.dfg.ctrl_typevar(inst) == {}", value_type_name)
|
||||
}
|
||||
InstructionPredicateNode::And(nodes) => nodes
|
||||
.iter()
|
||||
.map(|x| x.rust_predicate())
|
||||
.collect::<Vec<_>>()
|
||||
.join(" &&\n"),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub struct InstructionPredicate {
|
||||
node: Option<InstructionPredicateNode>,
|
||||
}
|
||||
|
||||
impl InstructionPredicate {
|
||||
pub fn new() -> Self {
|
||||
Self { node: None }
|
||||
}
|
||||
|
||||
pub fn new_typevar_check(
|
||||
inst: &Instruction,
|
||||
type_var: &TypeVar,
|
||||
value_type: &ValueType,
|
||||
) -> InstructionPredicateNode {
|
||||
let index = inst
|
||||
.value_opnums
|
||||
.iter()
|
||||
.enumerate()
|
||||
.filter(|(_, &op_num)| inst.operands_in[op_num].type_var().unwrap() == type_var)
|
||||
.next()
|
||||
.unwrap()
|
||||
.0;
|
||||
InstructionPredicateNode::TypeVarCheck(index, value_type.rust_name())
|
||||
}
|
||||
|
||||
pub fn new_is_field_equal(
|
||||
format_field: &FormatField,
|
||||
imm_value: String,
|
||||
) -> InstructionPredicateNode {
|
||||
InstructionPredicateNode::IsFieldEqual(format_field.member.into(), imm_value)
|
||||
}
|
||||
|
||||
pub fn new_ctrl_typevar_check(value_type: &ValueType) -> InstructionPredicateNode {
|
||||
InstructionPredicateNode::CtrlTypeVarCheck(value_type.rust_name())
|
||||
}
|
||||
|
||||
pub fn and(mut self, new_node: InstructionPredicateNode) -> Self {
|
||||
let node = self.node;
|
||||
let mut and_nodes = match node {
|
||||
Some(node) => match node {
|
||||
InstructionPredicateNode::And(nodes) => nodes,
|
||||
_ => vec![node],
|
||||
},
|
||||
_ => Vec::new(),
|
||||
};
|
||||
and_nodes.push(new_node);
|
||||
self.node = Some(InstructionPredicateNode::And(and_nodes));
|
||||
self
|
||||
}
|
||||
|
||||
pub fn rust_predicate(&self) -> String {
|
||||
match &self.node {
|
||||
Some(root) => root.rust_predicate(),
|
||||
None => "true".into(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// An instruction specification, containing an instruction that has bound types or not.
|
||||
pub enum InstSpec {
|
||||
Inst(Instruction),
|
||||
Bound(BoundInstruction),
|
||||
}
|
||||
|
||||
impl InstSpec {
|
||||
pub fn inst(&self) -> &Instruction {
|
||||
match &self {
|
||||
InstSpec::Inst(inst) => inst,
|
||||
InstSpec::Bound(bound_inst) => &bound_inst.inst,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Into<InstSpec> for &Instruction {
|
||||
fn into(self) -> InstSpec {
|
||||
InstSpec::Inst(self.clone())
|
||||
}
|
||||
}
|
||||
|
||||
impl Into<InstSpec> for BoundInstruction {
|
||||
fn into(self) -> InstSpec {
|
||||
InstSpec::Bound(self)
|
||||
}
|
||||
}
|
||||
|
||||
/// Helper bind reused by {Bound,}Instruction::bind.
|
||||
fn bind(
|
||||
inst: Instruction,
|
||||
lane_type: LaneType,
|
||||
mut value_types: Vec<ValueType>,
|
||||
) -> BoundInstruction {
|
||||
value_types.push(ValueType::from(lane_type));
|
||||
match &inst.polymorphic_info {
|
||||
Some(poly) => {
|
||||
assert!(
|
||||
value_types.len() <= 1 + poly.other_typevars.len(),
|
||||
format!("trying to bind too many types for {}", inst.name)
|
||||
);
|
||||
}
|
||||
None => {
|
||||
panic!(format!(
|
||||
"trying to bind a type for {} which is not a polymorphic instruction",
|
||||
inst.name
|
||||
));
|
||||
}
|
||||
}
|
||||
BoundInstruction { inst, value_types }
|
||||
}
|
||||
Reference in New Issue
Block a user