Initial reorg.

This is largely the same as #305, but updated for the current tree.
This commit is contained in:
Dan Gohman
2019-11-07 17:11:06 -08:00
parent 2c69546a24
commit 22641de629
351 changed files with 52 additions and 52 deletions

44
crates/api/Cargo.toml Normal file
View File

@@ -0,0 +1,44 @@
[package]
name = "wasmtime-api"
authors = ["The Wasmtime Project Developers"]
version = "0.1.0"
description = "High-level API to expose the Wasmtime runtime"
license = "Apache-2.0 WITH LLVM-exception"
repository = "https://github.com/CraneStation/wasmtime"
edition = "2018"
[lib]
name = "wasmtime_api"
crate-type = ["lib", "staticlib", "cdylib"]
[dependencies]
cranelift-codegen = { version = "0.49", features = ["enable-serde"] }
cranelift-native = { version = "0.49" }
cranelift-entity = { version = "0.49", features = ["enable-serde"] }
cranelift-wasm = { version = "0.49", features = ["enable-serde"] }
cranelift-frontend = { version = "0.49" }
wasmtime-runtime = { path="../runtime" }
wasmtime-environ = { path="../environ" }
wasmtime-jit = { path="../jit" }
wasmparser = { version = "0.39.2", default-features = false }
target-lexicon = { version = "0.9.0", default-features = false }
anyhow = "1.0.19"
thiserror = "1.0.4"
region = "2.0.0"
hashbrown = { version = "0.6.0", optional = true }
[features]
default = ["std"]
std = ["cranelift-codegen/std", "cranelift-wasm/std", "wasmtime-environ/std", "wasmparser/std"]
core = ["hashbrown/nightly", "cranelift-codegen/core", "cranelift-wasm/core", "wasmtime-environ/core", "wasmparser/core"]
[dev-dependencies]
# for wasmtime.rs
wasi-common = { path = "../wasi-common" }
docopt = "1.0.1"
serde = { "version" = "1.0.94", features = ["derive"] }
pretty_env_logger = "0.3.0"
wasmtime-wast = { path="../wast" }
wasmtime-wasi = { path="../wasi" }
rayon = "1.1"
file-per-thread-logger = "0.1.1"

220
crates/api/LICENSE Normal file
View File

@@ -0,0 +1,220 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
--- LLVM Exceptions to the Apache 2.0 License ----
As an exception, if, as a result of your compiling your source code, portions
of this Software are embedded into an Object form of such source code, you
may redistribute such embedded portions in such Object form without complying
with the conditions of Sections 4(a), 4(b) and 4(d) of the License.
In addition, if you combine or link compiled forms of this Software with
software that is licensed under the GPLv2 ("Combined Software") and if a
court of competent jurisdiction determines that the patent provision (Section
3), the indemnity provision (Section 9) or other Section of the License
conflicts with the conditions of the GPLv2, you may retroactively and
prospectively choose to deem waived or otherwise exclude such Section(s) of
the License, but only in their entirety and only with respect to the Combined
Software.

3
crates/api/README.md Normal file
View File

@@ -0,0 +1,3 @@
# Implementation of wasm-c-api in Rust
https://github.com/WebAssembly/wasm-c-api

View File

@@ -0,0 +1,155 @@
###############################################################################
# Configuration
# Inherited from wasm-c-api/Makefile to just run C examples
WASM_FLAGS = -DWASM_API_DEBUG # -DWASM_API_DEBUG_LOG
C_FLAGS = ${WASM_FLAGS} -Wall -Werror -ggdb -O -fsanitize=address
CC_FLAGS = -std=c++11 ${C_FLAGS}
LD_FLAGS = -fsanitize-memory-track-origins -fsanitize-memory-use-after-dtor
C_COMP = clang
WASMTIME_API_MODE = debug
# Base directories
WASMTIME_API_DIR = ..
WASM_DIR = wasm-c-api
EXAMPLE_DIR = ${WASM_DIR}/example
OUT_DIR = ${WASM_DIR}/out
# Example config
EXAMPLE_OUT = ${OUT_DIR}/example
EXAMPLES = \
hello \
callback \
trap \
start \
reflect \
global \
table \
memory \
hostref \
finalize \
serialize \
threads \
# multi \
# Wasm config
WASM_INCLUDE = ${WASM_DIR}/include
WASM_SRC = ${WASM_DIR}/src
WASM_OUT = ${OUT_DIR}
WASM_C_LIBS = wasm-bin wasm-rust-api
WASM_CC_LIBS = $(error unsupported C++)
# Compiler config
ifeq (${WASMTIME_API_MODE},release)
CARGO_BUILD_FLAGS = --release
else
CARGO_BUILD_FLAGS =
endif
ifeq (${C_COMP},clang)
CC_COMP = clang++
LD_GROUP_START =
LD_GROUP_END =
else ifeq (${C_COMP},gcc)
CC_COMP = g++
LD_GROUP_START = -Wl,--start-group
LD_GROUP_END = -Wl,--end-group
else
$(error C_COMP set to unknown compiler, must be clang or gcc)
endif
WASMTIME_BIN_DIR = ${WASMTIME_API_DIR}/../target/${WASMTIME_API_MODE}
WASMTIME_C_LIB_DIR = ${WASMTIME_BIN_DIR}
WASMTIME_C_LIBS = wasmtime_api
WASMTIME_CC_LIBS = $(error unsupported c++)
WASMTIME_C_BINS = ${WASMTIME_C_LIBS:%=${WASMTIME_C_LIB_DIR}/lib%.a}
###############################################################################
# Examples
#
# To build Wasm APIs and run all examples:
# make all
#
# To run only C examples:
# make c
#
# To run only C++ examples:
# make cc
#
# To run individual C example (e.g. hello):
# make run-hello-c
#
# To run individual C++ example (e.g. hello):
# make run-hello-cc
#
.PHONY: all cc c
all: cc c
cc: ${EXAMPLES:%=run-%-cc}
c: ${EXAMPLES:%=run-%-c}
# Running a C / C++ example
run-%-c: ${EXAMPLE_OUT}/%-c ${EXAMPLE_OUT}/%.wasm
@echo ==== C ${@:run-%-c=%} ====; \
cd ${EXAMPLE_OUT}; ./${@:run-%=%}
@echo ==== Done ====
run-%-cc: ${EXAMPLE_OUT}/%-cc ${EXAMPLE_OUT}/%.wasm
@echo ==== C++ ${@:run-%-cc=%} ====; \
cd ${EXAMPLE_OUT}; ./${@:run-%=%}
@echo ==== Done ====
# Compiling C / C++ example
${EXAMPLE_OUT}/%-c.o: ${EXAMPLE_DIR}/%.c ${WASM_INCLUDE}/wasm.h
mkdir -p ${EXAMPLE_OUT}
${C_COMP} -c ${C_FLAGS} -I. -I${WASM_INCLUDE} $< -o $@
${EXAMPLE_OUT}/%-cc.o: ${EXAMPLE_DIR}/%.cc ${WASM_INCLUDE}/wasm.hh
mkdir -p ${EXAMPLE_OUT}
${CC_COMP} -c ${CC_FLAGS} -I. -I${WASM_INCLUDE} $< -o $@
# Linking C / C++ example
.PRECIOUS: ${EXAMPLES:%=${EXAMPLE_OUT}/%-c}
${EXAMPLE_OUT}/%-c: ${EXAMPLE_OUT}/%-c.o ${WASMTIME_C_BINS}
${CC_COMP} ${CC_FLAGS} ${LD_FLAGS} $< -o $@ \
${LD_GROUP_START} \
${WASMTIME_C_BINS} \
${LD_GROUP_END} \
-ldl -pthread
# Installing Wasm binaries
.PRECIOUS: ${EXAMPLES:%=${EXAMPLE_OUT}/%.wasm}
${EXAMPLE_OUT}/%.wasm: ${EXAMPLE_DIR}/%.wasm
cp $< $@
###############################################################################
# Wasm C / C++ API
#
# To build both C / C++ APIs:
# make wasm
.PHONY: wasm wasm-c wasm-cc
wasm: wasm-c wasm-cc
wasm-c: ${WASMTIME_C_BIN}
wasm-cc: ${WASMTIME_CC_BIN}
${WASMTIME_C_BINS}: CARGO_RUN
cd ${WASMTIME_API_DIR}; cargo build --lib ${CARGO_BUILD_FLAGS}
.PHONY: CARGO_RUN
CARGO_RUN:
###############################################################################
# Clean-up
.PHONY: clean
clean:
rm -rf ${OUT_DIR}

Submodule crates/api/c-examples/wasm-c-api added at 8782d5b456

View File

@@ -0,0 +1,43 @@
//! Example of instantiating of the WebAssembly module and
//! invoking its exported function.
use anyhow::{format_err, Result};
use std::fs::read;
use wasmtime_api::*;
fn main() -> Result<()> {
let wasm = read("examples/gcd.wasm")?;
// Instantiate engine and store.
let engine = HostRef::new(Engine::default());
let store = HostRef::new(Store::new(&engine));
// Load a module.
let module = HostRef::new(Module::new(&store, &wasm)?);
// Find index of the `gcd` export.
let gcd_index = module
.borrow()
.exports()
.iter()
.enumerate()
.find(|(_, export)| export.name().to_string() == "gcd")
.unwrap()
.0;
// Instantiate the module.
let instance = HostRef::new(Instance::new(&store, &module, &[])?);
// Invoke `gcd` export
let gcd = instance.borrow().exports()[gcd_index]
.func()
.expect("gcd")
.clone();
let result = gcd
.borrow()
.call(&[Val::from(6i32), Val::from(27i32)])
.map_err(|e| format_err!("call error: {:?}", e))?;
println!("{:?}", result);
Ok(())
}

Binary file not shown.

View File

@@ -0,0 +1,68 @@
//! Translation of hello example
extern crate alloc;
use alloc::rc::Rc;
use anyhow::{ensure, format_err, Context as _, Result};
use core::cell::Ref;
use std::fs::read;
use wasmtime_api::*;
struct HelloCallback;
impl Callable for HelloCallback {
fn call(&self, _params: &[Val], _results: &mut [Val]) -> Result<(), HostRef<Trap>> {
println!("Calling back...");
println!("> Hello World!");
Ok(())
}
}
fn main() -> Result<()> {
// Initialize.
println!("Initializing...");
let engine = HostRef::new(Engine::default());
let store = HostRef::new(Store::new(&engine));
// Load binary.
println!("Loading binary...");
let binary = read("examples/hello.wasm")?;
// Compile.
println!("Compiling module...");
let module = HostRef::new(Module::new(&store, &binary).context("> Error compiling module!")?);
// Create external print functions.
println!("Creating callback...");
let hello_type = FuncType::new(Box::new([]), Box::new([]));
let hello_func = HostRef::new(Func::new(&store, hello_type, Rc::new(HelloCallback)));
// Instantiate.
println!("Instantiating module...");
let imports = vec![hello_func.into()];
let instance = HostRef::new(
Instance::new(&store, &module, imports.as_slice())
.context("> Error instantiating module!")?,
);
// Extract export.
println!("Extracting export...");
let exports = Ref::map(instance.borrow(), |instance| instance.exports());
ensure!(!exports.is_empty(), "> Error accessing exports!");
let run_func = exports[0].func().context("> Error accessing exports!")?;
// Call.
println!("Calling export...");
run_func
.borrow()
.call(&[])
.map_err(|e| format_err!("> Error calling function: {:?}", e))?;
// Shut down.
println!("Shutting down...");
drop(store);
// All done.
println!("Done.");
Ok(())
}

Binary file not shown.

View File

@@ -0,0 +1,4 @@
(module
(func $hello (import "" "hello"))
(func (export "run") (call $hello))
)

View File

@@ -0,0 +1,153 @@
//! Translation of the memory example
use anyhow::{bail, ensure, Context as _, Error};
use core::cell::Ref;
use std::fs::read;
use wasmtime_api::*;
fn get_export_memory(exports: &[Extern], i: usize) -> Result<HostRef<Memory>, Error> {
if exports.len() <= i {
bail!("> Error accessing memory export {}!", i);
}
Ok(exports[i]
.memory()
.with_context(|| format!("> Error accessing memory export {}!", i))?
.clone())
}
fn get_export_func(exports: &[Extern], i: usize) -> Result<HostRef<Func>, Error> {
if exports.len() <= i {
bail!("> Error accessing function export {}!", i);
}
Ok(exports[i]
.func()
.with_context(|| format!("> Error accessing function export {}!", i))?
.clone())
}
macro_rules! check {
($actual:expr, $expected:expr) => {
if $actual != $expected {
bail!("> Error on result, expected {}, got {}", $expected, $actual);
}
};
}
macro_rules! check_ok {
($func:expr, $($p:expr),*) => {
if let Err(_) = $func.borrow().call(&[$($p.into()),*]) {
bail!("> Error on result, expected return");
}
}
}
macro_rules! check_trap {
($func:expr, $($p:expr),*) => {
if let Ok(_) = $func.borrow().call(&[$($p.into()),*]) {
bail!("> Error on result, expected trap");
}
}
}
macro_rules! call {
($func:expr, $($p:expr),*) => {
match $func.borrow().call(&[$($p.into()),*]) {
Ok(result) => {
let result: i32 = result[0].clone().into();
result
}
Err(_) => { bail!("> Error on result, expected return"); }
}
}
}
fn main() -> Result<(), Error> {
// Initialize.
println!("Initializing...");
let engine = HostRef::new(Engine::default());
let store = HostRef::new(Store::new(&engine));
// Load binary.
println!("Loading binary...");
let binary = read("examples/memory.wasm")?;
// Compile.
println!("Compiling module...");
let module = HostRef::new(Module::new(&store, &binary).context("> Error compiling module!")?);
// Instantiate.
println!("Instantiating module...");
let instance =
HostRef::new(Instance::new(&store, &module, &[]).context("> Error instantiating module!")?);
// Extract export.
println!("Extracting export...");
let exports = Ref::map(instance.borrow(), |instance| instance.exports());
ensure!(!exports.is_empty(), "> Error accessing exports!");
let memory = get_export_memory(&exports, 0)?;
let size_func = get_export_func(&exports, 1)?;
let load_func = get_export_func(&exports, 2)?;
let store_func = get_export_func(&exports, 3)?;
// Try cloning.
check!(memory.clone().ptr_eq(&memory), true);
// Check initial memory.
println!("Checking memory...");
check!(memory.borrow().size(), 2u32);
check!(memory.borrow().data_size(), 0x20000usize);
check!(unsafe { memory.borrow().data()[0] }, 0);
check!(unsafe { memory.borrow().data()[0x1000] }, 1);
check!(unsafe { memory.borrow().data()[0x1003] }, 4);
check!(call!(size_func,), 2);
check!(call!(load_func, 0), 0);
check!(call!(load_func, 0x1000), 1);
check!(call!(load_func, 0x1003), 4);
check!(call!(load_func, 0x1ffff), 0);
check_trap!(load_func, 0x20000);
// Mutate memory.
println!("Mutating memory...");
unsafe {
memory.borrow_mut().data()[0x1003] = 5;
}
check_ok!(store_func, 0x1002, 6);
check_trap!(store_func, 0x20000, 0);
check!(unsafe { memory.borrow().data()[0x1002] }, 6);
check!(unsafe { memory.borrow().data()[0x1003] }, 5);
check!(call!(load_func, 0x1002), 6);
check!(call!(load_func, 0x1003), 5);
// Grow memory.
println!("Growing memory...");
check!(memory.borrow_mut().grow(1), true);
check!(memory.borrow().size(), 3u32);
check!(memory.borrow().data_size(), 0x30000usize);
check!(call!(load_func, 0x20000), 0);
check_ok!(store_func, 0x20000, 0);
check_trap!(load_func, 0x30000);
check_trap!(store_func, 0x30000, 0);
check!(memory.borrow_mut().grow(1), false);
check!(memory.borrow_mut().grow(0), true);
// Create stand-alone memory.
// TODO(wasm+): Once Wasm allows multiple memories, turn this into import.
println!("Creating stand-alone memory...");
let memorytype = MemoryType::new(Limits::new(5, 5));
let mut memory2 = Memory::new(&store, memorytype);
check!(memory2.size(), 5u32);
check!(memory2.grow(1), false);
check!(memory2.grow(0), true);
// Shut down.
println!("Shutting down...");
drop(store);
println!("Done.");
Ok(())
}

Binary file not shown.

View File

@@ -0,0 +1,11 @@
(module
(memory (export "memory") 2 3)
(func (export "size") (result i32) (memory.size))
(func (export "load") (param i32) (result i32) (i32.load8_s (local.get 0)))
(func (export "store") (param i32 i32)
(i32.store8 (local.get 0) (local.get 1))
)
(data (i32.const 0x1000) "\01\02\03\04")
)

View File

@@ -0,0 +1,81 @@
//! Translation of multi example
extern crate alloc;
use alloc::rc::Rc;
use anyhow::{ensure, format_err, Context as _, Result};
use core::cell::Ref;
use std::fs::read;
use wasmtime_api::*;
struct Callback;
impl Callable for Callback {
fn call(&self, args: &[Val], results: &mut [Val]) -> Result<(), HostRef<Trap>> {
println!("Calling back...");
println!("> {} {}", args[0].i32(), args[1].i64());
results[0] = Val::I64(args[1].i64() + 1);
results[1] = Val::I32(args[0].i32() + 1);
Ok(())
}
}
fn main() -> Result<()> {
// Initialize.
println!("Initializing...");
let engine = HostRef::new(Engine::default());
let store = HostRef::new(Store::new(&engine));
// Load binary.
println!("Loading binary...");
let binary = read("examples/multi.wasm")?;
// Compile.
println!("Compiling module...");
let module = HostRef::new(Module::new(&store, &binary).context("Error compiling module!")?);
// Create external print functions.
println!("Creating callback...");
let callback_type = FuncType::new(
Box::new([ValType::I32, ValType::I64]),
Box::new([ValType::I64, ValType::I32]),
);
let callback_func = HostRef::new(Func::new(&store, callback_type, Rc::new(Callback)));
// Instantiate.
println!("Instantiating module...");
let imports = vec![callback_func.into()];
let instance = HostRef::new(
Instance::new(&store, &module, imports.as_slice())
.context("Error instantiating module!")?,
);
// Extract export.
println!("Extracting export...");
let exports = Ref::map(instance.borrow(), |instance| instance.exports());
ensure!(!exports.is_empty(), "Error accessing exports!");
let run_func = exports[0].func().context("Error accessing exports!")?;
// Call.
println!("Calling export...");
let args = vec![Val::I32(1), Val::I64(3)];
let results = run_func
.borrow()
.call(&args)
.map_err(|e| format_err!("> Error calling function: {:?}", e))?;
println!("Printing result...");
println!("> {} {}", results[0].i64(), results[1].i32());
debug_assert!(results[0].i64() == 4);
debug_assert!(results[1].i32() == 2);
// Shut down.
println!("Shutting down...");
drop(store);
// All done.
println!("Done.");
Ok(())
}

Binary file not shown.

View File

@@ -0,0 +1,7 @@
(module
(func $f (import "" "f") (param i32 i64) (result i64 i32))
(func $g (export "g") (param i32 i64) (result i64 i32)
(call $f (local.get 0) (local.get 1))
)
)

155
crates/api/src/callable.rs Normal file
View File

@@ -0,0 +1,155 @@
use crate::r#ref::HostRef;
use crate::runtime::Store;
use crate::trap::Trap;
use crate::types::FuncType;
use crate::values::Val;
use alloc::rc::Rc;
use alloc::vec::Vec;
use crate::trampoline::generate_func_export;
use cranelift_codegen::ir;
use wasmtime_jit::InstanceHandle;
use wasmtime_runtime::Export;
pub trait Callable {
fn call(&self, params: &[Val], results: &mut [Val]) -> Result<(), HostRef<Trap>>;
}
pub(crate) trait WrappedCallable {
fn call(&self, params: &[Val], results: &mut [Val]) -> Result<(), HostRef<Trap>>;
fn signature(&self) -> &ir::Signature {
match self.wasmtime_export() {
Export::Function { signature, .. } => signature,
_ => panic!("unexpected export type in Callable"),
}
}
fn wasmtime_handle(&self) -> &InstanceHandle;
fn wasmtime_export(&self) -> &Export;
}
pub(crate) struct WasmtimeFn {
store: HostRef<Store>,
instance: InstanceHandle,
export: Export,
}
impl WasmtimeFn {
pub fn new(store: &HostRef<Store>, instance: InstanceHandle, export: Export) -> WasmtimeFn {
WasmtimeFn {
store: store.clone(),
instance,
export,
}
}
}
impl WrappedCallable for WasmtimeFn {
fn call(&self, params: &[Val], results: &mut [Val]) -> Result<(), HostRef<Trap>> {
use core::cmp::max;
use core::{mem, ptr};
let (vmctx, body, signature) = match self.wasmtime_export() {
Export::Function {
vmctx,
address,
signature,
} => (*vmctx, *address, signature.clone()),
_ => panic!("unexpected export type in Callable"),
};
let value_size = mem::size_of::<u64>();
let mut values_vec: Vec<u64> = vec![0; max(params.len(), results.len())];
// Store the argument values into `values_vec`.
for (index, arg) in params.iter().enumerate() {
unsafe {
let ptr = values_vec.as_mut_ptr().add(index);
match arg {
Val::I32(x) => ptr::write(ptr as *mut i32, *x),
Val::I64(x) => ptr::write(ptr as *mut i64, *x),
Val::F32(x) => ptr::write(ptr as *mut u32, *x),
Val::F64(x) => ptr::write(ptr as *mut u64, *x),
_ => unimplemented!("WasmtimeFn arg"),
}
}
}
// Get the trampoline to call for this function.
let exec_code_buf = self
.store
.borrow_mut()
.context()
.compiler()
.get_published_trampoline(body, &signature, value_size)
.map_err(|_| HostRef::new(Trap::fake()))?; //was ActionError::Setup)?;
// Call the trampoline.
if let Err(message) = unsafe {
wasmtime_runtime::wasmtime_call_trampoline(
vmctx,
exec_code_buf,
values_vec.as_mut_ptr() as *mut u8,
)
} {
return Err(HostRef::new(Trap::new(message)));
}
// Load the return values out of `values_vec`.
for (index, abi_param) in signature.returns.iter().enumerate() {
unsafe {
let ptr = values_vec.as_ptr().add(index);
results[index] = match abi_param.value_type {
ir::types::I32 => Val::I32(ptr::read(ptr as *const i32)),
ir::types::I64 => Val::I64(ptr::read(ptr as *const i64)),
ir::types::F32 => Val::F32(ptr::read(ptr as *const u32)),
ir::types::F64 => Val::F64(ptr::read(ptr as *const u64)),
other => panic!("unsupported value type {:?}", other),
}
}
}
Ok(())
}
fn wasmtime_handle(&self) -> &InstanceHandle {
&self.instance
}
fn wasmtime_export(&self) -> &Export {
&self.export
}
}
pub struct NativeCallable {
callable: Rc<dyn Callable + 'static>,
instance: InstanceHandle,
export: Export,
}
impl NativeCallable {
pub(crate) fn new(
callable: Rc<dyn Callable + 'static>,
ft: &FuncType,
store: &HostRef<Store>,
) -> Self {
let (instance, export) =
generate_func_export(ft, &callable, store).expect("generated func");
NativeCallable {
callable,
instance,
export,
}
}
}
impl WrappedCallable for NativeCallable {
fn call(&self, params: &[Val], results: &mut [Val]) -> Result<(), HostRef<Trap>> {
self.callable.call(params, results)
}
fn wasmtime_handle(&self) -> &InstanceHandle {
&self.instance
}
fn wasmtime_export(&self) -> &Export {
&self.export
}
}

68
crates/api/src/context.rs Normal file
View File

@@ -0,0 +1,68 @@
use alloc::rc::Rc;
use core::cell::{RefCell, RefMut};
use core::hash::{Hash, Hasher};
use wasmtime_jit::{CompilationStrategy, Compiler, Features};
use cranelift_codegen::settings;
#[derive(Clone)]
pub struct Context {
compiler: Rc<RefCell<Compiler>>,
features: Features,
debug_info: bool,
}
impl Context {
pub fn new(compiler: Compiler, features: Features, debug_info: bool) -> Context {
Context {
compiler: Rc::new(RefCell::new(compiler)),
features,
debug_info,
}
}
pub fn create(
flags: settings::Flags,
features: Features,
debug_info: bool,
strategy: CompilationStrategy,
) -> Context {
Context::new(create_compiler(flags, strategy), features, debug_info)
}
pub(crate) fn debug_info(&self) -> bool {
self.debug_info
}
pub(crate) fn compiler(&mut self) -> RefMut<Compiler> {
self.compiler.borrow_mut()
}
}
impl Hash for Context {
fn hash<H>(&self, state: &mut H)
where
H: Hasher,
{
self.compiler.as_ptr().hash(state)
}
}
impl Eq for Context {}
impl PartialEq for Context {
fn eq(&self, other: &Context) -> bool {
Rc::ptr_eq(&self.compiler, &other.compiler)
}
}
pub(crate) fn create_compiler(flags: settings::Flags, strategy: CompilationStrategy) -> Compiler {
let isa = {
let isa_builder =
cranelift_native::builder().expect("host machine is not a supported target");
isa_builder.finish(flags)
};
Compiler::new(isa, strategy)
}

490
crates/api/src/externals.rs Normal file
View File

@@ -0,0 +1,490 @@
use crate::callable::{Callable, NativeCallable, WasmtimeFn, WrappedCallable};
use crate::r#ref::{AnyRef, HostRef};
use crate::runtime::Store;
use crate::trampoline::{generate_global_export, generate_memory_export, generate_table_export};
use crate::trap::Trap;
use crate::types::{ExternType, FuncType, GlobalType, MemoryType, TableType, ValType};
use crate::values::{from_checked_anyfunc, into_checked_anyfunc, Val};
use alloc::boxed::Box;
use alloc::rc::Rc;
use core::result::Result;
use core::slice;
use wasmtime_runtime::InstanceHandle;
// Externals
#[derive(Clone)]
pub enum Extern {
Func(HostRef<Func>),
Global(HostRef<Global>),
Table(HostRef<Table>),
Memory(HostRef<Memory>),
}
impl Extern {
pub fn func(&self) -> Option<&HostRef<Func>> {
match self {
Extern::Func(func) => Some(func),
_ => None,
}
}
pub fn global(&self) -> Option<&HostRef<Global>> {
match self {
Extern::Global(global) => Some(global),
_ => None,
}
}
pub fn table(&self) -> Option<&HostRef<Table>> {
match self {
Extern::Table(table) => Some(table),
_ => None,
}
}
pub fn memory(&self) -> Option<&HostRef<Memory>> {
match self {
Extern::Memory(memory) => Some(memory),
_ => None,
}
}
pub fn r#type(&self) -> ExternType {
match self {
Extern::Func(ft) => ExternType::ExternFunc(ft.borrow().r#type().clone()),
Extern::Memory(ft) => ExternType::ExternMemory(ft.borrow().r#type().clone()),
Extern::Table(tt) => ExternType::ExternTable(tt.borrow().r#type().clone()),
Extern::Global(gt) => ExternType::ExternGlobal(gt.borrow().r#type().clone()),
}
}
pub(crate) fn get_wasmtime_export(&mut self) -> wasmtime_runtime::Export {
match self {
Extern::Func(f) => f.borrow().wasmtime_export().clone(),
Extern::Global(g) => g.borrow().wasmtime_export().clone(),
Extern::Memory(m) => m.borrow().wasmtime_export().clone(),
Extern::Table(t) => t.borrow().wasmtime_export().clone(),
}
}
pub(crate) fn from_wasmtime_export(
store: &HostRef<Store>,
instance_handle: InstanceHandle,
export: wasmtime_runtime::Export,
) -> Extern {
match export {
wasmtime_runtime::Export::Function { .. } => Extern::Func(HostRef::new(
Func::from_wasmtime_function(export, store, instance_handle),
)),
wasmtime_runtime::Export::Memory { .. } => Extern::Memory(HostRef::new(
Memory::from_wasmtime_memory(export, store, instance_handle),
)),
wasmtime_runtime::Export::Global { .. } => {
Extern::Global(HostRef::new(Global::from_wasmtime_global(export, store)))
}
wasmtime_runtime::Export::Table { .. } => Extern::Table(HostRef::new(
Table::from_wasmtime_table(export, store, instance_handle),
)),
}
}
}
impl From<HostRef<Func>> for Extern {
fn from(r: HostRef<Func>) -> Self {
Extern::Func(r)
}
}
impl From<HostRef<Global>> for Extern {
fn from(r: HostRef<Global>) -> Self {
Extern::Global(r)
}
}
impl From<HostRef<Memory>> for Extern {
fn from(r: HostRef<Memory>) -> Self {
Extern::Memory(r)
}
}
impl From<HostRef<Table>> for Extern {
fn from(r: HostRef<Table>) -> Self {
Extern::Table(r)
}
}
pub struct Func {
_store: HostRef<Store>,
callable: Rc<dyn WrappedCallable + 'static>,
r#type: FuncType,
}
impl Func {
pub fn new(store: &HostRef<Store>, ty: FuncType, callable: Rc<dyn Callable + 'static>) -> Self {
let callable = Rc::new(NativeCallable::new(callable, &ty, &store));
Func::from_wrapped(store, ty, callable)
}
fn from_wrapped(
store: &HostRef<Store>,
r#type: FuncType,
callable: Rc<dyn WrappedCallable + 'static>,
) -> Func {
Func {
_store: store.clone(),
callable,
r#type,
}
}
pub fn r#type(&self) -> &FuncType {
&self.r#type
}
pub fn param_arity(&self) -> usize {
self.r#type.params().len()
}
pub fn result_arity(&self) -> usize {
self.r#type.results().len()
}
pub fn call(&self, params: &[Val]) -> Result<Box<[Val]>, HostRef<Trap>> {
let mut results = vec![Val::default(); self.result_arity()];
self.callable.call(params, &mut results)?;
Ok(results.into_boxed_slice())
}
pub(crate) fn wasmtime_export(&self) -> &wasmtime_runtime::Export {
self.callable.wasmtime_export()
}
pub(crate) fn from_wasmtime_function(
export: wasmtime_runtime::Export,
store: &HostRef<Store>,
instance_handle: InstanceHandle,
) -> Self {
let ty = if let wasmtime_runtime::Export::Function { signature, .. } = &export {
FuncType::from_cranelift_signature(signature.clone())
} else {
panic!("expected function export")
};
let callable = WasmtimeFn::new(store, instance_handle, export.clone());
Func::from_wrapped(store, ty, Rc::new(callable))
}
}
impl core::fmt::Debug for Func {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
write!(f, "Func")
}
}
pub struct Global {
_store: HostRef<Store>,
r#type: GlobalType,
wasmtime_export: wasmtime_runtime::Export,
#[allow(dead_code)]
wasmtime_state: Option<crate::trampoline::GlobalState>,
}
impl Global {
pub fn new(store: &HostRef<Store>, r#type: GlobalType, val: Val) -> Global {
let (wasmtime_export, wasmtime_state) =
generate_global_export(&r#type, val).expect("generated global");
Global {
_store: store.clone(),
r#type,
wasmtime_export,
wasmtime_state: Some(wasmtime_state),
}
}
pub fn r#type(&self) -> &GlobalType {
&self.r#type
}
fn wasmtime_global_definition(&self) -> *mut wasmtime_runtime::VMGlobalDefinition {
match self.wasmtime_export {
wasmtime_runtime::Export::Global { definition, .. } => definition,
_ => panic!("global definition not found"),
}
}
pub fn get(&self) -> Val {
let definition = unsafe { &mut *self.wasmtime_global_definition() };
unsafe {
match self.r#type().content() {
ValType::I32 => Val::from(*definition.as_i32()),
ValType::I64 => Val::from(*definition.as_i64()),
ValType::F32 => Val::from_f32_bits(*definition.as_u32()),
ValType::F64 => Val::from_f64_bits(*definition.as_u64()),
_ => unimplemented!("Global::get for {:?}", self.r#type().content()),
}
}
}
pub fn set(&mut self, val: Val) {
if val.r#type() != *self.r#type().content() {
panic!(
"global of type {:?} cannot be set to {:?}",
self.r#type().content(),
val.r#type()
);
}
let definition = unsafe { &mut *self.wasmtime_global_definition() };
unsafe {
match val {
Val::I32(i) => *definition.as_i32_mut() = i,
Val::I64(i) => *definition.as_i64_mut() = i,
Val::F32(f) => *definition.as_u32_mut() = f,
Val::F64(f) => *definition.as_u64_mut() = f,
_ => unimplemented!("Global::set for {:?}", val.r#type()),
}
}
}
pub(crate) fn wasmtime_export(&self) -> &wasmtime_runtime::Export {
&self.wasmtime_export
}
pub(crate) fn from_wasmtime_global(
export: wasmtime_runtime::Export,
store: &HostRef<Store>,
) -> Global {
let global = if let wasmtime_runtime::Export::Global { ref global, .. } = export {
global
} else {
panic!("wasmtime export is not memory")
};
let ty = GlobalType::from_cranelift_global(global.clone());
Global {
_store: store.clone(),
r#type: ty,
wasmtime_export: export,
wasmtime_state: None,
}
}
}
pub struct Table {
store: HostRef<Store>,
r#type: TableType,
wasmtime_handle: InstanceHandle,
wasmtime_export: wasmtime_runtime::Export,
}
fn get_table_item(
handle: &InstanceHandle,
store: &HostRef<Store>,
table_index: cranelift_wasm::DefinedTableIndex,
item_index: u32,
) -> Val {
if let Some(item) = handle.table_get(table_index, item_index) {
from_checked_anyfunc(item, store)
} else {
AnyRef::null().into()
}
}
fn set_table_item(
handle: &mut InstanceHandle,
store: &HostRef<Store>,
table_index: cranelift_wasm::DefinedTableIndex,
item_index: u32,
val: Val,
) -> bool {
let item = into_checked_anyfunc(val, store);
if let Some(item_ref) = handle.table_get_mut(table_index, item_index) {
*item_ref = item;
true
} else {
false
}
}
impl Table {
pub fn new(store: &HostRef<Store>, r#type: TableType, init: Val) -> Table {
match r#type.element() {
ValType::FuncRef => (),
_ => panic!("table is not for funcref"),
}
let (mut wasmtime_handle, wasmtime_export) =
generate_table_export(&r#type).expect("generated table");
// Initialize entries with the init value.
match wasmtime_export {
wasmtime_runtime::Export::Table { definition, .. } => {
let index = wasmtime_handle.table_index(unsafe { &*definition });
let len = unsafe { (*definition).current_elements };
for i in 0..len {
let _success =
set_table_item(&mut wasmtime_handle, store, index, i, init.clone());
assert!(_success);
}
}
_ => panic!("global definition not found"),
}
Table {
store: store.clone(),
r#type,
wasmtime_handle,
wasmtime_export,
}
}
pub fn r#type(&self) -> &TableType {
&self.r#type
}
fn wasmtime_table_index(&self) -> cranelift_wasm::DefinedTableIndex {
match self.wasmtime_export {
wasmtime_runtime::Export::Table { definition, .. } => {
self.wasmtime_handle.table_index(unsafe { &*definition })
}
_ => panic!("global definition not found"),
}
}
pub fn get(&self, index: u32) -> Val {
let table_index = self.wasmtime_table_index();
get_table_item(&self.wasmtime_handle, &self.store, table_index, index)
}
pub fn set(&self, index: u32, val: Val) -> bool {
let table_index = self.wasmtime_table_index();
let mut wasmtime_handle = self.wasmtime_handle.clone();
set_table_item(&mut wasmtime_handle, &self.store, table_index, index, val)
}
pub fn size(&self) -> u32 {
match self.wasmtime_export {
wasmtime_runtime::Export::Table { definition, .. } => unsafe {
(*definition).current_elements
},
_ => panic!("global definition not found"),
}
}
pub fn grow(&mut self, delta: u32, init: Val) -> bool {
let index = self.wasmtime_table_index();
if let Some(len) = self.wasmtime_handle.table_grow(index, delta) {
let mut wasmtime_handle = self.wasmtime_handle.clone();
for i in 0..delta {
let i = len - (delta - i);
let _success =
set_table_item(&mut wasmtime_handle, &self.store, index, i, init.clone());
assert!(_success);
}
true
} else {
false
}
}
pub(crate) fn wasmtime_export(&self) -> &wasmtime_runtime::Export {
&self.wasmtime_export
}
pub(crate) fn from_wasmtime_table(
export: wasmtime_runtime::Export,
store: &HostRef<Store>,
instance_handle: wasmtime_runtime::InstanceHandle,
) -> Table {
let table = if let wasmtime_runtime::Export::Table { ref table, .. } = export {
table
} else {
panic!("wasmtime export is not table")
};
let ty = TableType::from_cranelift_table(table.table.clone());
Table {
store: store.clone(),
r#type: ty,
wasmtime_handle: instance_handle,
wasmtime_export: export,
}
}
}
pub struct Memory {
_store: HostRef<Store>,
r#type: MemoryType,
wasmtime_handle: InstanceHandle,
wasmtime_export: wasmtime_runtime::Export,
}
impl Memory {
pub fn new(store: &HostRef<Store>, r#type: MemoryType) -> Memory {
let (wasmtime_handle, wasmtime_export) =
generate_memory_export(&r#type).expect("generated memory");
Memory {
_store: store.clone(),
r#type,
wasmtime_handle,
wasmtime_export,
}
}
pub fn r#type(&self) -> &MemoryType {
&self.r#type
}
fn wasmtime_memory_definition(&self) -> *mut wasmtime_runtime::VMMemoryDefinition {
match self.wasmtime_export {
wasmtime_runtime::Export::Memory { definition, .. } => definition,
_ => panic!("memory definition not found"),
}
}
// Marked unsafe due to posibility that wasmtime can resize internal memory
// from other threads.
pub unsafe fn data(&self) -> &mut [u8] {
let definition = &*self.wasmtime_memory_definition();
slice::from_raw_parts_mut(definition.base, definition.current_length)
}
pub fn data_ptr(&self) -> *mut u8 {
unsafe { (*self.wasmtime_memory_definition()).base }
}
pub fn data_size(&self) -> usize {
unsafe { (*self.wasmtime_memory_definition()).current_length }
}
pub fn size(&self) -> u32 {
(self.data_size() / wasmtime_environ::WASM_PAGE_SIZE as usize) as u32
}
pub fn grow(&mut self, delta: u32) -> bool {
match self.wasmtime_export {
wasmtime_runtime::Export::Memory { definition, .. } => {
let definition = unsafe { &(*definition) };
let index = self.wasmtime_handle.memory_index(definition);
self.wasmtime_handle.memory_grow(index, delta).is_some()
}
_ => panic!("memory definition not found"),
}
}
pub(crate) fn wasmtime_export(&self) -> &wasmtime_runtime::Export {
&self.wasmtime_export
}
pub(crate) fn from_wasmtime_memory(
export: wasmtime_runtime::Export,
store: &HostRef<Store>,
instance_handle: wasmtime_runtime::InstanceHandle,
) -> Memory {
let memory = if let wasmtime_runtime::Export::Memory { ref memory, .. } = export {
memory
} else {
panic!("wasmtime export is not memory")
};
let ty = MemoryType::from_cranelift_memory(memory.memory.clone());
Memory {
_store: store.clone(),
r#type: ty,
wasmtime_handle: instance_handle,
wasmtime_export: export,
}
}
}

148
crates/api/src/instance.rs Normal file
View File

@@ -0,0 +1,148 @@
use crate::context::Context;
use crate::externals::Extern;
use crate::module::Module;
use crate::r#ref::HostRef;
use crate::runtime::Store;
use crate::{HashMap, HashSet};
use alloc::borrow::ToOwned;
use alloc::boxed::Box;
use alloc::rc::Rc;
use alloc::string::{String, ToString};
use alloc::vec::Vec;
use anyhow::Result;
use core::cell::RefCell;
use wasmtime_jit::{instantiate, Resolver};
use wasmtime_runtime::{Export, InstanceHandle};
struct SimpleResolver {
imports: Vec<(String, String, Extern)>,
}
impl Resolver for SimpleResolver {
fn resolve(&mut self, name: &str, field: &str) -> Option<Export> {
// TODO speedup lookup
self.imports
.iter_mut()
.find(|(n, f, _)| name == n && field == f)
.map(|(_, _, e)| e.get_wasmtime_export())
}
}
pub fn instantiate_in_context(
data: &[u8],
imports: Vec<(String, String, Extern)>,
mut context: Context,
exports: Rc<RefCell<HashMap<String, Option<wasmtime_runtime::Export>>>>,
) -> Result<(InstanceHandle, HashSet<Context>)> {
let mut contexts = HashSet::new();
let debug_info = context.debug_info();
let mut resolver = SimpleResolver { imports };
let instance = instantiate(
&mut context.compiler(),
data,
&mut resolver,
exports,
debug_info,
)?;
contexts.insert(context);
Ok((instance, contexts))
}
#[derive(Clone)]
pub struct Instance {
instance_handle: InstanceHandle,
// We need to keep CodeMemory alive.
contexts: HashSet<Context>,
exports: Box<[Extern]>,
}
impl Instance {
pub fn new(
store: &HostRef<Store>,
module: &HostRef<Module>,
externs: &[Extern],
) -> Result<Instance> {
let context = store.borrow_mut().context().clone();
let exports = store.borrow_mut().global_exports().clone();
let imports = module
.borrow()
.imports()
.iter()
.zip(externs.iter())
.map(|(i, e)| (i.module().to_string(), i.name().to_string(), e.clone()))
.collect::<Vec<_>>();
let (mut instance_handle, contexts) =
instantiate_in_context(module.borrow().binary(), imports, context, exports)?;
let exports = {
let module = module.borrow();
let mut exports = Vec::with_capacity(module.exports().len());
for export in module.exports() {
let name = export.name().to_string();
let export = instance_handle.lookup(&name).expect("export");
exports.push(Extern::from_wasmtime_export(
store,
instance_handle.clone(),
export,
));
}
exports.into_boxed_slice()
};
Ok(Instance {
instance_handle,
contexts,
exports,
})
}
pub fn exports(&self) -> &[Extern] {
&self.exports
}
pub fn from_handle(
store: &HostRef<Store>,
instance_handle: InstanceHandle,
) -> Result<(Instance, HashMap<String, usize>)> {
let contexts = HashSet::new();
let mut exports = Vec::new();
let mut export_names_map = HashMap::new();
let mut mutable = instance_handle.clone();
for (name, _) in instance_handle.clone().exports() {
let export = mutable.lookup(name).expect("export");
if let wasmtime_runtime::Export::Function { signature, .. } = &export {
// HACK ensure all handles, instantiated outside Store, present in
// the store's SignatureRegistry, e.g. WASI instances that are
// imported into this store using the from_handle() method.
let _ = store.borrow_mut().register_cranelift_signature(signature);
}
export_names_map.insert(name.to_owned(), exports.len());
exports.push(Extern::from_wasmtime_export(
store,
instance_handle.clone(),
export.clone(),
));
}
Ok((
Instance {
instance_handle,
contexts,
exports: exports.into_boxed_slice(),
},
export_names_map,
))
}
pub fn handle(&self) -> &InstanceHandle {
&self.instance_handle
}
pub fn get_wasmtime_memory(&self) -> Option<wasmtime_runtime::Export> {
let mut instance_handle = self.instance_handle.clone();
instance_handle.lookup("memory")
}
}

35
crates/api/src/lib.rs Normal file
View File

@@ -0,0 +1,35 @@
//! Wasmtime embed API. Based on wasm-c-api.
#![cfg_attr(not(feature = "std"), no_std)]
mod callable;
mod context;
mod externals;
mod instance;
mod module;
mod r#ref;
mod runtime;
mod trampoline;
mod trap;
mod types;
mod values;
pub mod wasm;
#[macro_use]
extern crate alloc;
pub use crate::callable::Callable;
pub use crate::externals::*;
pub use crate::instance::Instance;
pub use crate::module::Module;
pub use crate::r#ref::{AnyRef, HostInfo, HostRef};
pub use crate::runtime::{Config, Engine, Store};
pub use crate::trap::Trap;
pub use crate::types::*;
pub use crate::values::*;
#[cfg(not(feature = "std"))]
use hashbrown::{hash_map, HashMap, HashSet};
#[cfg(feature = "std")]
use std::collections::{hash_map, HashMap, HashSet};

206
crates/api/src/module.rs Normal file
View File

@@ -0,0 +1,206 @@
use crate::r#ref::HostRef;
use crate::runtime::Store;
use crate::types::{
ExportType, ExternType, FuncType, GlobalType, ImportType, Limits, MemoryType, Mutability,
TableType, ValType,
};
use alloc::boxed::Box;
use alloc::string::String;
use alloc::vec::Vec;
use anyhow::Result;
use wasmparser::{validate, ExternalKind, ImportSectionEntryType, ModuleReader, SectionCode};
fn into_memory_type(mt: wasmparser::MemoryType) -> MemoryType {
assert!(!mt.shared);
MemoryType::new(Limits::new(
mt.limits.initial,
mt.limits.maximum.unwrap_or(::core::u32::MAX),
))
}
fn into_global_type(gt: &wasmparser::GlobalType) -> GlobalType {
let mutability = if gt.mutable {
Mutability::Var
} else {
Mutability::Const
};
GlobalType::new(into_valtype(&gt.content_type), mutability)
}
fn into_valtype(ty: &wasmparser::Type) -> ValType {
use wasmparser::Type::*;
match ty {
I32 => ValType::I32,
I64 => ValType::I64,
F32 => ValType::F32,
F64 => ValType::F64,
V128 => ValType::V128,
AnyFunc => ValType::FuncRef,
AnyRef => ValType::AnyRef,
_ => unimplemented!("types in into_valtype"),
}
}
fn into_func_type(mt: wasmparser::FuncType) -> FuncType {
assert!(mt.form == wasmparser::Type::Func);
let params = mt.params.iter().map(into_valtype).collect::<Vec<_>>();
let returns = mt.returns.iter().map(into_valtype).collect::<Vec<_>>();
FuncType::new(params.into_boxed_slice(), returns.into_boxed_slice())
}
fn into_table_type(tt: wasmparser::TableType) -> TableType {
assert!(
tt.element_type == wasmparser::Type::AnyFunc || tt.element_type == wasmparser::Type::AnyRef
);
let ty = into_valtype(&tt.element_type);
let limits = Limits::new(
tt.limits.initial,
tt.limits.maximum.unwrap_or(::core::u32::MAX),
);
TableType::new(ty, limits)
}
fn read_imports_and_exports(binary: &[u8]) -> Result<(Box<[ImportType]>, Box<[ExportType]>)> {
let mut reader = ModuleReader::new(binary)?;
let mut imports = Vec::new();
let mut exports = Vec::new();
let mut memories = Vec::new();
let mut tables = Vec::new();
let mut func_sig = Vec::new();
let mut sigs = Vec::new();
let mut globals = Vec::new();
while !reader.eof() {
let section = reader.read()?;
match section.code {
SectionCode::Memory => {
let section = section.get_memory_section_reader()?;
memories.reserve_exact(section.get_count() as usize);
for entry in section {
memories.push(into_memory_type(entry?));
}
}
SectionCode::Type => {
let section = section.get_type_section_reader()?;
sigs.reserve_exact(section.get_count() as usize);
for entry in section {
sigs.push(into_func_type(entry?));
}
}
SectionCode::Function => {
let section = section.get_function_section_reader()?;
func_sig.reserve_exact(section.get_count() as usize);
for entry in section {
func_sig.push(entry?);
}
}
SectionCode::Global => {
let section = section.get_global_section_reader()?;
globals.reserve_exact(section.get_count() as usize);
for entry in section {
globals.push(into_global_type(&entry?.ty));
}
}
SectionCode::Table => {
let section = section.get_table_section_reader()?;
tables.reserve_exact(section.get_count() as usize);
for entry in section {
tables.push(into_table_type(entry?))
}
}
SectionCode::Import => {
let section = section.get_import_section_reader()?;
imports.reserve_exact(section.get_count() as usize);
for entry in section {
let entry = entry?;
let module = String::from(entry.module).into();
let name = String::from(entry.field).into();
let r#type = match entry.ty {
ImportSectionEntryType::Function(index) => {
func_sig.push(index);
let sig = &sigs[index as usize];
ExternType::ExternFunc(sig.clone())
}
ImportSectionEntryType::Table(tt) => {
let table = into_table_type(tt);
tables.push(table.clone());
ExternType::ExternTable(table)
}
ImportSectionEntryType::Memory(mt) => {
let memory = into_memory_type(mt);
memories.push(memory.clone());
ExternType::ExternMemory(memory)
}
ImportSectionEntryType::Global(gt) => {
let global = into_global_type(&gt);
globals.push(global.clone());
ExternType::ExternGlobal(global)
}
};
imports.push(ImportType::new(module, name, r#type));
}
}
SectionCode::Export => {
let section = section.get_export_section_reader()?;
exports.reserve_exact(section.get_count() as usize);
for entry in section {
let entry = entry?;
let name = String::from(entry.field).into();
let r#type = match entry.kind {
ExternalKind::Function => {
let sig_index = func_sig[entry.index as usize] as usize;
let sig = &sigs[sig_index];
ExternType::ExternFunc(sig.clone())
}
ExternalKind::Table => {
ExternType::ExternTable(tables[entry.index as usize].clone())
}
ExternalKind::Memory => {
ExternType::ExternMemory(memories[entry.index as usize].clone())
}
ExternalKind::Global => {
ExternType::ExternGlobal(globals[entry.index as usize].clone())
}
};
exports.push(ExportType::new(name, r#type));
}
}
_ => {
// skip other sections
}
}
}
Ok((imports.into_boxed_slice(), exports.into_boxed_slice()))
}
#[derive(Clone)]
pub struct Module {
store: HostRef<Store>,
binary: Box<[u8]>,
imports: Box<[ImportType]>,
exports: Box<[ExportType]>,
}
impl Module {
pub fn new(store: &HostRef<Store>, binary: &[u8]) -> Result<Module> {
let (imports, exports) = read_imports_and_exports(binary)?;
Ok(Module {
store: store.clone(),
binary: binary.into(),
imports,
exports,
})
}
pub(crate) fn binary(&self) -> &[u8] {
&self.binary
}
pub fn validate(_store: &Store, binary: &[u8]) -> bool {
validate(binary, None).is_ok()
}
pub fn imports(&self) -> &[ImportType] {
&self.imports
}
pub fn exports(&self) -> &[ExportType] {
&self.exports
}
}

211
crates/api/src/ref.rs Normal file
View File

@@ -0,0 +1,211 @@
use alloc::boxed::Box;
use alloc::rc::{Rc, Weak};
use core::any::Any;
use core::cell::{self, RefCell};
use core::fmt;
pub trait HostInfo {
fn finalize(&mut self) {}
}
trait InternalRefBase: Any {
fn as_any(&self) -> &dyn Any;
fn host_info(&self) -> Option<cell::RefMut<Box<dyn HostInfo>>>;
fn set_host_info(&self, info: Option<Box<dyn HostInfo>>);
fn ptr_eq(&self, other: &dyn InternalRefBase) -> bool;
}
#[derive(Clone)]
pub struct InternalRef(Rc<dyn InternalRefBase>);
impl InternalRef {
pub fn is_ref<T: 'static>(&self) -> bool {
let r = self.0.as_any();
Any::is::<HostRef<T>>(r)
}
pub fn get_ref<T: 'static>(&self) -> HostRef<T> {
let r = self.0.as_any();
r.downcast_ref::<HostRef<T>>()
.expect("reference is not T type")
.clone()
}
}
struct AnyAndHostInfo {
any: Box<dyn Any>,
host_info: Option<Box<dyn HostInfo>>,
}
impl Drop for AnyAndHostInfo {
fn drop(&mut self) {
if let Some(info) = &mut self.host_info {
info.finalize();
}
}
}
#[derive(Clone)]
pub struct OtherRef(Rc<RefCell<AnyAndHostInfo>>);
#[derive(Clone)]
pub enum AnyRef {
Null,
Ref(InternalRef),
Other(OtherRef),
}
impl AnyRef {
pub fn new(data: Box<dyn Any>) -> Self {
let info = AnyAndHostInfo {
any: data,
host_info: None,
};
AnyRef::Other(OtherRef(Rc::new(RefCell::new(info))))
}
pub fn null() -> Self {
AnyRef::Null
}
pub fn data(&self) -> cell::Ref<Box<dyn Any>> {
match self {
AnyRef::Other(OtherRef(r)) => cell::Ref::map(r.borrow(), |r| &r.any),
_ => panic!("expected AnyRef::Other"),
}
}
pub fn ptr_eq(&self, other: &AnyRef) -> bool {
match (self, other) {
(AnyRef::Null, AnyRef::Null) => true,
(AnyRef::Ref(InternalRef(ref a)), AnyRef::Ref(InternalRef(ref b))) => {
a.ptr_eq(b.as_ref())
}
(AnyRef::Other(OtherRef(ref a)), AnyRef::Other(OtherRef(ref b))) => Rc::ptr_eq(a, b),
_ => false,
}
}
pub fn host_info(&self) -> Option<cell::RefMut<Box<dyn HostInfo>>> {
match self {
AnyRef::Null => panic!("null"),
AnyRef::Ref(r) => r.0.host_info(),
AnyRef::Other(r) => {
let info = cell::RefMut::map(r.0.borrow_mut(), |b| &mut b.host_info);
if info.is_none() {
return None;
}
Some(cell::RefMut::map(info, |info| info.as_mut().unwrap()))
}
}
}
pub fn set_host_info(&self, info: Option<Box<dyn HostInfo>>) {
match self {
AnyRef::Null => panic!("null"),
AnyRef::Ref(r) => r.0.set_host_info(info),
AnyRef::Other(r) => {
r.0.borrow_mut().host_info = info;
}
}
}
}
impl fmt::Debug for AnyRef {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
AnyRef::Null => write!(f, "null"),
AnyRef::Ref(_) => write!(f, "anyref"),
AnyRef::Other(_) => write!(f, "other ref"),
}
}
}
struct ContentBox<T> {
content: T,
host_info: Option<Box<dyn HostInfo>>,
anyref_data: Weak<dyn InternalRefBase>,
}
impl<T> Drop for ContentBox<T> {
fn drop(&mut self) {
if let Some(info) = &mut self.host_info {
info.finalize();
}
}
}
pub struct HostRef<T>(Rc<RefCell<ContentBox<T>>>);
impl<T: 'static> HostRef<T> {
pub fn new(item: T) -> HostRef<T> {
let anyref_data: Weak<HostRef<T>> = Weak::new();
let content = ContentBox {
content: item,
host_info: None,
anyref_data,
};
HostRef(Rc::new(RefCell::new(content)))
}
pub fn borrow(&self) -> cell::Ref<T> {
cell::Ref::map(self.0.borrow(), |b| &b.content)
}
pub fn borrow_mut(&self) -> cell::RefMut<T> {
cell::RefMut::map(self.0.borrow_mut(), |b| &mut b.content)
}
pub fn ptr_eq(&self, other: &HostRef<T>) -> bool {
Rc::ptr_eq(&self.0, &other.0)
}
pub fn anyref(&self) -> AnyRef {
let r = self.0.borrow_mut().anyref_data.upgrade();
if let Some(r) = r {
return AnyRef::Ref(InternalRef(r));
}
let anyref_data: Rc<dyn InternalRefBase> = Rc::new(self.clone());
self.0.borrow_mut().anyref_data = Rc::downgrade(&anyref_data);
AnyRef::Ref(InternalRef(anyref_data))
}
}
impl<T: 'static> InternalRefBase for HostRef<T> {
fn ptr_eq(&self, other: &dyn InternalRefBase) -> bool {
if let Some(other) = other.as_any().downcast_ref() {
self.ptr_eq(other)
} else {
false
}
}
fn as_any(&self) -> &dyn Any {
self
}
fn host_info(&self) -> Option<cell::RefMut<Box<dyn HostInfo>>> {
let info = cell::RefMut::map(self.0.borrow_mut(), |b| &mut b.host_info);
if info.is_none() {
return None;
}
Some(cell::RefMut::map(info, |info| info.as_mut().unwrap()))
}
fn set_host_info(&self, info: Option<Box<dyn HostInfo>>) {
self.0.borrow_mut().host_info = info;
}
}
impl<T> Clone for HostRef<T> {
fn clone(&self) -> HostRef<T> {
HostRef(self.0.clone())
}
}
impl<T: fmt::Debug> fmt::Debug for HostRef<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "Ref(")?;
self.0.borrow().content.fmt(f)?;
write!(f, ")")
}
}

154
crates/api/src/runtime.rs Normal file
View File

@@ -0,0 +1,154 @@
use crate::HashMap;
use alloc::boxed::Box;
use alloc::rc::Rc;
use alloc::string::String;
use core::cell::RefCell;
use crate::context::{create_compiler, Context};
use crate::r#ref::HostRef;
use cranelift_codegen::{ir, settings};
use wasmtime_jit::{CompilationStrategy, Features};
// Runtime Environment
// Configuration
fn default_flags() -> settings::Flags {
let flag_builder = settings::builder();
settings::Flags::new(flag_builder)
}
pub struct Config {
flags: settings::Flags,
features: Features,
debug_info: bool,
strategy: CompilationStrategy,
}
impl Config {
pub fn default() -> Config {
Config {
debug_info: false,
features: Default::default(),
flags: default_flags(),
strategy: CompilationStrategy::Auto,
}
}
pub fn new(
flags: settings::Flags,
features: Features,
debug_info: bool,
strategy: CompilationStrategy,
) -> Config {
Config {
flags,
features,
debug_info,
strategy,
}
}
pub(crate) fn debug_info(&self) -> bool {
self.debug_info
}
pub(crate) fn flags(&self) -> &settings::Flags {
&self.flags
}
pub(crate) fn features(&self) -> &Features {
&self.features
}
pub(crate) fn strategy(&self) -> CompilationStrategy {
self.strategy
}
}
// Engine
pub struct Engine {
config: Config,
}
impl Engine {
pub fn new(config: Config) -> Engine {
Engine { config }
}
pub fn default() -> Engine {
Engine::new(Config::default())
}
pub(crate) fn config(&self) -> &Config {
&self.config
}
pub fn create_wasmtime_context(&self) -> wasmtime_jit::Context {
let flags = self.config.flags().clone();
wasmtime_jit::Context::new(Box::new(create_compiler(flags, self.config.strategy())))
}
}
// Store
pub struct Store {
engine: HostRef<Engine>,
context: Context,
global_exports: Rc<RefCell<HashMap<String, Option<wasmtime_runtime::Export>>>>,
signature_cache: HashMap<wasmtime_runtime::VMSharedSignatureIndex, ir::Signature>,
}
impl Store {
pub fn new(engine: &HostRef<Engine>) -> Store {
let flags = engine.borrow().config().flags().clone();
let features = engine.borrow().config().features().clone();
let debug_info = engine.borrow().config().debug_info();
let strategy = engine.borrow().config().strategy();
Store {
engine: engine.clone(),
context: Context::create(flags, features, debug_info, strategy),
global_exports: Rc::new(RefCell::new(HashMap::new())),
signature_cache: HashMap::new(),
}
}
pub fn engine(&self) -> &HostRef<Engine> {
&self.engine
}
pub(crate) fn context(&mut self) -> &mut Context {
&mut self.context
}
// Specific to wasmtime: hack to pass memory around to wasi
pub fn global_exports(
&self,
) -> &Rc<RefCell<HashMap<String, Option<wasmtime_runtime::Export>>>> {
&self.global_exports
}
pub(crate) fn register_cranelift_signature(
&mut self,
signature: &ir::Signature,
) -> wasmtime_runtime::VMSharedSignatureIndex {
use crate::hash_map::Entry;
let index = self.context().compiler().signatures().register(signature);
match self.signature_cache.entry(index) {
Entry::Vacant(v) => {
v.insert(signature.clone());
}
Entry::Occupied(_) => (),
}
index
}
pub(crate) fn lookup_cranelift_signature(
&self,
type_index: wasmtime_runtime::VMSharedSignatureIndex,
) -> Option<&ir::Signature> {
self.signature_cache.get(&type_index)
}
}

View File

@@ -0,0 +1,62 @@
//! Support for a calling of an imported function.
use anyhow::Result;
use cranelift_entity::PrimaryMap;
use cranelift_wasm::DefinedFuncIndex;
//use target_lexicon::HOST;
use wasmtime_environ::Module;
use wasmtime_runtime::{Imports, InstanceHandle, VMFunctionBody};
use crate::{HashMap, HashSet};
use alloc::boxed::Box;
use alloc::rc::Rc;
use alloc::string::String;
use alloc::vec::Vec;
use core::any::Any;
use core::cell::{RefCell, RefMut};
use crate::runtime::Store;
pub(crate) fn create_handle(
module: Module,
signature_registry: Option<RefMut<Store>>,
finished_functions: PrimaryMap<DefinedFuncIndex, *const VMFunctionBody>,
state: Box<dyn Any>,
) -> Result<InstanceHandle> {
let global_exports: Rc<RefCell<HashMap<String, Option<wasmtime_runtime::Export>>>> =
Rc::new(RefCell::new(HashMap::new()));
let imports = Imports::new(
HashSet::new(),
PrimaryMap::new(),
PrimaryMap::new(),
PrimaryMap::new(),
PrimaryMap::new(),
);
let data_initializers = Vec::new();
// Compute indices into the shared signature table.
let signatures = signature_registry
.and_then(|mut signature_registry| {
Some(
module
.signatures
.values()
.map(|sig| signature_registry.register_cranelift_signature(sig))
.collect::<PrimaryMap<_, _>>(),
)
})
.unwrap_or_else(|| PrimaryMap::new());
Ok(InstanceHandle::new(
Rc::new(module),
global_exports,
finished_functions.into_boxed_slice(),
imports,
&data_initializers,
signatures.into_boxed_slice(),
None,
state,
)
.expect("instance"))
}

View File

@@ -0,0 +1,291 @@
//! Support for a calling of an imported function.
use crate::r#ref::HostRef;
use anyhow::Result;
use cranelift_codegen::ir::types;
use cranelift_codegen::ir::{InstBuilder, StackSlotData, StackSlotKind, TrapCode};
use cranelift_codegen::Context;
use cranelift_codegen::{binemit, ir, isa};
use cranelift_entity::{EntityRef, PrimaryMap};
use cranelift_frontend::{FunctionBuilder, FunctionBuilderContext};
use cranelift_wasm::{DefinedFuncIndex, FuncIndex};
use wasmtime_environ::{CompiledFunction, Export, Module};
use wasmtime_jit::CodeMemory;
use wasmtime_runtime::{InstanceHandle, VMContext, VMFunctionBody};
use alloc::boxed::Box;
use alloc::rc::Rc;
use alloc::string::ToString;
use alloc::vec::Vec;
use core::cmp;
use crate::{Callable, FuncType, Store, Trap, Val};
use super::create_handle::create_handle;
struct TrampolineState {
func: Rc<dyn Callable + 'static>,
trap: Option<HostRef<Trap>>,
#[allow(dead_code)]
code_memory: CodeMemory,
}
unsafe extern "C" fn stub_fn(vmctx: *mut VMContext, call_id: u32, values_vec: *mut i64) -> u32 {
let mut instance = InstanceHandle::from_vmctx(vmctx);
let (args, returns_len) = {
let module = instance.module_ref();
let signature = &module.signatures[module.functions[FuncIndex::new(call_id as usize)]];
let mut args = Vec::new();
for i in 1..signature.params.len() {
args.push(Val::read_value_from(
values_vec.offset(i as isize - 1),
signature.params[i].value_type,
))
}
(args, signature.returns.len())
};
let mut returns = vec![Val::default(); returns_len];
let func = &instance
.host_state()
.downcast_mut::<TrampolineState>()
.expect("state")
.func;
match func.call(&args, &mut returns) {
Ok(()) => {
for i in 0..returns_len {
// TODO check signature.returns[i].value_type ?
returns[i].write_value_to(values_vec.offset(i as isize));
}
0
}
Err(trap) => {
// TODO read custom exception
InstanceHandle::from_vmctx(vmctx)
.host_state()
.downcast_mut::<TrampolineState>()
.expect("state")
.trap = Some(trap);
1
}
}
}
/// Create a trampoline for invoking a Callable.
fn make_trampoline(
isa: &dyn isa::TargetIsa,
code_memory: &mut CodeMemory,
fn_builder_ctx: &mut FunctionBuilderContext,
call_id: u32,
signature: &ir::Signature,
) -> *const VMFunctionBody {
// Mostly reverse copy of the similar method from wasmtime's
// wasmtime-jit/src/compiler.rs.
let pointer_type = isa.pointer_type();
let mut stub_sig = ir::Signature::new(isa.frontend_config().default_call_conv);
// Add the `vmctx` parameter.
stub_sig.params.push(ir::AbiParam::special(
pointer_type,
ir::ArgumentPurpose::VMContext,
));
// Add the `call_id` parameter.
stub_sig.params.push(ir::AbiParam::new(types::I32));
// Add the `values_vec` parameter.
stub_sig.params.push(ir::AbiParam::new(pointer_type));
// Add error/trap return.
stub_sig.returns.push(ir::AbiParam::new(types::I32));
let values_vec_len = 8 * cmp::max(signature.params.len() - 1, signature.returns.len()) as u32;
let mut context = Context::new();
context.func =
ir::Function::with_name_signature(ir::ExternalName::user(0, 0), signature.clone());
let ss = context.func.create_stack_slot(StackSlotData::new(
StackSlotKind::ExplicitSlot,
values_vec_len,
));
let value_size = 8;
{
let mut builder = FunctionBuilder::new(&mut context.func, fn_builder_ctx);
let block0 = builder.create_ebb();
builder.append_ebb_params_for_function_params(block0);
builder.switch_to_block(block0);
builder.seal_block(block0);
let values_vec_ptr_val = builder.ins().stack_addr(pointer_type, ss, 0);
let mflags = ir::MemFlags::trusted();
for i in 1..signature.params.len() {
if i == 0 {
continue;
}
let val = builder.func.dfg.ebb_params(block0)[i];
builder.ins().store(
mflags,
val,
values_vec_ptr_val,
((i - 1) * value_size) as i32,
);
}
let vmctx_ptr_val = builder.func.dfg.ebb_params(block0)[0];
let call_id_val = builder.ins().iconst(types::I32, call_id as i64);
let callee_args = vec![vmctx_ptr_val, call_id_val, values_vec_ptr_val];
let new_sig = builder.import_signature(stub_sig.clone());
let callee_value = builder
.ins()
.iconst(pointer_type, stub_fn as *const VMFunctionBody as i64);
let call = builder
.ins()
.call_indirect(new_sig, callee_value, &callee_args);
let call_result = builder.func.dfg.inst_results(call)[0];
builder.ins().trapnz(call_result, TrapCode::User(0));
let mflags = ir::MemFlags::trusted();
let mut results = Vec::new();
for (i, r) in signature.returns.iter().enumerate() {
let load = builder.ins().load(
r.value_type,
mflags,
values_vec_ptr_val,
(i * value_size) as i32,
);
results.push(load);
}
builder.ins().return_(&results);
builder.finalize()
}
let mut code_buf: Vec<u8> = Vec::new();
let mut reloc_sink = RelocSink {};
let mut trap_sink = binemit::NullTrapSink {};
let mut stackmap_sink = binemit::NullStackmapSink {};
context
.compile_and_emit(
isa,
&mut code_buf,
&mut reloc_sink,
&mut trap_sink,
&mut stackmap_sink,
)
.expect("compile_and_emit");
let mut unwind_info = Vec::new();
context.emit_unwind_info(isa, &mut unwind_info);
code_memory
.allocate_for_function(&CompiledFunction {
body: code_buf,
jt_offsets: context.func.jt_offsets,
unwind_info,
})
.expect("allocate_for_function")
.as_ptr()
}
pub fn create_handle_with_function(
ft: &FuncType,
func: &Rc<dyn Callable + 'static>,
store: &HostRef<Store>,
) -> Result<InstanceHandle> {
let sig = ft.get_cranelift_signature().clone();
let isa = {
let isa_builder =
cranelift_native::builder().expect("host machine is not a supported target");
let flag_builder = cranelift_codegen::settings::builder();
isa_builder.finish(cranelift_codegen::settings::Flags::new(flag_builder))
};
let mut fn_builder_ctx = FunctionBuilderContext::new();
let mut module = Module::new();
let mut finished_functions: PrimaryMap<DefinedFuncIndex, *const VMFunctionBody> =
PrimaryMap::new();
let mut code_memory = CodeMemory::new();
//let pointer_type = types::Type::triple_pointer_type(&HOST);
//let call_conv = isa::CallConv::triple_default(&HOST);
let sig_id = module.signatures.push(sig.clone());
let func_id = module.functions.push(sig_id);
module
.exports
.insert("trampoline".to_string(), Export::Function(func_id));
let trampoline = make_trampoline(
isa.as_ref(),
&mut code_memory,
&mut fn_builder_ctx,
func_id.index() as u32,
&sig,
);
code_memory.publish();
finished_functions.push(trampoline);
let trampoline_state = TrampolineState {
func: func.clone(),
trap: None,
code_memory,
};
create_handle(
module,
Some(store.borrow_mut()),
finished_functions,
Box::new(trampoline_state),
)
}
/// We don't expect trampoline compilation to produce any relocations, so
/// this `RelocSink` just asserts that it doesn't recieve any.
struct RelocSink {}
impl binemit::RelocSink for RelocSink {
fn reloc_ebb(
&mut self,
_offset: binemit::CodeOffset,
_reloc: binemit::Reloc,
_ebb_offset: binemit::CodeOffset,
) {
panic!("trampoline compilation should not produce ebb relocs");
}
fn reloc_external(
&mut self,
_offset: binemit::CodeOffset,
_reloc: binemit::Reloc,
_name: &ir::ExternalName,
_addend: binemit::Addend,
) {
panic!("trampoline compilation should not produce external symbol relocs");
}
fn reloc_constant(
&mut self,
_code_offset: binemit::CodeOffset,
_reloc: binemit::Reloc,
_constant_offset: ir::ConstantOffset,
) {
panic!("trampoline compilation should not produce constant relocs");
}
fn reloc_jt(
&mut self,
_offset: binemit::CodeOffset,
_reloc: binemit::Reloc,
_jt: ir::JumpTable,
) {
panic!("trampoline compilation should not produce jump table relocs");
}
}

View File

@@ -0,0 +1,46 @@
use alloc::boxed::Box;
use anyhow::Result;
use cranelift_entity::PrimaryMap;
use wasmtime_environ::Module;
use wasmtime_runtime::{InstanceHandle, VMGlobalDefinition};
use super::create_handle::create_handle;
use crate::{GlobalType, Mutability, Val};
#[allow(dead_code)]
pub struct GlobalState {
definition: Box<VMGlobalDefinition>,
handle: InstanceHandle,
}
pub fn create_global(gt: &GlobalType, val: Val) -> Result<(wasmtime_runtime::Export, GlobalState)> {
let mut definition = Box::new(VMGlobalDefinition::new());
unsafe {
match val {
Val::I32(i) => *definition.as_i32_mut() = i,
Val::I64(i) => *definition.as_i64_mut() = i,
Val::F32(f) => *definition.as_u32_mut() = f,
Val::F64(f) => *definition.as_u64_mut() = f,
_ => unimplemented!("create_global for {:?}", gt),
}
}
let global = cranelift_wasm::Global {
ty: gt.content().get_cranelift_type(),
mutability: match gt.mutability() {
Mutability::Const => false,
Mutability::Var => true,
},
initializer: cranelift_wasm::GlobalInit::Import, // TODO is it right?
};
let mut handle =
create_handle(Module::new(), None, PrimaryMap::new(), Box::new(())).expect("handle");
Ok((
wasmtime_runtime::Export::Global {
definition: definition.as_mut(),
vmctx: handle.vmctx_mut_ptr(),
global,
},
GlobalState { definition, handle },
))
}

View File

@@ -0,0 +1,35 @@
use alloc::boxed::Box;
use alloc::string::ToString;
use anyhow::Result;
use cranelift_entity::PrimaryMap;
use wasmtime_environ::Module;
use wasmtime_runtime::InstanceHandle;
use super::create_handle::create_handle;
use crate::MemoryType;
#[allow(dead_code)]
pub fn create_handle_with_memory(memory: &MemoryType) -> Result<InstanceHandle> {
let mut module = Module::new();
let memory = cranelift_wasm::Memory {
minimum: memory.limits().min(),
maximum: if memory.limits().max() == core::u32::MAX {
None
} else {
Some(memory.limits().max())
},
shared: false, // TODO
};
let tunable = Default::default();
let memory_plan = wasmtime_environ::MemoryPlan::for_memory(memory, &tunable);
let memory_id = module.memory_plans.push(memory_plan);
module.exports.insert(
"memory".to_string(),
wasmtime_environ::Export::Memory(memory_id),
);
create_handle(module, None, PrimaryMap::new(), Box::new(()))
}

View File

@@ -0,0 +1,52 @@
//! Utility module to create trampolines in/out WebAssembly module.
mod create_handle;
mod func;
mod global;
mod memory;
mod table;
use crate::r#ref::HostRef;
use alloc::rc::Rc;
use anyhow::Result;
use self::func::create_handle_with_function;
use self::global::create_global;
use self::memory::create_handle_with_memory;
use self::table::create_handle_with_table;
use super::{Callable, FuncType, GlobalType, MemoryType, Store, TableType, Val};
pub use self::global::GlobalState;
pub fn generate_func_export(
ft: &FuncType,
func: &Rc<dyn Callable + 'static>,
store: &HostRef<Store>,
) -> Result<(wasmtime_runtime::InstanceHandle, wasmtime_runtime::Export)> {
let mut instance = create_handle_with_function(ft, func, store)?;
let export = instance.lookup("trampoline").expect("trampoline export");
Ok((instance, export))
}
pub fn generate_global_export(
gt: &GlobalType,
val: Val,
) -> Result<(wasmtime_runtime::Export, GlobalState)> {
create_global(gt, val)
}
pub fn generate_memory_export(
m: &MemoryType,
) -> Result<(wasmtime_runtime::InstanceHandle, wasmtime_runtime::Export)> {
let mut instance = create_handle_with_memory(m)?;
let export = instance.lookup("memory").expect("memory export");
Ok((instance, export))
}
pub fn generate_table_export(
t: &TableType,
) -> Result<(wasmtime_runtime::InstanceHandle, wasmtime_runtime::Export)> {
let mut instance = create_handle_with_table(t)?;
let export = instance.lookup("table").expect("table export");
Ok((instance, export))
}

View File

@@ -0,0 +1,37 @@
use alloc::boxed::Box;
use alloc::string::ToString;
use anyhow::Result;
use cranelift_entity::PrimaryMap;
use cranelift_wasm::TableElementType;
use wasmtime_environ::Module;
use wasmtime_runtime::InstanceHandle;
use super::create_handle::create_handle;
use crate::{TableType, ValType};
pub fn create_handle_with_table(table: &TableType) -> Result<InstanceHandle> {
let mut module = Module::new();
let table = cranelift_wasm::Table {
minimum: table.limits().min(),
maximum: if table.limits().max() == core::u32::MAX {
None
} else {
Some(table.limits().max())
},
ty: match table.element() {
ValType::FuncRef => TableElementType::Func,
_ => TableElementType::Val(table.element().get_cranelift_type()),
},
};
let tunable = Default::default();
let table_plan = wasmtime_environ::TablePlan::for_table(table, &tunable);
let table_id = module.table_plans.push(table_plan);
module.exports.insert(
"table".to_string(),
wasmtime_environ::Export::Table(table_id),
);
create_handle(module, None, PrimaryMap::new(), Box::new(()))
}

22
crates/api/src/trap.rs Normal file
View File

@@ -0,0 +1,22 @@
use alloc::string::{String, ToString};
use thiserror::Error;
#[derive(Error, Debug)]
#[error("Wasm trap: {message}")]
pub struct Trap {
message: String,
}
impl Trap {
pub fn new(message: String) -> Trap {
Trap { message }
}
pub fn fake() -> Trap {
Trap::new("TODO trap".to_string())
}
pub fn message(&self) -> &str {
&self.message
}
}

353
crates/api/src/types.rs Normal file
View File

@@ -0,0 +1,353 @@
use alloc::borrow::ToOwned;
use alloc::boxed::Box;
use alloc::string::String;
use alloc::vec::Vec;
use cranelift_codegen::ir;
// Type Representations
// Type attributes
#[derive(Debug, Clone, Copy)]
pub enum Mutability {
Const,
Var,
}
#[derive(Debug, Clone)]
pub struct Limits {
min: u32,
max: u32,
}
impl Limits {
pub fn new(min: u32, max: u32) -> Limits {
Limits { min, max }
}
pub fn at_least(min: u32) -> Limits {
Limits {
min,
max: ::core::u32::MAX,
}
}
pub fn min(&self) -> u32 {
self.min
}
pub fn max(&self) -> u32 {
self.max
}
}
// Value Types
#[derive(Debug, Clone, Eq, PartialEq)]
pub enum ValType {
I32,
I64,
F32,
F64,
V128,
AnyRef, /* = 128 */
FuncRef,
}
impl ValType {
pub fn is_num(&self) -> bool {
match self {
ValType::I32 | ValType::I64 | ValType::F32 | ValType::F64 => true,
_ => false,
}
}
pub fn is_ref(&self) -> bool {
match self {
ValType::AnyRef | ValType::FuncRef => true,
_ => false,
}
}
pub(crate) fn get_cranelift_type(&self) -> ir::Type {
match self {
ValType::I32 => ir::types::I32,
ValType::I64 => ir::types::I64,
ValType::F32 => ir::types::F32,
ValType::F64 => ir::types::F64,
ValType::V128 => ir::types::I8X16,
_ => unimplemented!("get_cranelift_type other"),
}
}
pub(crate) fn from_cranelift_type(ty: ir::Type) -> ValType {
match ty {
ir::types::I32 => ValType::I32,
ir::types::I64 => ValType::I64,
ir::types::F32 => ValType::F32,
ir::types::F64 => ValType::F64,
ir::types::I8X16 => ValType::V128,
_ => unimplemented!("from_cranelift_type other"),
}
}
}
// External Types
#[derive(Debug, Clone)]
pub enum ExternType {
ExternFunc(FuncType),
ExternGlobal(GlobalType),
ExternTable(TableType),
ExternMemory(MemoryType),
}
impl ExternType {
pub fn func(&self) -> &FuncType {
match self {
ExternType::ExternFunc(func) => func,
_ => panic!("ExternType::ExternFunc expected"),
}
}
pub fn global(&self) -> &GlobalType {
match self {
ExternType::ExternGlobal(func) => func,
_ => panic!("ExternType::ExternGlobal expected"),
}
}
pub fn table(&self) -> &TableType {
match self {
ExternType::ExternTable(table) => table,
_ => panic!("ExternType::ExternTable expected"),
}
}
pub fn memory(&self) -> &MemoryType {
match self {
ExternType::ExternMemory(memory) => memory,
_ => panic!("ExternType::ExternMemory expected"),
}
}
}
// Function Types
fn from_cranelift_abiparam(param: &ir::AbiParam) -> ValType {
assert!(param.purpose == ir::ArgumentPurpose::Normal);
ValType::from_cranelift_type(param.value_type)
}
#[derive(Debug, Clone)]
pub struct FuncType {
params: Box<[ValType]>,
results: Box<[ValType]>,
signature: ir::Signature,
}
impl FuncType {
pub fn new(params: Box<[ValType]>, results: Box<[ValType]>) -> FuncType {
use cranelift_codegen::ir::*;
use cranelift_codegen::isa::CallConv;
use target_lexicon::HOST;
let call_conv = CallConv::triple_default(&HOST);
let signature: Signature = {
let mut params = params
.iter()
.map(|p| AbiParam::new(p.get_cranelift_type()))
.collect::<Vec<_>>();
let returns = results
.iter()
.map(|p| AbiParam::new(p.get_cranelift_type()))
.collect::<Vec<_>>();
params.insert(0, AbiParam::special(types::I64, ArgumentPurpose::VMContext));
Signature {
params,
returns,
call_conv,
}
};
FuncType {
params,
results,
signature,
}
}
pub fn params(&self) -> &[ValType] {
&self.params
}
pub fn results(&self) -> &[ValType] {
&self.results
}
pub(crate) fn get_cranelift_signature(&self) -> &ir::Signature {
&self.signature
}
pub(crate) fn from_cranelift_signature(signature: ir::Signature) -> FuncType {
let params = signature
.params
.iter()
.filter(|p| p.purpose == ir::ArgumentPurpose::Normal)
.map(|p| from_cranelift_abiparam(p))
.collect::<Vec<_>>();
let results = signature
.returns
.iter()
.map(|p| from_cranelift_abiparam(p))
.collect::<Vec<_>>();
FuncType {
params: params.into_boxed_slice(),
results: results.into_boxed_slice(),
signature,
}
}
}
// Global Types
#[derive(Debug, Clone)]
pub struct GlobalType {
content: ValType,
mutability: Mutability,
}
impl GlobalType {
pub fn new(content: ValType, mutability: Mutability) -> GlobalType {
GlobalType {
content,
mutability,
}
}
pub fn content(&self) -> &ValType {
&self.content
}
pub fn mutability(&self) -> Mutability {
self.mutability
}
pub(crate) fn from_cranelift_global(global: cranelift_wasm::Global) -> GlobalType {
let ty = ValType::from_cranelift_type(global.ty);
let mutability = if global.mutability {
Mutability::Var
} else {
Mutability::Const
};
GlobalType::new(ty, mutability)
}
}
// Table Types
#[derive(Debug, Clone)]
pub struct TableType {
element: ValType,
limits: Limits,
}
impl TableType {
pub fn new(element: ValType, limits: Limits) -> TableType {
TableType { element, limits }
}
pub fn element(&self) -> &ValType {
&self.element
}
pub fn limits(&self) -> &Limits {
&self.limits
}
pub(crate) fn from_cranelift_table(table: cranelift_wasm::Table) -> TableType {
assert!(if let cranelift_wasm::TableElementType::Func = table.ty {
true
} else {
false
});
let ty = ValType::FuncRef;
let limits = Limits::new(table.minimum, table.maximum.unwrap_or(::core::u32::MAX));
TableType::new(ty, limits)
}
}
// Memory Types
#[derive(Debug, Clone)]
pub struct MemoryType {
limits: Limits,
}
impl MemoryType {
pub fn new(limits: Limits) -> MemoryType {
MemoryType { limits }
}
pub fn limits(&self) -> &Limits {
&self.limits
}
pub(crate) fn from_cranelift_memory(memory: cranelift_wasm::Memory) -> MemoryType {
MemoryType::new(Limits::new(
memory.minimum,
memory.maximum.unwrap_or(::core::u32::MAX),
))
}
}
// Import Types
#[derive(Debug, Clone)]
pub struct Name(String);
impl From<String> for Name {
fn from(s: String) -> Name {
Name(s)
}
}
impl ::alloc::string::ToString for Name {
fn to_string(&self) -> String {
self.0.to_owned()
}
}
#[derive(Debug, Clone)]
pub struct ImportType {
module: Name,
name: Name,
r#type: ExternType,
}
impl ImportType {
pub fn new(module: Name, name: Name, r#type: ExternType) -> ImportType {
ImportType {
module,
name,
r#type,
}
}
pub fn module(&self) -> &Name {
&self.module
}
pub fn name(&self) -> &Name {
&self.name
}
pub fn r#type(&self) -> &ExternType {
&self.r#type
}
}
// Export Types
#[derive(Debug, Clone)]
pub struct ExportType {
name: Name,
r#type: ExternType,
}
impl ExportType {
pub fn new(name: Name, r#type: ExternType) -> ExportType {
ExportType { name, r#type }
}
pub fn name(&self) -> &Name {
&self.name
}
pub fn r#type(&self) -> &ExternType {
&self.r#type
}
}

235
crates/api/src/values.rs Normal file
View File

@@ -0,0 +1,235 @@
use crate::externals::Func;
use crate::r#ref::{AnyRef, HostRef};
use crate::runtime::Store;
use crate::types::ValType;
use core::ptr;
use cranelift_codegen::ir;
use wasmtime_jit::RuntimeValue;
#[derive(Debug, Clone)]
pub enum Val {
I32(i32),
I64(i64),
F32(u32),
F64(u64),
AnyRef(AnyRef),
FuncRef(HostRef<Func>),
}
impl Val {
pub fn default() -> Val {
Val::AnyRef(AnyRef::null())
}
pub fn r#type(&self) -> ValType {
match self {
Val::I32(_) => ValType::I32,
Val::I64(_) => ValType::I64,
Val::F32(_) => ValType::F32,
Val::F64(_) => ValType::F64,
Val::AnyRef(_) => ValType::AnyRef,
Val::FuncRef(_) => ValType::FuncRef,
}
}
pub(crate) unsafe fn write_value_to(&self, p: *mut i64) {
match self {
Val::I32(i) => ptr::write(p as *mut i32, *i),
Val::I64(i) => ptr::write(p as *mut i64, *i),
Val::F32(u) => ptr::write(p as *mut u32, *u),
Val::F64(u) => ptr::write(p as *mut u64, *u),
_ => unimplemented!("Val::write_value_to"),
}
}
pub(crate) unsafe fn read_value_from(p: *const i64, ty: ir::Type) -> Val {
match ty {
ir::types::I32 => Val::I32(ptr::read(p as *const i32)),
ir::types::I64 => Val::I64(ptr::read(p as *const i64)),
ir::types::F32 => Val::F32(ptr::read(p as *const u32)),
ir::types::F64 => Val::F64(ptr::read(p as *const u64)),
_ => unimplemented!("Val::read_value_from"),
}
}
pub fn from_f32_bits(v: u32) -> Val {
Val::F32(v)
}
pub fn from_f64_bits(v: u64) -> Val {
Val::F64(v)
}
pub fn i32(&self) -> i32 {
if let Val::I32(i) = self {
*i
} else {
panic!("Invalid conversion of {:?} to i32.", self);
}
}
pub fn i64(&self) -> i64 {
if let Val::I64(i) = self {
*i
} else {
panic!("Invalid conversion of {:?} to i64.", self);
}
}
pub fn f32(&self) -> f32 {
RuntimeValue::F32(self.f32_bits()).unwrap_f32()
}
pub fn f64(&self) -> f64 {
RuntimeValue::F64(self.f64_bits()).unwrap_f64()
}
pub fn f32_bits(&self) -> u32 {
if let Val::F32(i) = self {
*i
} else {
panic!("Invalid conversion of {:?} to f32.", self);
}
}
pub fn f64_bits(&self) -> u64 {
if let Val::F64(i) = self {
*i
} else {
panic!("Invalid conversion of {:?} to f64.", self);
}
}
}
impl From<i32> for Val {
fn from(val: i32) -> Val {
Val::I32(val)
}
}
impl From<i64> for Val {
fn from(val: i64) -> Val {
Val::I64(val)
}
}
impl From<f32> for Val {
fn from(val: f32) -> Val {
Val::F32(val.to_bits())
}
}
impl From<f64> for Val {
fn from(val: f64) -> Val {
Val::F64(val.to_bits())
}
}
impl Into<i32> for Val {
fn into(self) -> i32 {
self.i32()
}
}
impl Into<i64> for Val {
fn into(self) -> i64 {
self.i64()
}
}
impl Into<f32> for Val {
fn into(self) -> f32 {
self.f32()
}
}
impl Into<f64> for Val {
fn into(self) -> f64 {
self.f64()
}
}
impl From<AnyRef> for Val {
fn from(val: AnyRef) -> Val {
match &val {
AnyRef::Ref(r) => {
if r.is_ref::<Func>() {
Val::FuncRef(r.get_ref())
} else {
Val::AnyRef(val)
}
}
_ => unimplemented!("AnyRef::Other"),
}
}
}
impl From<HostRef<Func>> for Val {
fn from(val: HostRef<Func>) -> Val {
Val::FuncRef(val)
}
}
impl Into<AnyRef> for Val {
fn into(self) -> AnyRef {
match self {
Val::AnyRef(r) => r,
Val::FuncRef(f) => f.anyref(),
_ => panic!("Invalid conversion of {:?} to anyref.", self),
}
}
}
pub(crate) fn into_checked_anyfunc(
val: Val,
store: &HostRef<Store>,
) -> wasmtime_runtime::VMCallerCheckedAnyfunc {
match val {
Val::AnyRef(AnyRef::Null) => wasmtime_runtime::VMCallerCheckedAnyfunc {
func_ptr: ptr::null(),
type_index: wasmtime_runtime::VMSharedSignatureIndex::default(),
vmctx: ptr::null_mut(),
},
Val::FuncRef(f) => {
let f = f.borrow();
let (vmctx, func_ptr, signature) = match f.wasmtime_export() {
wasmtime_runtime::Export::Function {
vmctx,
address,
signature,
} => (*vmctx, *address, signature),
_ => panic!("expected function export"),
};
let type_index = store.borrow_mut().register_cranelift_signature(signature);
wasmtime_runtime::VMCallerCheckedAnyfunc {
func_ptr,
type_index,
vmctx,
}
}
_ => panic!("val is not funcref"),
}
}
pub(crate) fn from_checked_anyfunc(
item: &wasmtime_runtime::VMCallerCheckedAnyfunc,
store: &HostRef<Store>,
) -> Val {
if item.type_index == wasmtime_runtime::VMSharedSignatureIndex::default() {
return Val::AnyRef(AnyRef::Null);
}
let signature = store
.borrow()
.lookup_cranelift_signature(item.type_index)
.expect("signature")
.clone();
let instance_handle = unsafe { wasmtime_runtime::InstanceHandle::from_vmctx(item.vmctx) };
let export = wasmtime_runtime::Export::Function {
address: item.func_ptr,
signature,
vmctx: item.vmctx,
};
let f = Func::from_wasmtime_function(export, store, instance_handle);
Val::FuncRef(HostRef::new(f))
}

1655
crates/api/src/wasm.rs Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,39 @@
use std::env;
use std::process::{Command, Stdio};
fn run_example(name: &'static str) {
let cargo = env::var("CARGO").unwrap_or("cargo".to_string());
let pkg_dir = env!("CARGO_MANIFEST_DIR");
assert!(
Command::new(cargo)
.current_dir(pkg_dir)
.stdout(Stdio::null())
.args(&["run", "-q", "--example", name])
.status()
.expect("success")
.success(),
"failed to execute the example '{}'",
name,
);
}
#[test]
fn test_run_hello_example() {
run_example("hello");
}
#[test]
fn test_run_gcd_example() {
run_example("gcd");
}
#[test]
fn test_run_memory_example() {
run_example("memory");
}
#[cfg(not(target_os = "windows"))]
#[test]
fn test_run_multi_example() {
run_example("multi");
}

View File

@@ -0,0 +1,70 @@
extern crate alloc;
use alloc::rc::Rc;
use core::cell::{Ref, RefCell};
use std::fs::read;
use wasmtime_api::*;
#[test]
fn test_import_calling_export() {
struct Callback {
pub other: RefCell<Option<HostRef<Func>>>,
}
impl Callable for Callback {
fn call(&self, _params: &[Val], _results: &mut [Val]) -> Result<(), HostRef<Trap>> {
self.other
.borrow()
.as_ref()
.expect("expected a function ref")
.borrow()
.call(&[])
.expect("expected function not to trap");
Ok(())
}
}
let engine = HostRef::new(Engine::new(Config::default()));
let store = HostRef::new(Store::new(&engine));
let module = HostRef::new(
Module::new(
&store,
&read("tests/import_calling_export.wasm").expect("failed to read wasm file"),
)
.expect("failed to create module"),
);
let callback = Rc::new(Callback {
other: RefCell::new(None),
});
let callback_func = HostRef::new(Func::new(
&store,
FuncType::new(Box::new([]), Box::new([])),
callback.clone(),
));
let imports = vec![callback_func.into()];
let instance = HostRef::new(
Instance::new(&store, &module, imports.as_slice()).expect("failed to instantiate module"),
);
let exports = Ref::map(instance.borrow(), |instance| instance.exports());
assert!(!exports.is_empty());
let run_func = exports[0]
.func()
.expect("expected a run func in the module");
*callback.other.borrow_mut() = Some(
exports[1]
.func()
.expect("expected an other func in the module")
.clone(),
);
run_func
.borrow()
.call(&[])
.expect("expected function not to trap");
}

Binary file not shown.

View File

@@ -0,0 +1,8 @@
(module
(type $t0 (func))
(import "" "imp" (func $.imp (type $t0)))
(func $run call $.imp)
(func $other)
(export "run" (func $run))
(export "other" (func $other))
)

3
crates/debug/.gitignore vendored Normal file
View File

@@ -0,0 +1,3 @@
target/
**/*.rs.bk
Cargo.lock

34
crates/debug/Cargo.toml Normal file
View File

@@ -0,0 +1,34 @@
[package]
name = "wasmtime-debug"
version = "0.2.0"
authors = ["The Wasmtime Project Developers"]
description = "Debug utils for WebAsssembly code in Cranelift"
repository = "https://github.com/CraneStation/wasmtime"
documentation = "https://docs.rs/wasmtime-debug/"
categories = ["wasm"]
keywords = ["webassembly", "wasm", "debuginfo"]
license = "Apache-2.0 WITH LLVM-exception"
readme = "README.md"
edition = "2018"
[dependencies]
gimli = "0.19.0"
wasmparser = "0.39.2"
cranelift-codegen = { version = "0.49", features = ["enable-serde"] }
cranelift-entity = { version = "0.49", features = ["enable-serde"] }
cranelift-wasm = { version = "0.49", features = ["enable-serde"] }
faerie = "0.12.0"
wasmtime-environ = { path = "../environ", default-features = false }
target-lexicon = { version = "0.9.0", default-features = false }
failure = { version = "0.1.3", default-features = false }
hashbrown = { version = "0.6.0", optional = true }
thiserror = "1.0.4"
[features]
default = ["std"]
std = ["cranelift-codegen/std", "cranelift-wasm/std", "wasmtime-environ/std"]
core = ["hashbrown/nightly", "cranelift-codegen/core", "cranelift-wasm/core"]
[badges]
maintenance = { status = "experimental" }
travis-ci = { repository = "CraneStation/wasmtime" }

220
crates/debug/LICENSE Normal file
View File

@@ -0,0 +1,220 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
--- LLVM Exceptions to the Apache 2.0 License ----
As an exception, if, as a result of your compiling your source code, portions
of this Software are embedded into an Object form of such source code, you
may redistribute such embedded portions in such Object form without complying
with the conditions of Sections 4(a), 4(b) and 4(d) of the License.
In addition, if you combine or link compiled forms of this Software with
software that is licensed under the GPLv2 ("Combined Software") and if a
court of competent jurisdiction determines that the patent provision (Section
3), the indemnity provision (Section 9) or other Section of the License
conflicts with the conditions of the GPLv2, you may retroactively and
prospectively choose to deem waived or otherwise exclude such Section(s) of
the License, but only in their entirety and only with respect to the Combined
Software.

4
crates/debug/README.md Normal file
View File

@@ -0,0 +1,4 @@
This is the `wasmtime-debug` crate, which provides functionality to
read, transform, and write DWARF section.
[`wasmtime-debug`]: https://crates.io/crates/wasmtime-debug

232
crates/debug/src/gc.rs Normal file
View File

@@ -0,0 +1,232 @@
use crate::transform::AddressTransform;
use crate::{HashMap, HashSet};
use alloc::vec::Vec;
use gimli::constants;
use gimli::read;
use gimli::{Reader, UnitSectionOffset};
#[derive(Debug)]
pub struct Dependencies {
edges: HashMap<UnitSectionOffset, HashSet<UnitSectionOffset>>,
roots: HashSet<UnitSectionOffset>,
}
impl Dependencies {
fn new() -> Dependencies {
Dependencies {
edges: HashMap::new(),
roots: HashSet::new(),
}
}
fn add_edge(&mut self, a: UnitSectionOffset, b: UnitSectionOffset) {
use crate::hash_map::Entry;
match self.edges.entry(a) {
Entry::Occupied(mut o) => {
o.get_mut().insert(b);
}
Entry::Vacant(v) => {
let mut set = HashSet::new();
set.insert(b);
v.insert(set);
}
}
}
fn add_root(&mut self, root: UnitSectionOffset) {
self.roots.insert(root);
}
pub fn get_reachable(&self) -> HashSet<UnitSectionOffset> {
let mut reachable = self.roots.clone();
let mut queue = Vec::new();
for i in self.roots.iter() {
if let Some(deps) = self.edges.get(i) {
for j in deps {
if reachable.contains(j) {
continue;
}
reachable.insert(*j);
queue.push(*j);
}
}
}
while let Some(i) = queue.pop() {
if let Some(deps) = self.edges.get(&i) {
for j in deps {
if reachable.contains(j) {
continue;
}
reachable.insert(*j);
queue.push(*j);
}
}
}
reachable
}
}
pub fn build_dependencies<R: Reader<Offset = usize>>(
dwarf: &read::Dwarf<R>,
at: &AddressTransform,
) -> read::Result<Dependencies> {
let mut deps = Dependencies::new();
let mut units = dwarf.units();
while let Some(unit) = units.next()? {
build_unit_dependencies(unit, dwarf, at, &mut deps)?;
}
Ok(deps)
}
fn build_unit_dependencies<R: Reader<Offset = usize>>(
header: read::CompilationUnitHeader<R>,
dwarf: &read::Dwarf<R>,
at: &AddressTransform,
deps: &mut Dependencies,
) -> read::Result<()> {
let unit = dwarf.unit(header)?;
let mut tree = unit.entries_tree(None)?;
let root = tree.root()?;
build_die_dependencies(root, dwarf, &unit, at, deps)?;
Ok(())
}
fn has_die_back_edge<R: Reader<Offset = usize>>(die: &read::DebuggingInformationEntry<R>) -> bool {
match die.tag() {
constants::DW_TAG_variable
| constants::DW_TAG_constant
| constants::DW_TAG_inlined_subroutine
| constants::DW_TAG_lexical_block
| constants::DW_TAG_label
| constants::DW_TAG_with_stmt
| constants::DW_TAG_try_block
| constants::DW_TAG_catch_block
| constants::DW_TAG_template_type_parameter
| constants::DW_TAG_member
| constants::DW_TAG_formal_parameter => true,
_ => false,
}
}
fn has_valid_code_range<R: Reader<Offset = usize>>(
die: &read::DebuggingInformationEntry<R>,
dwarf: &read::Dwarf<R>,
unit: &read::Unit<R>,
at: &AddressTransform,
) -> read::Result<bool> {
match die.tag() {
constants::DW_TAG_subprogram => {
if let Some(ranges_attr) = die.attr_value(constants::DW_AT_ranges)? {
let offset = match ranges_attr {
read::AttributeValue::RangeListsRef(val) => val,
read::AttributeValue::DebugRngListsIndex(index) => {
dwarf.ranges_offset(unit, index)?
}
_ => return Ok(false),
};
let mut has_valid_base = if let Some(read::AttributeValue::Addr(low_pc)) =
die.attr_value(constants::DW_AT_low_pc)?
{
Some(at.can_translate_address(low_pc))
} else {
None
};
let mut it = dwarf.ranges.raw_ranges(offset, unit.encoding())?;
while let Some(range) = it.next()? {
// If at least one of the range addresses can be converted,
// declaring code range as valid.
match range {
read::RawRngListEntry::AddressOrOffsetPair { .. }
if has_valid_base.is_some() =>
{
if has_valid_base.unwrap() {
return Ok(true);
}
}
read::RawRngListEntry::StartEnd { begin, .. }
| read::RawRngListEntry::StartLength { begin, .. }
| read::RawRngListEntry::AddressOrOffsetPair { begin, .. } => {
if at.can_translate_address(begin) {
return Ok(true);
}
}
read::RawRngListEntry::StartxEndx { begin, .. }
| read::RawRngListEntry::StartxLength { begin, .. } => {
let addr = dwarf.address(unit, begin)?;
if at.can_translate_address(addr) {
return Ok(true);
}
}
read::RawRngListEntry::BaseAddress { addr } => {
has_valid_base = Some(at.can_translate_address(addr));
}
read::RawRngListEntry::BaseAddressx { addr } => {
let addr = dwarf.address(unit, addr)?;
has_valid_base = Some(at.can_translate_address(addr));
}
read::RawRngListEntry::OffsetPair { .. } => (),
}
}
return Ok(false);
} else if let Some(low_pc) = die.attr_value(constants::DW_AT_low_pc)? {
if let read::AttributeValue::Addr(a) = low_pc {
return Ok(at.can_translate_address(a));
}
}
}
_ => (),
}
Ok(false)
}
fn build_die_dependencies<R: Reader<Offset = usize>>(
die: read::EntriesTreeNode<R>,
dwarf: &read::Dwarf<R>,
unit: &read::Unit<R>,
at: &AddressTransform,
deps: &mut Dependencies,
) -> read::Result<()> {
let entry = die.entry();
let offset = entry.offset().to_unit_section_offset(unit);
let mut attrs = entry.attrs();
while let Some(attr) = attrs.next()? {
build_attr_dependencies(&attr, offset, dwarf, unit, at, deps)?;
}
let mut children = die.children();
while let Some(child) = children.next()? {
let child_entry = child.entry();
let child_offset = child_entry.offset().to_unit_section_offset(unit);
deps.add_edge(child_offset, offset);
if has_die_back_edge(child_entry) {
deps.add_edge(offset, child_offset);
}
if has_valid_code_range(child_entry, dwarf, unit, at)? {
deps.add_root(child_offset);
}
build_die_dependencies(child, dwarf, unit, at, deps)?;
}
Ok(())
}
fn build_attr_dependencies<R: Reader<Offset = usize>>(
attr: &read::Attribute<R>,
offset: UnitSectionOffset,
_dwarf: &read::Dwarf<R>,
unit: &read::Unit<R>,
_at: &AddressTransform,
deps: &mut Dependencies,
) -> read::Result<()> {
match attr.value() {
read::AttributeValue::UnitRef(val) => {
let ref_offset = val.to_unit_section_offset(unit);
deps.add_edge(offset, ref_offset);
}
read::AttributeValue::DebugInfoRef(val) => {
let ref_offset = UnitSectionOffset::DebugInfoOffset(val);
deps.add_edge(offset, ref_offset);
}
_ => (),
}
Ok(())
}

192
crates/debug/src/lib.rs Normal file
View File

@@ -0,0 +1,192 @@
//! Debug utils for WebAssembly using Cranelift.
#![allow(clippy::cast_ptr_alignment)]
use alloc::string::String;
use alloc::vec::Vec;
use cranelift_codegen::isa::TargetFrontendConfig;
use faerie::{Artifact, Decl};
use failure::Error;
use target_lexicon::{BinaryFormat, Triple};
use wasmtime_environ::{ModuleAddressMap, ModuleVmctxInfo, ValueLabelsRanges};
#[cfg(not(feature = "std"))]
use hashbrown::{hash_map, HashMap, HashSet};
#[cfg(feature = "std")]
use std::collections::{hash_map, HashMap, HashSet};
pub use crate::read_debuginfo::{read_debuginfo, DebugInfoData, WasmFileInfo};
pub use crate::transform::transform_dwarf;
pub use crate::write_debuginfo::{emit_dwarf, ResolvedSymbol, SymbolResolver};
mod gc;
mod read_debuginfo;
mod transform;
mod write_debuginfo;
extern crate alloc;
struct FunctionRelocResolver {}
impl SymbolResolver for FunctionRelocResolver {
fn resolve_symbol(&self, symbol: usize, addend: i64) -> ResolvedSymbol {
let name = format!("_wasm_function_{}", symbol);
ResolvedSymbol::Reloc { name, addend }
}
}
pub fn emit_debugsections(
obj: &mut Artifact,
vmctx_info: &ModuleVmctxInfo,
target_config: &TargetFrontendConfig,
debuginfo_data: &DebugInfoData,
at: &ModuleAddressMap,
ranges: &ValueLabelsRanges,
) -> Result<(), Error> {
let resolver = FunctionRelocResolver {};
let dwarf = transform_dwarf(target_config, debuginfo_data, at, vmctx_info, ranges)?;
emit_dwarf(obj, dwarf, &resolver)?;
Ok(())
}
struct ImageRelocResolver<'a> {
func_offsets: &'a Vec<u64>,
}
impl<'a> SymbolResolver for ImageRelocResolver<'a> {
fn resolve_symbol(&self, symbol: usize, addend: i64) -> ResolvedSymbol {
let func_start = self.func_offsets[symbol];
ResolvedSymbol::PhysicalAddress(func_start + addend as u64)
}
}
pub fn emit_debugsections_image(
triple: Triple,
target_config: &TargetFrontendConfig,
debuginfo_data: &DebugInfoData,
vmctx_info: &ModuleVmctxInfo,
at: &ModuleAddressMap,
ranges: &ValueLabelsRanges,
funcs: &[(*const u8, usize)],
) -> Result<Vec<u8>, Error> {
let func_offsets = &funcs
.iter()
.map(|(ptr, _)| *ptr as u64)
.collect::<Vec<u64>>();
let mut obj = Artifact::new(triple, String::from("module"));
let resolver = ImageRelocResolver { func_offsets };
let dwarf = transform_dwarf(target_config, debuginfo_data, at, vmctx_info, ranges)?;
// Assuming all functions in the same code block, looking min/max of its range.
assert!(funcs.len() > 0);
let mut segment_body: (usize, usize) = (!0, 0);
for (body_ptr, body_len) in funcs {
segment_body.0 = ::core::cmp::min(segment_body.0, *body_ptr as usize);
segment_body.1 = ::core::cmp::max(segment_body.1, *body_ptr as usize + body_len);
}
let segment_body = (segment_body.0 as *const u8, segment_body.1 - segment_body.0);
let body = unsafe { ::core::slice::from_raw_parts(segment_body.0, segment_body.1) };
obj.declare_with("all", Decl::function(), body.to_vec())?;
emit_dwarf(&mut obj, dwarf, &resolver)?;
// LLDB is too "magical" about mach-o, generating elf
let mut bytes = obj.emit_as(BinaryFormat::Elf)?;
// elf is still missing details...
convert_faerie_elf_to_loadable_file(&mut bytes, segment_body.0);
// let mut file = ::std::fs::File::create(::std::path::Path::new("test.o")).expect("file");
// ::std::io::Write::write(&mut file, &bytes).expect("write");
Ok(bytes)
}
fn convert_faerie_elf_to_loadable_file(bytes: &mut Vec<u8>, code_ptr: *const u8) {
use std::ffi::CStr;
use std::os::raw::c_char;
assert!(
bytes[0x4] == 2 && bytes[0x5] == 1,
"bits and endianess in .ELF"
);
let e_phoff = unsafe { *(bytes.as_ptr().offset(0x20) as *const u64) };
let e_phnum = unsafe { *(bytes.as_ptr().offset(0x38) as *const u16) };
assert!(
e_phoff == 0 && e_phnum == 0,
"program header table is empty"
);
let e_phentsize = unsafe { *(bytes.as_ptr().offset(0x36) as *const u16) };
assert!(e_phentsize == 0x38, "size of ph");
let e_shentsize = unsafe { *(bytes.as_ptr().offset(0x3A) as *const u16) };
assert!(e_shentsize == 0x40, "size of sh");
let e_shoff = unsafe { *(bytes.as_ptr().offset(0x28) as *const u64) };
let e_shnum = unsafe { *(bytes.as_ptr().offset(0x3C) as *const u16) };
let mut shstrtab_off = 0;
let mut segment = None;
for i in 0..e_shnum {
let off = e_shoff as isize + i as isize * e_shentsize as isize;
let sh_type = unsafe { *(bytes.as_ptr().offset(off + 0x4) as *const u32) };
if sh_type == /* SHT_SYMTAB */ 3 {
shstrtab_off = unsafe { *(bytes.as_ptr().offset(off + 0x18) as *const u64) };
}
if sh_type != /* SHT_PROGBITS */ 1 {
continue;
}
// It is a SHT_PROGBITS, but we need to check sh_name to ensure it is our function
let sh_name = unsafe {
let sh_name_off = *(bytes.as_ptr().offset(off) as *const u32);
CStr::from_ptr(
bytes
.as_ptr()
.offset((shstrtab_off + sh_name_off as u64) as isize)
as *const c_char,
)
.to_str()
.expect("name")
};
if sh_name != ".text.all" {
continue;
}
assert!(segment.is_none());
// Functions was added at emit_debugsections_image as .text.all.
// Patch vaddr, and save file location and its size.
unsafe {
*(bytes.as_ptr().offset(off + 0x10) as *mut u64) = code_ptr as u64;
};
let sh_offset = unsafe { *(bytes.as_ptr().offset(off + 0x18) as *const u64) };
let sh_size = unsafe { *(bytes.as_ptr().offset(off + 0x20) as *const u64) };
segment = Some((sh_offset, code_ptr, sh_size));
// Fix name too: cut it to just ".text"
unsafe {
let sh_name_off = *(bytes.as_ptr().offset(off) as *const u32);
bytes[(shstrtab_off + sh_name_off as u64) as usize + ".text".len()] = 0;
}
}
// LLDB wants segment with virtual address set, placing them at the end of ELF.
let ph_off = bytes.len();
if let Some((sh_offset, v_offset, sh_size)) = segment {
let segment = vec![0; 0x38];
unsafe {
*(segment.as_ptr() as *mut u32) = /* PT_LOAD */ 0x1;
*(segment.as_ptr().offset(0x8) as *mut u64) = sh_offset;
*(segment.as_ptr().offset(0x10) as *mut u64) = v_offset as u64;
*(segment.as_ptr().offset(0x18) as *mut u64) = v_offset as u64;
*(segment.as_ptr().offset(0x20) as *mut u64) = sh_size;
*(segment.as_ptr().offset(0x28) as *mut u64) = sh_size;
}
bytes.extend_from_slice(&segment);
} else {
unreachable!();
}
// It is somewhat loadable ELF file at this moment.
// Update e_flags, e_phoff and e_phnum.
unsafe {
*(bytes.as_ptr().offset(0x10) as *mut u16) = /* ET_DYN */ 3;
*(bytes.as_ptr().offset(0x20) as *mut u64) = ph_off as u64;
*(bytes.as_ptr().offset(0x38) as *mut u16) = 1 as u16;
}
}

View File

@@ -0,0 +1,251 @@
use alloc::boxed::Box;
use alloc::string::String;
use alloc::vec::Vec;
use std::collections::HashMap;
use std::path::PathBuf;
use wasmparser::{self, ModuleReader, SectionCode};
use gimli;
use gimli::{
DebugAbbrev, DebugAddr, DebugInfo, DebugLine, DebugLineStr, DebugLoc, DebugLocLists,
DebugRanges, DebugRngLists, DebugStr, DebugStrOffsets, DebugTypes, EndianSlice, LittleEndian,
LocationLists, RangeLists,
};
trait Reader: gimli::Reader<Offset = usize, Endian = LittleEndian> {}
impl<'input> Reader for gimli::EndianSlice<'input, LittleEndian> {}
pub use wasmparser::Type as WasmType;
pub type Dwarf<'input> = gimli::Dwarf<gimli::EndianSlice<'input, LittleEndian>>;
#[derive(Debug)]
pub struct FunctionMetadata {
pub params: Box<[WasmType]>,
pub locals: Box<[(u32, WasmType)]>,
}
#[derive(Debug)]
pub struct WasmFileInfo {
pub path: Option<PathBuf>,
pub code_section_offset: u64,
pub funcs: Box<[FunctionMetadata]>,
}
#[derive(Debug)]
pub struct NameSection {
pub module_name: Option<String>,
pub func_names: HashMap<u32, String>,
pub locals_names: HashMap<u32, HashMap<u32, String>>,
}
#[derive(Debug)]
pub struct DebugInfoData<'a> {
pub dwarf: Dwarf<'a>,
pub name_section: Option<NameSection>,
pub wasm_file: WasmFileInfo,
}
fn convert_sections<'a>(sections: HashMap<&str, &'a [u8]>) -> Dwarf<'a> {
const EMPTY_SECTION: &[u8] = &[];
let endian = LittleEndian;
let debug_str = DebugStr::new(sections.get(".debug_str").unwrap_or(&EMPTY_SECTION), endian);
let debug_abbrev = DebugAbbrev::new(
sections.get(".debug_abbrev").unwrap_or(&EMPTY_SECTION),
endian,
);
let debug_info = DebugInfo::new(
sections.get(".debug_info").unwrap_or(&EMPTY_SECTION),
endian,
);
let debug_line = DebugLine::new(
sections.get(".debug_line").unwrap_or(&EMPTY_SECTION),
endian,
);
if sections.contains_key(".debug_addr") {
panic!("Unexpected .debug_addr");
}
let debug_addr = DebugAddr::from(EndianSlice::new(EMPTY_SECTION, endian));
if sections.contains_key(".debug_line_str") {
panic!("Unexpected .debug_line_str");
}
let debug_line_str = DebugLineStr::from(EndianSlice::new(EMPTY_SECTION, endian));
let debug_str_sup = DebugStr::from(EndianSlice::new(EMPTY_SECTION, endian));
if sections.contains_key(".debug_rnglists") {
panic!("Unexpected .debug_rnglists");
}
let debug_ranges = match sections.get(".debug_ranges") {
Some(section) => DebugRanges::new(section, endian),
None => DebugRanges::new(EMPTY_SECTION, endian),
};
let debug_rnglists = DebugRngLists::new(EMPTY_SECTION, endian);
let ranges = RangeLists::new(debug_ranges, debug_rnglists);
if sections.contains_key(".debug_loclists") {
panic!("Unexpected .debug_loclists");
}
let debug_loc = match sections.get(".debug_loc") {
Some(section) => DebugLoc::new(section, endian),
None => DebugLoc::new(EMPTY_SECTION, endian),
};
let debug_loclists = DebugLocLists::new(EMPTY_SECTION, endian);
let locations = LocationLists::new(debug_loc, debug_loclists);
if sections.contains_key(".debug_str_offsets") {
panic!("Unexpected .debug_str_offsets");
}
let debug_str_offsets = DebugStrOffsets::from(EndianSlice::new(EMPTY_SECTION, endian));
if sections.contains_key(".debug_types") {
panic!("Unexpected .debug_types");
}
let debug_types = DebugTypes::from(EndianSlice::new(EMPTY_SECTION, endian));
Dwarf {
debug_abbrev,
debug_addr,
debug_info,
debug_line,
debug_line_str,
debug_str,
debug_str_offsets,
debug_str_sup,
debug_types,
locations,
ranges,
}
}
fn read_name_section(reader: wasmparser::NameSectionReader) -> wasmparser::Result<NameSection> {
let mut module_name = None;
let mut func_names = HashMap::new();
let mut locals_names = HashMap::new();
for i in reader.into_iter() {
match i? {
wasmparser::Name::Module(m) => {
module_name = Some(String::from(m.get_name()?));
}
wasmparser::Name::Function(f) => {
let mut reader = f.get_map()?;
while let Ok(naming) = reader.read() {
func_names.insert(naming.index, String::from(naming.name));
}
}
wasmparser::Name::Local(l) => {
let mut reader = l.get_function_local_reader()?;
while let Ok(f) = reader.read() {
let mut names = HashMap::new();
let mut reader = f.get_map()?;
while let Ok(naming) = reader.read() {
names.insert(naming.index, String::from(naming.name));
}
locals_names.insert(f.func_index, names);
}
}
}
}
let result = NameSection {
module_name,
func_names,
locals_names,
};
Ok(result)
}
pub fn read_debuginfo(data: &[u8]) -> DebugInfoData {
let mut reader = ModuleReader::new(data).expect("reader");
let mut sections = HashMap::new();
let mut name_section = None;
let mut code_section_offset = 0;
let mut signatures_params: Vec<Box<[WasmType]>> = Vec::new();
let mut func_params_refs: Vec<usize> = Vec::new();
let mut func_locals: Vec<Box<[(u32, WasmType)]>> = Vec::new();
while !reader.eof() {
let section = reader.read().expect("section");
match section.code {
SectionCode::Custom { name, .. } => {
if name.starts_with(".debug_") {
let mut reader = section.get_binary_reader();
let len = reader.bytes_remaining();
sections.insert(name, reader.read_bytes(len).expect("bytes"));
}
if name == "name" {
if let Ok(reader) = section.get_name_section_reader() {
if let Ok(section) = read_name_section(reader) {
name_section = Some(section);
}
}
}
}
SectionCode::Type => {
signatures_params = section
.get_type_section_reader()
.expect("type section")
.into_iter()
.map(|ft| ft.expect("type").params)
.collect::<Vec<_>>();
}
SectionCode::Function => {
func_params_refs = section
.get_function_section_reader()
.expect("function section")
.into_iter()
.map(|index| index.expect("func index") as usize)
.collect::<Vec<_>>();
}
SectionCode::Code => {
code_section_offset = section.range().start as u64;
func_locals = section
.get_code_section_reader()
.expect("code section")
.into_iter()
.map(|body| {
let locals = body
.expect("body")
.get_locals_reader()
.expect("locals reader");
locals
.into_iter()
.collect::<Result<Vec<_>, _>>()
.expect("locals data")
.into_boxed_slice()
})
.collect::<Vec<_>>();
}
_ => (),
}
}
let func_meta = func_params_refs
.into_iter()
.zip(func_locals.into_iter())
.map(|(params_index, locals)| FunctionMetadata {
params: signatures_params[params_index].clone(),
locals,
})
.collect::<Vec<_>>();
DebugInfoData {
dwarf: convert_sections(sections),
name_section,
wasm_file: WasmFileInfo {
path: None,
code_section_offset,
funcs: func_meta.into_boxed_slice(),
},
}
}

View File

@@ -0,0 +1,658 @@
use crate::HashMap;
use crate::WasmFileInfo;
use alloc::boxed::Box;
use alloc::collections::BTreeMap;
use alloc::vec::Vec;
use core::iter::FromIterator;
use cranelift_codegen::ir::SourceLoc;
use cranelift_entity::{EntityRef, PrimaryMap};
use cranelift_wasm::DefinedFuncIndex;
use gimli::write;
use wasmtime_environ::{FunctionAddressMap, ModuleAddressMap};
pub type GeneratedAddress = usize;
pub type WasmAddress = u64;
/// Contains mapping of the generated address to its original
/// source location.
#[derive(Debug)]
pub struct AddressMap {
pub generated: GeneratedAddress,
pub wasm: WasmAddress,
}
/// Information about generated function code: its body start,
/// length, and instructions addresses.
#[derive(Debug)]
pub struct FunctionMap {
pub offset: GeneratedAddress,
pub len: GeneratedAddress,
pub wasm_start: WasmAddress,
pub wasm_end: WasmAddress,
pub addresses: Box<[AddressMap]>,
}
/// Mapping of the source location to its generated code range.
#[derive(Debug)]
struct Position {
wasm_pos: WasmAddress,
gen_start: GeneratedAddress,
gen_end: GeneratedAddress,
}
/// Mapping of continuous range of source location to its generated
/// code. The positions are always in accending order for search.
#[derive(Debug)]
struct Range {
wasm_start: WasmAddress,
wasm_end: WasmAddress,
gen_start: GeneratedAddress,
gen_end: GeneratedAddress,
positions: Box<[Position]>,
}
/// Helper function address lookup data. Contains ranges start positions
/// index and ranges data. The multiple ranges can include the same
/// original source position. The index (B-Tree) uses range start
/// position as a key.
#[derive(Debug)]
struct FuncLookup {
index: Vec<(WasmAddress, Box<[usize]>)>,
ranges: Box<[Range]>,
}
/// Mapping of original functions to generated code locations/ranges.
#[derive(Debug)]
struct FuncTransform {
start: WasmAddress,
end: WasmAddress,
index: DefinedFuncIndex,
lookup: FuncLookup,
}
/// Module functions mapping to generated code.
#[derive(Debug)]
pub struct AddressTransform {
map: PrimaryMap<DefinedFuncIndex, FunctionMap>,
func: Vec<(WasmAddress, FuncTransform)>,
}
/// Returns a wasm bytecode offset in the code section from SourceLoc.
pub fn get_wasm_code_offset(loc: SourceLoc, code_section_offset: u64) -> WasmAddress {
// Code section size <= 4GB, allow wrapped SourceLoc to recover the overflow.
loc.bits().wrapping_sub(code_section_offset as u32) as WasmAddress
}
fn build_function_lookup(
ft: &FunctionAddressMap,
code_section_offset: u64,
) -> (WasmAddress, WasmAddress, FuncLookup) {
assert!(code_section_offset <= ft.start_srcloc.bits() as u64);
let fn_start = get_wasm_code_offset(ft.start_srcloc, code_section_offset);
let fn_end = get_wasm_code_offset(ft.end_srcloc, code_section_offset);
assert!(fn_start <= fn_end);
// Build ranges of continuous source locations. The new ranges starts when
// non-descending order is interrupted. Assuming the same origin location can
// be present in multiple ranges.
let mut range_wasm_start = fn_start;
let mut range_gen_start = ft.body_offset;
let mut last_wasm_pos = range_wasm_start;
let mut ranges = Vec::new();
let mut ranges_index = BTreeMap::new();
let mut current_range = Vec::new();
for t in &ft.instructions {
if t.srcloc.is_default() {
continue;
}
let offset = get_wasm_code_offset(t.srcloc, code_section_offset);
assert!(fn_start <= offset && offset <= fn_end);
let inst_gen_start = t.code_offset;
let inst_gen_end = t.code_offset + t.code_len;
if last_wasm_pos > offset {
// Start new range.
ranges_index.insert(range_wasm_start, ranges.len());
ranges.push(Range {
wasm_start: range_wasm_start,
wasm_end: last_wasm_pos,
gen_start: range_gen_start,
gen_end: inst_gen_start,
positions: current_range.into_boxed_slice(),
});
range_wasm_start = offset;
range_gen_start = inst_gen_start;
current_range = Vec::new();
}
// Continue existing range: add new wasm->generated code position.
current_range.push(Position {
wasm_pos: offset,
gen_start: inst_gen_start,
gen_end: inst_gen_end,
});
last_wasm_pos = offset;
}
let last_gen_addr = ft.body_offset + ft.body_len;
ranges_index.insert(range_wasm_start, ranges.len());
ranges.push(Range {
wasm_start: range_wasm_start,
wasm_end: fn_end,
gen_start: range_gen_start,
gen_end: last_gen_addr,
positions: current_range.into_boxed_slice(),
});
// Making ranges lookup faster by building index: B-tree with every range
// start position that maps into list of active ranges at this position.
let ranges = ranges.into_boxed_slice();
let mut active_ranges = Vec::new();
let mut index = BTreeMap::new();
let mut last_wasm_pos = None;
for (wasm_start, range_index) in ranges_index {
if Some(wasm_start) == last_wasm_pos {
active_ranges.push(range_index);
continue;
}
if last_wasm_pos.is_some() {
index.insert(
last_wasm_pos.unwrap(),
active_ranges.clone().into_boxed_slice(),
);
}
active_ranges.retain(|r| ranges[*r].wasm_end.cmp(&wasm_start) != core::cmp::Ordering::Less);
active_ranges.push(range_index);
last_wasm_pos = Some(wasm_start);
}
index.insert(last_wasm_pos.unwrap(), active_ranges.into_boxed_slice());
let index = Vec::from_iter(index.into_iter());
(fn_start, fn_end, FuncLookup { index, ranges })
}
fn build_function_addr_map(
at: &ModuleAddressMap,
code_section_offset: u64,
) -> PrimaryMap<DefinedFuncIndex, FunctionMap> {
let mut map = PrimaryMap::new();
for (_, ft) in at {
let mut fn_map = Vec::new();
for t in &ft.instructions {
if t.srcloc.is_default() {
continue;
}
let offset = get_wasm_code_offset(t.srcloc, code_section_offset);
fn_map.push(AddressMap {
generated: t.code_offset,
wasm: offset,
});
}
if cfg!(debug) {
// fn_map is sorted by the generated field -- see FunctionAddressMap::instructions.
for i in 1..fn_map.len() {
assert!(fn_map[i - 1].generated <= fn_map[i].generated);
}
}
map.push(FunctionMap {
offset: ft.body_offset,
len: ft.body_len,
wasm_start: get_wasm_code_offset(ft.start_srcloc, code_section_offset),
wasm_end: get_wasm_code_offset(ft.end_srcloc, code_section_offset),
addresses: fn_map.into_boxed_slice(),
});
}
map
}
struct TransformRangeIter<'a> {
addr: u64,
indicies: &'a [usize],
ranges: &'a [Range],
}
impl<'a> TransformRangeIter<'a> {
fn new(func: &'a FuncTransform, addr: u64) -> Self {
let found = match func
.lookup
.index
.binary_search_by(|entry| entry.0.cmp(&addr))
{
Ok(i) => Some(&func.lookup.index[i].1),
Err(i) => {
if i > 0 {
Some(&func.lookup.index[i - 1].1)
} else {
None
}
}
};
if let Some(range_indices) = found {
TransformRangeIter {
addr,
indicies: range_indices,
ranges: &func.lookup.ranges,
}
} else {
unreachable!();
}
}
}
impl<'a> Iterator for TransformRangeIter<'a> {
type Item = (usize, usize);
fn next(&mut self) -> Option<Self::Item> {
if let Some((first, tail)) = self.indicies.split_first() {
let range_index = *first;
let range = &self.ranges[range_index];
self.indicies = tail;
let address = match range
.positions
.binary_search_by(|a| a.wasm_pos.cmp(&self.addr))
{
Ok(i) => range.positions[i].gen_start,
Err(i) => {
if i == 0 {
range.gen_start
} else {
range.positions[i - 1].gen_end
}
}
};
Some((address, range_index))
} else {
None
}
}
}
struct TransformRangeEndIter<'a> {
addr: u64,
indicies: &'a [usize],
ranges: &'a [Range],
}
impl<'a> TransformRangeEndIter<'a> {
fn new(func: &'a FuncTransform, addr: u64) -> Self {
let found = match func
.lookup
.index
.binary_search_by(|entry| entry.0.cmp(&addr))
{
Ok(i) => Some(&func.lookup.index[i].1),
Err(i) => {
if i > 0 {
Some(&func.lookup.index[i - 1].1)
} else {
None
}
}
};
if let Some(range_indices) = found {
TransformRangeEndIter {
addr,
indicies: range_indices,
ranges: &func.lookup.ranges,
}
} else {
unreachable!();
}
}
}
impl<'a> Iterator for TransformRangeEndIter<'a> {
type Item = (usize, usize);
fn next(&mut self) -> Option<Self::Item> {
while let Some((first, tail)) = self.indicies.split_first() {
let range_index = *first;
let range = &self.ranges[range_index];
if range.wasm_start >= self.addr {
continue;
}
self.indicies = tail;
let address = match range
.positions
.binary_search_by(|a| a.wasm_pos.cmp(&self.addr))
{
Ok(i) => range.positions[i].gen_end,
Err(i) => {
if i == range.positions.len() {
range.gen_end
} else {
range.positions[i].gen_start
}
}
};
return Some((address, range_index));
}
None
}
}
impl AddressTransform {
pub fn new(at: &ModuleAddressMap, wasm_file: &WasmFileInfo) -> Self {
let code_section_offset = wasm_file.code_section_offset;
let mut func = BTreeMap::new();
for (i, ft) in at {
let (fn_start, fn_end, lookup) = build_function_lookup(ft, code_section_offset);
func.insert(
fn_start,
FuncTransform {
start: fn_start,
end: fn_end,
index: i,
lookup,
},
);
}
let map = build_function_addr_map(at, code_section_offset);
let func = Vec::from_iter(func.into_iter());
AddressTransform { map, func }
}
fn find_func(&self, addr: u64) -> Option<&FuncTransform> {
// TODO check if we need to include end address
let func = match self.func.binary_search_by(|entry| entry.0.cmp(&addr)) {
Ok(i) => &self.func[i].1,
Err(i) => {
if i > 0 {
&self.func[i - 1].1
} else {
return None;
}
}
};
if addr >= func.start {
return Some(func);
}
None
}
pub fn find_func_index(&self, addr: u64) -> Option<DefinedFuncIndex> {
self.find_func(addr).map(|f| f.index)
}
pub fn translate_raw(&self, addr: u64) -> Option<(DefinedFuncIndex, GeneratedAddress)> {
if addr == 0 {
// It's normally 0 for debug info without the linked code.
return None;
}
if let Some(func) = self.find_func(addr) {
if addr == func.end {
// Clamp last address to the end to extend translation to the end
// of the function.
let map = &self.map[func.index];
return Some((func.index, map.len));
}
let first_result = TransformRangeIter::new(func, addr).next();
first_result.map(|(address, _)| (func.index, address))
} else {
// Address was not found: function was not compiled?
None
}
}
pub fn can_translate_address(&self, addr: u64) -> bool {
self.translate(addr).is_some()
}
pub fn translate(&self, addr: u64) -> Option<write::Address> {
self.translate_raw(addr)
.map(|(func_index, address)| write::Address::Symbol {
symbol: func_index.index(),
addend: address as i64,
})
}
pub fn translate_ranges_raw(
&self,
start: u64,
end: u64,
) -> Option<(DefinedFuncIndex, Vec<(GeneratedAddress, GeneratedAddress)>)> {
if start == 0 {
// It's normally 0 for debug info without the linked code.
return None;
}
if let Some(func) = self.find_func(start) {
let mut starts: HashMap<usize, usize> =
HashMap::from_iter(TransformRangeIter::new(func, start).map(|(a, r)| (r, a)));
let mut result = Vec::new();
TransformRangeEndIter::new(func, end).for_each(|(a, r)| {
let range_start = if let Some(range_start) = starts.get(&r) {
let range_start = *range_start;
starts.remove(&r);
range_start
} else {
let range = &func.lookup.ranges[r];
range.gen_start
};
result.push((range_start, a));
});
for (r, range_start) in starts {
let range = &func.lookup.ranges[r];
result.push((range_start, range.gen_end));
}
return Some((func.index, result));
}
// Address was not found: function was not compiled?
None
}
pub fn translate_ranges(&self, start: u64, end: u64) -> Vec<(write::Address, u64)> {
self.translate_ranges_raw(start, end)
.map_or(vec![], |(func_index, ranges)| {
ranges
.iter()
.map(|(start, end)| {
(
write::Address::Symbol {
symbol: func_index.index(),
addend: *start as i64,
},
(*end - *start) as u64,
)
})
.collect::<Vec<_>>()
})
}
pub fn map(&self) -> &PrimaryMap<DefinedFuncIndex, FunctionMap> {
&self.map
}
pub fn func_range(&self, index: DefinedFuncIndex) -> (GeneratedAddress, GeneratedAddress) {
let map = &self.map[index];
(map.offset, map.offset + map.len)
}
pub fn func_source_range(&self, index: DefinedFuncIndex) -> (WasmAddress, WasmAddress) {
let map = &self.map[index];
(map.wasm_start, map.wasm_end)
}
pub fn convert_to_code_range(
&self,
addr: write::Address,
len: u64,
) -> (GeneratedAddress, GeneratedAddress) {
let start = if let write::Address::Symbol { addend, .. } = addr {
// TODO subtract self.map[symbol].offset ?
addend as GeneratedAddress
} else {
unreachable!();
};
(start, start + len as GeneratedAddress)
}
}
#[cfg(test)]
mod tests {
use super::{build_function_lookup, get_wasm_code_offset, AddressTransform};
use crate::read_debuginfo::WasmFileInfo;
use core::iter::FromIterator;
use cranelift_codegen::ir::SourceLoc;
use cranelift_entity::PrimaryMap;
use gimli::write::Address;
use wasmtime_environ::{FunctionAddressMap, InstructionAddressMap, ModuleAddressMap};
#[test]
fn test_get_wasm_code_offset() {
let offset = get_wasm_code_offset(SourceLoc::new(3), 1);
assert_eq!(2, offset);
let offset = get_wasm_code_offset(SourceLoc::new(16), 0xF000_0000);
assert_eq!(0x1000_0010, offset);
let offset = get_wasm_code_offset(SourceLoc::new(1), 0x20_8000_0000);
assert_eq!(0x8000_0001, offset);
}
fn create_simple_func(wasm_offset: u32) -> FunctionAddressMap {
FunctionAddressMap {
instructions: vec![
InstructionAddressMap {
srcloc: SourceLoc::new(wasm_offset + 2),
code_offset: 5,
code_len: 3,
},
InstructionAddressMap {
srcloc: SourceLoc::new(wasm_offset + 7),
code_offset: 15,
code_len: 8,
},
],
start_srcloc: SourceLoc::new(wasm_offset),
end_srcloc: SourceLoc::new(wasm_offset + 10),
body_offset: 0,
body_len: 30,
}
}
fn create_simple_module(func: FunctionAddressMap) -> ModuleAddressMap {
PrimaryMap::from_iter(vec![func])
}
#[test]
fn test_build_function_lookup_simple() {
let input = create_simple_func(11);
let (start, end, lookup) = build_function_lookup(&input, 1);
assert_eq!(10, start);
assert_eq!(20, end);
assert_eq!(1, lookup.index.len());
let index_entry = lookup.index.into_iter().next().unwrap();
assert_eq!((10u64, vec![0].into_boxed_slice()), index_entry);
assert_eq!(1, lookup.ranges.len());
let range = &lookup.ranges[0];
assert_eq!(10, range.wasm_start);
assert_eq!(20, range.wasm_end);
assert_eq!(0, range.gen_start);
assert_eq!(30, range.gen_end);
let positions = &range.positions;
assert_eq!(2, positions.len());
assert_eq!(12, positions[0].wasm_pos);
assert_eq!(5, positions[0].gen_start);
assert_eq!(8, positions[0].gen_end);
assert_eq!(17, positions[1].wasm_pos);
assert_eq!(15, positions[1].gen_start);
assert_eq!(23, positions[1].gen_end);
}
#[test]
fn test_build_function_lookup_two_ranges() {
let mut input = create_simple_func(11);
// append instruction with same srcloc as input.instructions[0]
input.instructions.push(InstructionAddressMap {
srcloc: SourceLoc::new(11 + 2),
code_offset: 23,
code_len: 3,
});
let (start, end, lookup) = build_function_lookup(&input, 1);
assert_eq!(10, start);
assert_eq!(20, end);
assert_eq!(2, lookup.index.len());
let index_entries = Vec::from_iter(lookup.index.into_iter());
assert_eq!((10u64, vec![0].into_boxed_slice()), index_entries[0]);
assert_eq!((12u64, vec![0, 1].into_boxed_slice()), index_entries[1]);
assert_eq!(2, lookup.ranges.len());
let range = &lookup.ranges[0];
assert_eq!(10, range.wasm_start);
assert_eq!(17, range.wasm_end);
assert_eq!(0, range.gen_start);
assert_eq!(23, range.gen_end);
let positions = &range.positions;
assert_eq!(2, positions.len());
assert_eq!(12, positions[0].wasm_pos);
assert_eq!(5, positions[0].gen_start);
assert_eq!(8, positions[0].gen_end);
assert_eq!(17, positions[1].wasm_pos);
assert_eq!(15, positions[1].gen_start);
assert_eq!(23, positions[1].gen_end);
let range = &lookup.ranges[1];
assert_eq!(12, range.wasm_start);
assert_eq!(20, range.wasm_end);
assert_eq!(23, range.gen_start);
assert_eq!(30, range.gen_end);
let positions = &range.positions;
assert_eq!(1, positions.len());
assert_eq!(12, positions[0].wasm_pos);
assert_eq!(23, positions[0].gen_start);
assert_eq!(26, positions[0].gen_end);
}
#[test]
fn test_addr_translate() {
let input = create_simple_module(create_simple_func(11));
let at = AddressTransform::new(
&input,
&WasmFileInfo {
path: None,
code_section_offset: 1,
funcs: Box::new([]),
},
);
let addr = at.translate(10);
assert_eq!(
Some(Address::Symbol {
symbol: 0,
addend: 0,
}),
addr
);
let addr = at.translate(20);
assert_eq!(
Some(Address::Symbol {
symbol: 0,
addend: 30,
}),
addr
);
let addr = at.translate(0);
assert_eq!(None, addr);
let addr = at.translate(12);
assert_eq!(
Some(Address::Symbol {
symbol: 0,
addend: 5,
}),
addr
);
let addr = at.translate(18);
assert_eq!(
Some(Address::Symbol {
symbol: 0,
addend: 23,
}),
addr
);
}
}

View File

@@ -0,0 +1,294 @@
use crate::HashMap;
use alloc::vec::Vec;
use failure::Error;
use gimli;
use gimli::{AttributeValue, DebugLineOffset, DebugStr, DebuggingInformationEntry, UnitOffset};
use gimli::write;
use super::address_transform::AddressTransform;
use super::expression::{compile_expression, CompiledExpression, FunctionFrameInfo};
use super::range_info_builder::RangeInfoBuilder;
use super::unit::PendingDieRef;
use super::{DebugInputContext, Reader, TransformError};
pub(crate) enum FileAttributeContext<'a> {
Root(Option<DebugLineOffset>),
Children(&'a Vec<write::FileId>, Option<&'a CompiledExpression>),
}
fn is_exprloc_to_loclist_allowed(attr_name: gimli::constants::DwAt) -> bool {
match attr_name {
gimli::DW_AT_location
| gimli::DW_AT_string_length
| gimli::DW_AT_return_addr
| gimli::DW_AT_data_member_location
| gimli::DW_AT_frame_base
| gimli::DW_AT_segment
| gimli::DW_AT_static_link
| gimli::DW_AT_use_location
| gimli::DW_AT_vtable_elem_location => true,
_ => false,
}
}
pub(crate) fn clone_die_attributes<'a, R>(
entry: &DebuggingInformationEntry<R>,
context: &DebugInputContext<R>,
addr_tr: &'a AddressTransform,
frame_info: Option<&FunctionFrameInfo>,
unit_encoding: gimli::Encoding,
out_unit: &mut write::Unit,
current_scope_id: write::UnitEntryId,
subprogram_range_builder: Option<RangeInfoBuilder>,
scope_ranges: Option<&Vec<(u64, u64)>>,
cu_low_pc: u64,
out_strings: &mut write::StringTable,
die_ref_map: &HashMap<UnitOffset, write::UnitEntryId>,
pending_die_refs: &mut Vec<PendingDieRef>,
file_context: FileAttributeContext<'a>,
) -> Result<(), Error>
where
R: Reader,
{
let _tag = &entry.tag();
let endian = gimli::RunTimeEndian::Little;
let range_info = if let Some(subprogram_range_builder) = subprogram_range_builder {
subprogram_range_builder
} else if entry.tag() == gimli::DW_TAG_compile_unit {
// FIXME currently address_transform operate on a single func range,
// once it is fixed we can properly set DW_AT_ranges attribute.
// Using for now DW_AT_low_pc = 0.
RangeInfoBuilder::Position(0)
} else {
RangeInfoBuilder::from(entry, context, unit_encoding, cu_low_pc)?
};
range_info.build(addr_tr, out_unit, current_scope_id);
let mut attrs = entry.attrs();
while let Some(attr) = attrs.next()? {
let attr_value = match attr.value() {
AttributeValue::Addr(_) if attr.name() == gimli::DW_AT_low_pc => {
continue;
}
AttributeValue::Udata(_) if attr.name() == gimli::DW_AT_high_pc => {
continue;
}
AttributeValue::RangeListsRef(_) if attr.name() == gimli::DW_AT_ranges => {
continue;
}
AttributeValue::Exprloc(_) if attr.name() == gimli::DW_AT_frame_base => {
continue;
}
AttributeValue::Addr(u) => {
let addr = addr_tr.translate(u).unwrap_or(write::Address::Constant(0));
write::AttributeValue::Address(addr)
}
AttributeValue::Udata(u) => write::AttributeValue::Udata(u),
AttributeValue::Data1(d) => write::AttributeValue::Data1(d),
AttributeValue::Data2(d) => write::AttributeValue::Data2(d),
AttributeValue::Data4(d) => write::AttributeValue::Data4(d),
AttributeValue::Sdata(d) => write::AttributeValue::Sdata(d),
AttributeValue::Flag(f) => write::AttributeValue::Flag(f),
AttributeValue::DebugLineRef(line_program_offset) => {
if let FileAttributeContext::Root(o) = file_context {
if o != Some(line_program_offset) {
return Err(TransformError("invalid debug_line offset").into());
}
write::AttributeValue::LineProgramRef
} else {
return Err(TransformError("unexpected debug_line index attribute").into());
}
}
AttributeValue::FileIndex(i) => {
if let FileAttributeContext::Children(file_map, _) = file_context {
write::AttributeValue::FileIndex(Some(file_map[(i - 1) as usize]))
} else {
return Err(TransformError("unexpected file index attribute").into());
}
}
AttributeValue::DebugStrRef(str_offset) => {
let s = context.debug_str.get_str(str_offset)?.to_slice()?.to_vec();
write::AttributeValue::StringRef(out_strings.add(s))
}
AttributeValue::RangeListsRef(r) => {
let range_info =
RangeInfoBuilder::from_ranges_ref(r, context, unit_encoding, cu_low_pc)?;
let range_list_id = range_info.build_ranges(addr_tr, &mut out_unit.ranges);
write::AttributeValue::RangeListRef(range_list_id)
}
AttributeValue::LocationListsRef(r) => {
let low_pc = 0;
let mut locs = context.loclists.locations(
r,
unit_encoding,
low_pc,
&context.debug_addr,
context.debug_addr_base,
)?;
let frame_base = if let FileAttributeContext::Children(_, frame_base) = file_context
{
frame_base
} else {
None
};
let mut result = None;
while let Some(loc) = locs.next()? {
if let Some(expr) = compile_expression(&loc.data, unit_encoding, frame_base)? {
if result.is_none() {
result = Some(Vec::new());
}
for (start, len, expr) in expr.build_with_locals(
&[(loc.range.begin, loc.range.end)],
addr_tr,
frame_info,
endian,
) {
if len == 0 {
// Ignore empty range
continue;
}
result.as_mut().unwrap().push(write::Location::StartLength {
begin: start,
length: len,
data: expr,
});
}
} else {
// FIXME _expr contains invalid expression
continue; // ignore entry
}
}
if result.is_none() {
continue; // no valid locations
}
let list_id = out_unit.locations.add(write::LocationList(result.unwrap()));
write::AttributeValue::LocationListRef(list_id)
}
AttributeValue::Exprloc(ref expr) => {
let frame_base = if let FileAttributeContext::Children(_, frame_base) = file_context
{
frame_base
} else {
None
};
if let Some(expr) = compile_expression(expr, unit_encoding, frame_base)? {
if expr.is_simple() {
if let Some(expr) = expr.build() {
write::AttributeValue::Exprloc(expr)
} else {
continue;
}
} else {
// Conversion to loclist is required.
if let Some(scope_ranges) = scope_ranges {
let exprs =
expr.build_with_locals(scope_ranges, addr_tr, frame_info, endian);
if exprs.is_empty() {
continue;
}
let found_single_expr = {
// Micro-optimization all expressions alike, use one exprloc.
let mut found_expr: Option<write::Expression> = None;
for (_, _, expr) in &exprs {
if let Some(ref prev_expr) = found_expr {
if expr.0.eq(&prev_expr.0) {
continue; // the same expression
}
found_expr = None;
break;
}
found_expr = Some(expr.clone())
}
found_expr
};
if found_single_expr.is_some() {
write::AttributeValue::Exprloc(found_single_expr.unwrap())
} else if is_exprloc_to_loclist_allowed(attr.name()) {
// Converting exprloc to loclist.
let mut locs = Vec::new();
for (begin, length, data) in exprs {
if length == 0 {
// Ignore empty range
continue;
}
locs.push(write::Location::StartLength {
begin,
length,
data,
});
}
let list_id = out_unit.locations.add(write::LocationList(locs));
write::AttributeValue::LocationListRef(list_id)
} else {
continue;
}
} else {
continue;
}
}
} else {
// FIXME _expr contains invalid expression
continue; // ignore attribute
}
}
AttributeValue::Encoding(e) => write::AttributeValue::Encoding(e),
AttributeValue::DecimalSign(e) => write::AttributeValue::DecimalSign(e),
AttributeValue::Endianity(e) => write::AttributeValue::Endianity(e),
AttributeValue::Accessibility(e) => write::AttributeValue::Accessibility(e),
AttributeValue::Visibility(e) => write::AttributeValue::Visibility(e),
AttributeValue::Virtuality(e) => write::AttributeValue::Virtuality(e),
AttributeValue::Language(e) => write::AttributeValue::Language(e),
AttributeValue::AddressClass(e) => write::AttributeValue::AddressClass(e),
AttributeValue::IdentifierCase(e) => write::AttributeValue::IdentifierCase(e),
AttributeValue::CallingConvention(e) => write::AttributeValue::CallingConvention(e),
AttributeValue::Inline(e) => write::AttributeValue::Inline(e),
AttributeValue::Ordering(e) => write::AttributeValue::Ordering(e),
AttributeValue::UnitRef(ref offset) => {
if let Some(unit_id) = die_ref_map.get(offset) {
write::AttributeValue::ThisUnitEntryRef(*unit_id)
} else {
pending_die_refs.push((current_scope_id, attr.name(), *offset));
continue;
}
}
// AttributeValue::DebugInfoRef(_) => {
// continue;
// }
_ => panic!(), //write::AttributeValue::StringRef(out_strings.add("_")),
};
let current_scope = out_unit.get_mut(current_scope_id);
current_scope.set(attr.name(), attr_value);
}
Ok(())
}
pub(crate) fn clone_attr_string<R>(
attr_value: &AttributeValue<R>,
form: gimli::DwForm,
debug_str: &DebugStr<R>,
out_strings: &mut write::StringTable,
) -> Result<write::LineString, gimli::Error>
where
R: Reader,
{
let content = match attr_value {
AttributeValue::DebugStrRef(str_offset) => {
debug_str.get_str(*str_offset)?.to_slice()?.to_vec()
}
AttributeValue::String(b) => b.to_slice()?.to_vec(),
_ => panic!("Unexpected attribute value"),
};
Ok(match form {
gimli::DW_FORM_strp => {
let id = out_strings.add(content);
write::LineString::StringRef(id)
}
gimli::DW_FORM_string => write::LineString::String(content),
_ => panic!("DW_FORM_line_strp or other not supported"),
})
}

View File

@@ -0,0 +1,491 @@
use crate::{HashMap, HashSet};
use alloc::vec::Vec;
use cranelift_codegen::ir::{StackSlots, ValueLabel, ValueLoc};
use cranelift_codegen::isa::RegUnit;
use cranelift_codegen::ValueLabelsRanges;
use cranelift_entity::EntityRef;
use cranelift_wasm::{get_vmctx_value_label, DefinedFuncIndex};
use failure::Error;
use gimli::write;
use gimli::{self, Expression, Operation, Reader, ReaderOffset, Register, X86_64};
use super::address_transform::AddressTransform;
#[derive(Debug)]
pub struct FunctionFrameInfo<'a> {
pub value_ranges: &'a ValueLabelsRanges,
pub memory_offset: i64,
pub stack_slots: &'a StackSlots,
}
#[derive(Debug)]
enum CompiledExpressionPart {
Code(Vec<u8>),
Local(ValueLabel),
Deref,
}
#[derive(Debug)]
pub struct CompiledExpression {
parts: Vec<CompiledExpressionPart>,
need_deref: bool,
}
impl Clone for CompiledExpressionPart {
fn clone(&self) -> Self {
match self {
CompiledExpressionPart::Code(c) => CompiledExpressionPart::Code(c.clone()),
CompiledExpressionPart::Local(i) => CompiledExpressionPart::Local(*i),
CompiledExpressionPart::Deref => CompiledExpressionPart::Deref,
}
}
}
impl CompiledExpression {
pub fn vmctx() -> CompiledExpression {
CompiledExpression::from_label(get_vmctx_value_label())
}
pub fn from_label(label: ValueLabel) -> CompiledExpression {
CompiledExpression {
parts: vec![
CompiledExpressionPart::Local(label),
CompiledExpressionPart::Code(vec![gimli::constants::DW_OP_stack_value.0 as u8]),
],
need_deref: false,
}
}
}
fn map_reg(reg: RegUnit) -> Register {
static mut REG_X86_MAP: Option<HashMap<RegUnit, Register>> = None;
// FIXME lazy initialization?
unsafe {
if REG_X86_MAP.is_none() {
REG_X86_MAP = Some(HashMap::new());
}
if let Some(val) = REG_X86_MAP.as_mut().unwrap().get(&reg) {
return *val;
}
let result = match reg {
0 => X86_64::RAX,
1 => X86_64::RCX,
2 => X86_64::RDX,
3 => X86_64::RBX,
4 => X86_64::RSP,
5 => X86_64::RBP,
6 => X86_64::RSI,
7 => X86_64::RDI,
8 => X86_64::R8,
9 => X86_64::R9,
10 => X86_64::R10,
11 => X86_64::R11,
12 => X86_64::R12,
13 => X86_64::R13,
14 => X86_64::R14,
15 => X86_64::R15,
16 => X86_64::XMM0,
17 => X86_64::XMM1,
18 => X86_64::XMM2,
19 => X86_64::XMM3,
20 => X86_64::XMM4,
21 => X86_64::XMM5,
22 => X86_64::XMM6,
23 => X86_64::XMM7,
_ => panic!("{}", reg),
};
REG_X86_MAP.as_mut().unwrap().insert(reg, result);
result
}
}
fn translate_loc(loc: ValueLoc, frame_info: Option<&FunctionFrameInfo>) -> Option<Vec<u8>> {
match loc {
ValueLoc::Reg(reg) => {
let machine_reg = map_reg(reg).0 as u8;
assert!(machine_reg < 32); // FIXME
Some(vec![gimli::constants::DW_OP_reg0.0 + machine_reg])
}
ValueLoc::Stack(ss) => {
if let Some(frame_info) = frame_info {
if let Some(ss_offset) = frame_info.stack_slots[ss].offset {
use gimli::write::Writer;
let endian = gimli::RunTimeEndian::Little;
let mut writer = write::EndianVec::new(endian);
writer
.write_u8(gimli::constants::DW_OP_breg0.0 + X86_64::RBP.0 as u8)
.expect("bp wr");
writer.write_sleb128(ss_offset as i64 + 16).expect("ss wr");
writer
.write_u8(gimli::constants::DW_OP_deref.0 as u8)
.expect("bp wr");
let buf = writer.into_vec();
return Some(buf);
}
}
None
}
_ => None,
}
}
fn append_memory_deref(
buf: &mut Vec<u8>,
frame_info: &FunctionFrameInfo,
vmctx_loc: ValueLoc,
endian: gimli::RunTimeEndian,
) -> write::Result<bool> {
use gimli::write::Writer;
let mut writer = write::EndianVec::new(endian);
match vmctx_loc {
ValueLoc::Reg(vmctx_reg) => {
let reg = map_reg(vmctx_reg);
writer.write_u8(gimli::constants::DW_OP_breg0.0 + reg.0 as u8)?;
writer.write_sleb128(frame_info.memory_offset)?;
}
ValueLoc::Stack(ss) => {
if let Some(ss_offset) = frame_info.stack_slots[ss].offset {
writer.write_u8(gimli::constants::DW_OP_breg0.0 + X86_64::RBP.0 as u8)?;
writer.write_sleb128(ss_offset as i64 + 16)?;
writer.write_u8(gimli::constants::DW_OP_deref.0 as u8)?;
writer.write_u8(gimli::constants::DW_OP_consts.0 as u8)?;
writer.write_sleb128(frame_info.memory_offset)?;
writer.write_u8(gimli::constants::DW_OP_plus.0 as u8)?;
} else {
return Ok(false);
}
}
_ => {
return Ok(false);
}
}
writer.write_u8(gimli::constants::DW_OP_deref.0 as u8)?;
writer.write_u8(gimli::constants::DW_OP_swap.0 as u8)?;
writer.write_u8(gimli::constants::DW_OP_stack_value.0 as u8)?;
writer.write_u8(gimli::constants::DW_OP_constu.0 as u8)?;
writer.write_uleb128(0xffff_ffff)?;
writer.write_u8(gimli::constants::DW_OP_and.0 as u8)?;
writer.write_u8(gimli::constants::DW_OP_plus.0 as u8)?;
buf.extend_from_slice(writer.slice());
Ok(true)
}
impl CompiledExpression {
pub fn is_simple(&self) -> bool {
if let [CompiledExpressionPart::Code(_)] = self.parts.as_slice() {
true
} else {
self.parts.is_empty()
}
}
pub fn build(&self) -> Option<write::Expression> {
if let [CompiledExpressionPart::Code(code)] = self.parts.as_slice() {
return Some(write::Expression(code.to_vec()));
}
// locals found, not supported
None
}
pub fn build_with_locals(
&self,
scope: &[(u64, u64)], // wasm ranges
addr_tr: &AddressTransform,
frame_info: Option<&FunctionFrameInfo>,
endian: gimli::RunTimeEndian,
) -> alloc::vec::Vec<(write::Address, u64, write::Expression)> {
if scope.is_empty() {
return vec![];
}
if let [CompiledExpressionPart::Code(code)] = self.parts.as_slice() {
let mut result_scope = Vec::new();
for s in scope {
for (addr, len) in addr_tr.translate_ranges(s.0, s.1) {
result_scope.push((addr, len, write::Expression(code.to_vec())));
}
}
return result_scope;
}
let vmctx_label = get_vmctx_value_label();
// Some locals are present, preparing and divided ranges based on the scope
// and frame_info data.
let mut ranges_builder = ValueLabelRangesBuilder::new(scope, addr_tr, frame_info);
for p in &self.parts {
match p {
CompiledExpressionPart::Code(_) => (),
CompiledExpressionPart::Local(label) => ranges_builder.process_label(*label),
CompiledExpressionPart::Deref => ranges_builder.process_label(vmctx_label),
}
}
if self.need_deref {
ranges_builder.process_label(vmctx_label);
}
ranges_builder.remove_incomplete_ranges();
let ranges = ranges_builder.ranges;
let mut result = Vec::new();
'range: for CachedValueLabelRange {
func_index,
start,
end,
label_location,
} in ranges
{
// build expression
let mut code_buf = Vec::new();
for part in &self.parts {
match part {
CompiledExpressionPart::Code(c) => code_buf.extend_from_slice(c.as_slice()),
CompiledExpressionPart::Local(label) => {
let loc = *label_location.get(&label).expect("loc");
if let Some(expr) = translate_loc(loc, frame_info) {
code_buf.extend_from_slice(&expr)
} else {
continue 'range;
}
}
CompiledExpressionPart::Deref => {
if let (Some(vmctx_loc), Some(frame_info)) =
(label_location.get(&vmctx_label), frame_info)
{
if !append_memory_deref(&mut code_buf, frame_info, *vmctx_loc, endian)
.expect("append_memory_deref")
{
continue 'range;
}
} else {
continue 'range;
};
}
}
}
if self.need_deref {
if let (Some(vmctx_loc), Some(frame_info)) =
(label_location.get(&vmctx_label), frame_info)
{
if !append_memory_deref(&mut code_buf, frame_info, *vmctx_loc, endian)
.expect("append_memory_deref")
{
continue 'range;
}
} else {
continue 'range;
};
}
result.push((
write::Address::Symbol {
symbol: func_index.index(),
addend: start as i64,
},
(end - start) as u64,
write::Expression(code_buf),
));
}
result
}
}
pub fn compile_expression<R>(
expr: &Expression<R>,
encoding: gimli::Encoding,
frame_base: Option<&CompiledExpression>,
) -> Result<Option<CompiledExpression>, Error>
where
R: Reader,
{
let mut parts = Vec::new();
let mut need_deref = false;
if let Some(frame_base) = frame_base {
parts.extend_from_slice(&frame_base.parts);
need_deref = frame_base.need_deref;
}
let base_len = parts.len();
let mut pc = expr.0.clone();
let mut code_chunk = Vec::new();
let buf = expr.0.to_slice()?;
while !pc.is_empty() {
let next = buf[pc.offset_from(&expr.0).into_u64() as usize];
need_deref = true;
if next == 0xED {
// WebAssembly DWARF extension
pc.read_u8()?;
let ty = pc.read_uleb128()?;
assert_eq!(ty, 0);
let index = pc.read_sleb128()?;
pc.read_u8()?; // consume 159
if code_chunk.len() > 0 {
parts.push(CompiledExpressionPart::Code(code_chunk));
code_chunk = Vec::new();
}
let label = ValueLabel::from_u32(index as u32);
parts.push(CompiledExpressionPart::Local(label));
} else {
let pos = pc.offset_from(&expr.0).into_u64() as usize;
let op = Operation::parse(&mut pc, &expr.0, encoding)?;
match op {
Operation::Literal { .. } | Operation::PlusConstant { .. } => (),
Operation::StackValue => {
need_deref = false;
}
Operation::Deref { .. } => {
if code_chunk.len() > 0 {
parts.push(CompiledExpressionPart::Code(code_chunk));
code_chunk = Vec::new();
}
parts.push(CompiledExpressionPart::Deref);
}
_ => {
return Ok(None);
}
}
let chunk = &buf[pos..pc.offset_from(&expr.0).into_u64() as usize];
code_chunk.extend_from_slice(chunk);
}
}
if code_chunk.len() > 0 {
parts.push(CompiledExpressionPart::Code(code_chunk));
}
if base_len > 0 && base_len + 1 < parts.len() {
// see if we can glue two code chunks
if let [CompiledExpressionPart::Code(cc1), CompiledExpressionPart::Code(cc2)] =
&parts[base_len..base_len + 1]
{
let mut combined = cc1.clone();
combined.extend_from_slice(cc2);
parts[base_len] = CompiledExpressionPart::Code(combined);
parts.remove(base_len + 1);
}
}
Ok(Some(CompiledExpression { parts, need_deref }))
}
#[derive(Debug, Clone)]
struct CachedValueLabelRange {
func_index: DefinedFuncIndex,
start: usize,
end: usize,
label_location: HashMap<ValueLabel, ValueLoc>,
}
struct ValueLabelRangesBuilder<'a, 'b> {
ranges: Vec<CachedValueLabelRange>,
addr_tr: &'a AddressTransform,
frame_info: Option<&'a FunctionFrameInfo<'b>>,
processed_labels: HashSet<ValueLabel>,
}
impl<'a, 'b> ValueLabelRangesBuilder<'a, 'b> {
fn new(
scope: &[(u64, u64)], // wasm ranges
addr_tr: &'a AddressTransform,
frame_info: Option<&'a FunctionFrameInfo<'b>>,
) -> Self {
let mut ranges = Vec::new();
for s in scope {
if let Some((func_index, tr)) = addr_tr.translate_ranges_raw(s.0, s.1) {
for (start, end) in tr {
ranges.push(CachedValueLabelRange {
func_index,
start,
end,
label_location: HashMap::new(),
})
}
}
}
ranges.sort_unstable_by(|a, b| a.start.cmp(&b.start));
ValueLabelRangesBuilder {
ranges,
addr_tr,
frame_info,
processed_labels: HashSet::new(),
}
}
fn process_label(&mut self, label: ValueLabel) {
if self.processed_labels.contains(&label) {
return;
}
self.processed_labels.insert(label);
let value_ranges = if let Some(frame_info) = self.frame_info {
&frame_info.value_ranges
} else {
return;
};
let ranges = &mut self.ranges;
if let Some(local_ranges) = value_ranges.get(&label) {
for local_range in local_ranges {
let wasm_start = local_range.start;
let wasm_end = local_range.end;
let loc = local_range.loc;
// Find all native ranges for the value label ranges.
for (addr, len) in self
.addr_tr
.translate_ranges(wasm_start as u64, wasm_end as u64)
{
let (range_start, range_end) = self.addr_tr.convert_to_code_range(addr, len);
if range_start == range_end {
continue;
}
assert!(range_start < range_end);
// Find acceptable scope of ranges to intersect with.
let i = match ranges.binary_search_by(|s| s.start.cmp(&range_start)) {
Ok(i) => i,
Err(i) => {
if i > 0 && range_start < ranges[i - 1].end {
i - 1
} else {
i
}
}
};
let j = match ranges.binary_search_by(|s| s.start.cmp(&range_end)) {
Ok(i) | Err(i) => i,
};
// Starting for the end, intersect (range_start..range_end) with
// self.ranges array.
for i in (i..j).rev() {
if range_end <= ranges[i].start || ranges[i].end <= range_start {
continue;
}
if range_end < ranges[i].end {
// Cutting some of the range from the end.
let mut tail = ranges[i].clone();
ranges[i].end = range_end;
tail.start = range_end;
ranges.insert(i + 1, tail);
}
assert!(ranges[i].end <= range_end);
if range_start <= ranges[i].start {
ranges[i].label_location.insert(label, loc);
continue;
}
// Cutting some of the range from the start.
let mut tail = ranges[i].clone();
ranges[i].end = range_start;
tail.start = range_start;
tail.label_location.insert(label, loc);
ranges.insert(i + 1, tail);
}
}
}
}
}
fn remove_incomplete_ranges(&mut self) {
// Ranges with not-enough labels are discarded.
let processed_labels_len = self.processed_labels.len();
self.ranges
.retain(|r| r.label_location.len() == processed_labels_len);
}
}

View File

@@ -0,0 +1,234 @@
use alloc::collections::BTreeMap;
use alloc::vec::Vec;
use core::iter::FromIterator;
use cranelift_entity::EntityRef;
use failure::Error;
use gimli;
use gimli::{DebugLine, DebugLineOffset, DebugStr, DebuggingInformationEntry, LineEncoding, Unit};
use gimli::write;
use super::address_transform::AddressTransform;
use super::attr::clone_attr_string;
use super::{Reader, TransformError};
#[derive(Debug)]
enum SavedLineProgramRow {
Normal {
address: u64,
op_index: u64,
file_index: u64,
line: u64,
column: u64,
discriminator: u64,
is_stmt: bool,
basic_block: bool,
prologue_end: bool,
epilogue_begin: bool,
isa: u64,
},
EndOfSequence(u64),
}
#[derive(Debug, Eq, PartialEq)]
enum ReadLineProgramState {
SequenceEnded,
ReadSequence,
IgnoreSequence,
}
pub(crate) fn clone_line_program<R>(
unit: &Unit<R, R::Offset>,
root: &DebuggingInformationEntry<R>,
addr_tr: &AddressTransform,
out_encoding: gimli::Encoding,
debug_str: &DebugStr<R>,
debug_line: &DebugLine<R>,
out_strings: &mut write::StringTable,
) -> Result<(write::LineProgram, DebugLineOffset, Vec<write::FileId>), Error>
where
R: Reader,
{
let offset = match root.attr_value(gimli::DW_AT_stmt_list)? {
Some(gimli::AttributeValue::DebugLineRef(offset)) => offset,
_ => {
return Err(TransformError("Debug line offset is not found").into());
}
};
let comp_dir = root.attr_value(gimli::DW_AT_comp_dir)?;
let comp_name = root.attr_value(gimli::DW_AT_name)?;
let out_comp_dir = clone_attr_string(
comp_dir.as_ref().expect("comp_dir"),
gimli::DW_FORM_strp,
debug_str,
out_strings,
)?;
let out_comp_name = clone_attr_string(
comp_name.as_ref().expect("comp_name"),
gimli::DW_FORM_strp,
debug_str,
out_strings,
)?;
let program = debug_line.program(
offset,
unit.header.address_size(),
comp_dir.and_then(|val| val.string_value(&debug_str)),
comp_name.and_then(|val| val.string_value(&debug_str)),
);
if let Ok(program) = program {
let header = program.header();
assert!(header.version() <= 4, "not supported 5");
let line_encoding = LineEncoding {
minimum_instruction_length: header.minimum_instruction_length(),
maximum_operations_per_instruction: header.maximum_operations_per_instruction(),
default_is_stmt: header.default_is_stmt(),
line_base: header.line_base(),
line_range: header.line_range(),
};
let mut out_program = write::LineProgram::new(
out_encoding,
line_encoding,
out_comp_dir,
out_comp_name,
None,
);
let mut dirs = Vec::new();
dirs.push(out_program.default_directory());
for dir_attr in header.include_directories() {
let dir_id = out_program.add_directory(clone_attr_string(
dir_attr,
gimli::DW_FORM_string,
debug_str,
out_strings,
)?);
dirs.push(dir_id);
}
let mut files = Vec::new();
for file_entry in header.file_names() {
let dir_id = dirs[file_entry.directory_index() as usize];
let file_id = out_program.add_file(
clone_attr_string(
&file_entry.path_name(),
gimli::DW_FORM_string,
debug_str,
out_strings,
)?,
dir_id,
None,
);
files.push(file_id);
}
let mut rows = program.rows();
let mut saved_rows = BTreeMap::new();
let mut state = ReadLineProgramState::SequenceEnded;
while let Some((_header, row)) = rows.next_row()? {
if state == ReadLineProgramState::IgnoreSequence {
if row.end_sequence() {
state = ReadLineProgramState::SequenceEnded;
}
continue;
}
let saved_row = if row.end_sequence() {
state = ReadLineProgramState::SequenceEnded;
SavedLineProgramRow::EndOfSequence(row.address())
} else {
if state == ReadLineProgramState::SequenceEnded {
// Discard sequences for non-existent code.
if row.address() == 0 {
state = ReadLineProgramState::IgnoreSequence;
continue;
}
state = ReadLineProgramState::ReadSequence;
}
SavedLineProgramRow::Normal {
address: row.address(),
op_index: row.op_index(),
file_index: row.file_index(),
line: row.line().unwrap_or(0),
column: match row.column() {
gimli::ColumnType::LeftEdge => 0,
gimli::ColumnType::Column(val) => val,
},
discriminator: row.discriminator(),
is_stmt: row.is_stmt(),
basic_block: row.basic_block(),
prologue_end: row.prologue_end(),
epilogue_begin: row.epilogue_begin(),
isa: row.isa(),
}
};
saved_rows.insert(row.address(), saved_row);
}
let saved_rows = Vec::from_iter(saved_rows.into_iter());
for (i, map) in addr_tr.map() {
if map.len == 0 {
continue; // no code generated
}
let symbol = i.index();
let base_addr = map.offset;
out_program.begin_sequence(Some(write::Address::Symbol { symbol, addend: 0 }));
// TODO track and place function declaration line here
let mut last_address = None;
for addr_map in map.addresses.iter() {
let saved_row = match saved_rows.binary_search_by_key(&addr_map.wasm, |i| i.0) {
Ok(i) => Some(&saved_rows[i].1),
Err(i) => {
if i > 0 {
Some(&saved_rows[i - 1].1)
} else {
None
}
}
};
if let Some(SavedLineProgramRow::Normal {
address,
op_index,
file_index,
line,
column,
discriminator,
is_stmt,
basic_block,
prologue_end,
epilogue_begin,
isa,
}) = saved_row
{
// Ignore duplicates
if Some(*address) != last_address {
let address_offset = if last_address.is_none() {
// Extend first entry to the function declaration
// TODO use the function declaration line instead
0
} else {
(addr_map.generated - base_addr) as u64
};
out_program.row().address_offset = address_offset;
out_program.row().op_index = *op_index;
out_program.row().file = files[(file_index - 1) as usize];
out_program.row().line = *line;
out_program.row().column = *column;
out_program.row().discriminator = *discriminator;
out_program.row().is_statement = *is_stmt;
out_program.row().basic_block = *basic_block;
out_program.row().prologue_end = *prologue_end;
out_program.row().epilogue_begin = *epilogue_begin;
out_program.row().isa = *isa;
out_program.generate_row();
last_address = Some(*address);
}
}
}
let end_addr = (map.offset + map.len - 1) as u64;
out_program.end_sequence(end_addr);
}
Ok((out_program, offset, files))
} else {
Err(TransformError("Valid line program not found").into())
}
}

View File

@@ -0,0 +1,119 @@
use crate::gc::build_dependencies;
use crate::DebugInfoData;
use crate::HashSet;
use cranelift_codegen::isa::TargetFrontendConfig;
use failure::Error;
use simulate::generate_simulated_dwarf;
use thiserror::Error;
use wasmtime_environ::{ModuleAddressMap, ModuleVmctxInfo, ValueLabelsRanges};
use gimli;
use gimli::{
DebugAddr, DebugAddrBase, DebugLine, DebugStr, LocationLists, RangeLists, UnitSectionOffset,
};
use gimli::write;
pub use address_transform::AddressTransform;
use unit::clone_unit;
mod address_transform;
mod attr;
mod expression;
mod line_program;
mod range_info_builder;
mod simulate;
mod unit;
mod utils;
pub(crate) trait Reader: gimli::Reader<Offset = usize> {}
impl<'input, Endian> Reader for gimli::EndianSlice<'input, Endian> where Endian: gimli::Endianity {}
#[derive(Error, Debug)]
#[error("Debug info transform error: {0}")]
pub struct TransformError(&'static str);
pub(crate) struct DebugInputContext<'a, R>
where
R: Reader,
{
debug_str: &'a DebugStr<R>,
debug_line: &'a DebugLine<R>,
debug_addr: &'a DebugAddr<R>,
debug_addr_base: DebugAddrBase<R::Offset>,
rnglists: &'a RangeLists<R>,
loclists: &'a LocationLists<R>,
reachable: &'a HashSet<UnitSectionOffset>,
}
pub fn transform_dwarf(
target_config: &TargetFrontendConfig,
di: &DebugInfoData,
at: &ModuleAddressMap,
vmctx_info: &ModuleVmctxInfo,
ranges: &ValueLabelsRanges,
) -> Result<write::Dwarf, Error> {
let addr_tr = AddressTransform::new(at, &di.wasm_file);
let reachable = build_dependencies(&di.dwarf, &addr_tr)?.get_reachable();
let context = DebugInputContext {
debug_str: &di.dwarf.debug_str,
debug_line: &di.dwarf.debug_line,
debug_addr: &di.dwarf.debug_addr,
debug_addr_base: DebugAddrBase(0),
rnglists: &di.dwarf.ranges,
loclists: &di.dwarf.locations,
reachable: &reachable,
};
let out_encoding = gimli::Encoding {
format: gimli::Format::Dwarf32,
// TODO: this should be configurable
// macOS doesn't seem to support DWARF > 3
version: 3,
address_size: target_config.pointer_bytes(),
};
let mut out_strings = write::StringTable::default();
let mut out_units = write::UnitTable::default();
let out_line_strings = write::LineStringTable::default();
let mut translated = HashSet::new();
let mut iter = di.dwarf.debug_info.units();
while let Some(unit) = iter.next().unwrap_or(None) {
let unit = di.dwarf.unit(unit)?;
clone_unit(
unit,
&context,
&addr_tr,
&ranges,
out_encoding,
&vmctx_info,
&mut out_units,
&mut out_strings,
&mut translated,
)?;
}
generate_simulated_dwarf(
&addr_tr,
di,
&vmctx_info,
&ranges,
&translated,
out_encoding,
&mut out_units,
&mut out_strings,
)?;
Ok(write::Dwarf {
units: out_units,
line_programs: vec![],
line_strings: out_line_strings,
strings: out_strings,
})
}

View File

@@ -0,0 +1,226 @@
use alloc::vec::Vec;
use cranelift_entity::EntityRef;
use cranelift_wasm::DefinedFuncIndex;
use failure::Error;
use gimli;
use gimli::{AttributeValue, DebuggingInformationEntry, RangeListsOffset};
use gimli::write;
use super::address_transform::AddressTransform;
use super::DebugInputContext;
use super::Reader;
pub(crate) enum RangeInfoBuilder {
Undefined,
Position(u64),
Ranges(Vec<(u64, u64)>),
Function(DefinedFuncIndex),
}
impl RangeInfoBuilder {
pub(crate) fn from<R>(
entry: &DebuggingInformationEntry<R>,
context: &DebugInputContext<R>,
unit_encoding: gimli::Encoding,
cu_low_pc: u64,
) -> Result<Self, Error>
where
R: Reader,
{
if let Some(AttributeValue::RangeListsRef(r)) = entry.attr_value(gimli::DW_AT_ranges)? {
return RangeInfoBuilder::from_ranges_ref(r, context, unit_encoding, cu_low_pc);
};
let low_pc =
if let Some(AttributeValue::Addr(addr)) = entry.attr_value(gimli::DW_AT_low_pc)? {
addr
} else {
return Ok(RangeInfoBuilder::Undefined);
};
Ok(
if let Some(AttributeValue::Udata(u)) = entry.attr_value(gimli::DW_AT_high_pc)? {
RangeInfoBuilder::Ranges(vec![(low_pc, low_pc + u)])
} else {
RangeInfoBuilder::Position(low_pc)
},
)
}
pub(crate) fn from_ranges_ref<R>(
ranges: RangeListsOffset,
context: &DebugInputContext<R>,
unit_encoding: gimli::Encoding,
cu_low_pc: u64,
) -> Result<Self, Error>
where
R: Reader,
{
let mut ranges = context.rnglists.ranges(
ranges,
unit_encoding,
cu_low_pc,
&context.debug_addr,
context.debug_addr_base,
)?;
let mut result = Vec::new();
while let Some(range) = ranges.next()? {
if range.begin >= range.end {
// ignore empty ranges
}
result.push((range.begin, range.end));
}
Ok(if result.len() > 0 {
RangeInfoBuilder::Ranges(result)
} else {
RangeInfoBuilder::Undefined
})
}
pub(crate) fn from_subprogram_die<R>(
entry: &DebuggingInformationEntry<R>,
context: &DebugInputContext<R>,
unit_encoding: gimli::Encoding,
addr_tr: &AddressTransform,
cu_low_pc: u64,
) -> Result<Self, Error>
where
R: Reader,
{
let addr =
if let Some(AttributeValue::Addr(addr)) = entry.attr_value(gimli::DW_AT_low_pc)? {
addr
} else if let Some(AttributeValue::RangeListsRef(r)) =
entry.attr_value(gimli::DW_AT_ranges)?
{
let mut ranges = context.rnglists.ranges(
r,
unit_encoding,
cu_low_pc,
&context.debug_addr,
context.debug_addr_base,
)?;
if let Some(range) = ranges.next()? {
range.begin
} else {
return Ok(RangeInfoBuilder::Undefined);
}
} else {
return Ok(RangeInfoBuilder::Undefined);
};
let index = addr_tr.find_func_index(addr);
if index.is_none() {
return Ok(RangeInfoBuilder::Undefined);
}
Ok(RangeInfoBuilder::Function(index.unwrap()))
}
pub(crate) fn build(
&self,
addr_tr: &AddressTransform,
out_unit: &mut write::Unit,
current_scope_id: write::UnitEntryId,
) {
match self {
RangeInfoBuilder::Undefined => (),
RangeInfoBuilder::Position(pc) => {
let addr = addr_tr
.translate(*pc)
.unwrap_or(write::Address::Constant(0));
let current_scope = out_unit.get_mut(current_scope_id);
current_scope.set(gimli::DW_AT_low_pc, write::AttributeValue::Address(addr));
}
RangeInfoBuilder::Ranges(ranges) => {
let mut result = Vec::new();
for (begin, end) in ranges {
for tr in addr_tr.translate_ranges(*begin, *end) {
if tr.1 == 0 {
// Ignore empty range
continue;
}
result.push(tr);
}
}
if result.len() != 1 {
let range_list = result
.iter()
.map(|tr| write::Range::StartLength {
begin: tr.0,
length: tr.1,
})
.collect::<Vec<_>>();
let range_list_id = out_unit.ranges.add(write::RangeList(range_list));
let current_scope = out_unit.get_mut(current_scope_id);
current_scope.set(
gimli::DW_AT_ranges,
write::AttributeValue::RangeListRef(range_list_id),
);
} else {
let current_scope = out_unit.get_mut(current_scope_id);
current_scope.set(
gimli::DW_AT_low_pc,
write::AttributeValue::Address(result[0].0),
);
current_scope.set(
gimli::DW_AT_high_pc,
write::AttributeValue::Udata(result[0].1),
);
}
}
RangeInfoBuilder::Function(index) => {
let range = addr_tr.func_range(*index);
let symbol = index.index();
let addr = write::Address::Symbol {
symbol,
addend: range.0 as i64,
};
let len = (range.1 - range.0) as u64;
let current_scope = out_unit.get_mut(current_scope_id);
current_scope.set(gimli::DW_AT_low_pc, write::AttributeValue::Address(addr));
current_scope.set(gimli::DW_AT_high_pc, write::AttributeValue::Udata(len));
}
}
}
pub(crate) fn get_ranges(&self, addr_tr: &AddressTransform) -> Vec<(u64, u64)> {
match self {
RangeInfoBuilder::Undefined | RangeInfoBuilder::Position(_) => vec![],
RangeInfoBuilder::Ranges(ranges) => ranges.clone(),
RangeInfoBuilder::Function(index) => {
let range = addr_tr.func_source_range(*index);
vec![(range.0, range.1)]
}
}
}
pub(crate) fn build_ranges(
&self,
addr_tr: &AddressTransform,
out_range_lists: &mut write::RangeListTable,
) -> write::RangeListId {
if let RangeInfoBuilder::Ranges(ranges) = self {
let mut range_list = Vec::new();
for (begin, end) in ranges {
assert!(begin < end);
for tr in addr_tr.translate_ranges(*begin, *end) {
if tr.1 == 0 {
// Ignore empty range
continue;
}
range_list.push(write::Range::StartLength {
begin: tr.0,
length: tr.1,
});
}
}
out_range_lists.add(write::RangeList(range_list))
} else {
unreachable!();
}
}
}

View File

@@ -0,0 +1,372 @@
use crate::read_debuginfo::WasmFileInfo;
pub use crate::read_debuginfo::{DebugInfoData, FunctionMetadata, WasmType};
use crate::{HashMap, HashSet};
use alloc::string::String;
use alloc::vec::Vec;
use cranelift_entity::EntityRef;
use cranelift_wasm::get_vmctx_value_label;
use failure::Error;
use std::path::PathBuf;
use wasmtime_environ::{ModuleVmctxInfo, ValueLabelsRanges};
use gimli::write;
use gimli::{self, LineEncoding};
use super::expression::{CompiledExpression, FunctionFrameInfo};
use super::utils::{add_internal_types, append_vmctx_info, get_function_frame_info};
use super::AddressTransform;
const PRODUCER_NAME: &str = "wasmtime";
fn generate_line_info(
addr_tr: &AddressTransform,
translated: &HashSet<u32>,
out_encoding: gimli::Encoding,
w: &WasmFileInfo,
comp_dir_id: write::StringId,
name_id: write::StringId,
name: &str,
) -> Result<write::LineProgram, Error> {
let out_comp_dir = write::LineString::StringRef(comp_dir_id);
let out_comp_name = write::LineString::StringRef(name_id);
let line_encoding = LineEncoding::default();
let mut out_program = write::LineProgram::new(
out_encoding,
line_encoding,
out_comp_dir,
out_comp_name,
None,
);
let file_index = out_program.add_file(
write::LineString::String(name.as_bytes().to_vec()),
out_program.default_directory(),
None,
);
for (i, map) in addr_tr.map() {
let symbol = i.index();
if translated.contains(&(symbol as u32)) {
continue;
}
let base_addr = map.offset;
out_program.begin_sequence(Some(write::Address::Symbol { symbol, addend: 0 }));
for addr_map in map.addresses.iter() {
let address_offset = (addr_map.generated - base_addr) as u64;
out_program.row().address_offset = address_offset;
out_program.row().op_index = 0;
out_program.row().file = file_index;
let wasm_offset = w.code_section_offset + addr_map.wasm as u64;
out_program.row().line = wasm_offset;
out_program.row().column = 0;
out_program.row().discriminator = 1;
out_program.row().is_statement = true;
out_program.row().basic_block = false;
out_program.row().prologue_end = false;
out_program.row().epilogue_begin = false;
out_program.row().isa = 0;
out_program.generate_row();
}
let end_addr = (map.offset + map.len - 1) as u64;
out_program.end_sequence(end_addr);
}
Ok(out_program)
}
fn autogenerate_dwarf_wasm_path(di: &DebugInfoData) -> PathBuf {
let module_name = di
.name_section
.as_ref()
.and_then(|ns| ns.module_name.to_owned())
.unwrap_or_else(|| unsafe {
static mut GEN_ID: u32 = 0;
GEN_ID += 1;
format!("<gen-{}>", GEN_ID)
});
let path = format!("/<wasm-module>/{}.wasm", module_name);
PathBuf::from(path)
}
struct WasmTypesDieRefs {
vmctx: write::UnitEntryId,
i32: write::UnitEntryId,
i64: write::UnitEntryId,
f32: write::UnitEntryId,
f64: write::UnitEntryId,
}
fn add_wasm_types(
unit: &mut write::Unit,
root_id: write::UnitEntryId,
out_strings: &mut write::StringTable,
vmctx_info: &ModuleVmctxInfo,
) -> WasmTypesDieRefs {
let (_wp_die_id, vmctx_die_id) = add_internal_types(unit, root_id, out_strings, vmctx_info);
macro_rules! def_type {
($id:literal, $size:literal, $enc:path) => {{
let die_id = unit.add(root_id, gimli::DW_TAG_base_type);
let die = unit.get_mut(die_id);
die.set(
gimli::DW_AT_name,
write::AttributeValue::StringRef(out_strings.add($id)),
);
die.set(gimli::DW_AT_byte_size, write::AttributeValue::Data1($size));
die.set(gimli::DW_AT_encoding, write::AttributeValue::Encoding($enc));
die_id
}};
}
let i32_die_id = def_type!("i32", 4, gimli::DW_ATE_signed);
let i64_die_id = def_type!("i64", 8, gimli::DW_ATE_signed);
let f32_die_id = def_type!("f32", 4, gimli::DW_ATE_float);
let f64_die_id = def_type!("f64", 8, gimli::DW_ATE_float);
WasmTypesDieRefs {
vmctx: vmctx_die_id,
i32: i32_die_id,
i64: i64_die_id,
f32: f32_die_id,
f64: f64_die_id,
}
}
fn resolve_var_type(
index: usize,
wasm_types: &WasmTypesDieRefs,
func_meta: &FunctionMetadata,
) -> Option<(write::UnitEntryId, bool)> {
let (ty, is_param) = if index < func_meta.params.len() {
(func_meta.params[index], true)
} else {
let mut i = (index - func_meta.params.len()) as u32;
let mut j = 0;
while j < func_meta.locals.len() && i >= func_meta.locals[j].0 {
i -= func_meta.locals[j].0;
j += 1;
}
if j >= func_meta.locals.len() {
// Ignore the var index out of bound.
return None;
}
(func_meta.locals[j].1, false)
};
let type_die_id = match ty {
WasmType::I32 => wasm_types.i32,
WasmType::I64 => wasm_types.i64,
WasmType::F32 => wasm_types.f32,
WasmType::F64 => wasm_types.f64,
_ => {
// Ignore unsupported types.
return None;
}
};
Some((type_die_id, is_param))
}
fn generate_vars(
unit: &mut write::Unit,
die_id: write::UnitEntryId,
addr_tr: &AddressTransform,
frame_info: &FunctionFrameInfo,
scope_ranges: &[(u64, u64)],
wasm_types: &WasmTypesDieRefs,
func_meta: &FunctionMetadata,
locals_names: Option<&HashMap<u32, String>>,
out_strings: &mut write::StringTable,
) {
let vmctx_label = get_vmctx_value_label();
for label in frame_info.value_ranges.keys() {
if label.index() == vmctx_label.index() {
append_vmctx_info(
unit,
die_id,
wasm_types.vmctx,
addr_tr,
Some(frame_info),
scope_ranges,
out_strings,
)
.expect("append_vmctx_info success");
} else {
let var_index = label.index();
let (type_die_id, is_param) =
if let Some(result) = resolve_var_type(var_index, wasm_types, func_meta) {
result
} else {
// Skipping if type of local cannot be detected.
continue;
};
let loc_list_id = {
let endian = gimli::RunTimeEndian::Little;
let expr = CompiledExpression::from_label(*label);
let mut locs = Vec::new();
for (begin, length, data) in
expr.build_with_locals(scope_ranges, addr_tr, Some(frame_info), endian)
{
locs.push(write::Location::StartLength {
begin,
length,
data,
});
}
unit.locations.add(write::LocationList(locs))
};
let var_id = unit.add(
die_id,
if is_param {
gimli::DW_TAG_formal_parameter
} else {
gimli::DW_TAG_variable
},
);
let var = unit.get_mut(var_id);
let name_id = match locals_names.and_then(|m| m.get(&(var_index as u32))) {
Some(n) => out_strings.add(n.to_owned()),
None => out_strings.add(format!("var{}", var_index)),
};
var.set(gimli::DW_AT_name, write::AttributeValue::StringRef(name_id));
var.set(
gimli::DW_AT_type,
write::AttributeValue::ThisUnitEntryRef(type_die_id),
);
var.set(
gimli::DW_AT_location,
write::AttributeValue::LocationListRef(loc_list_id),
);
}
}
}
pub fn generate_simulated_dwarf(
addr_tr: &AddressTransform,
di: &DebugInfoData,
vmctx_info: &ModuleVmctxInfo,
ranges: &ValueLabelsRanges,
translated: &HashSet<u32>,
out_encoding: gimli::Encoding,
out_units: &mut write::UnitTable,
out_strings: &mut write::StringTable,
) -> Result<(), Error> {
let path = di
.wasm_file
.path
.to_owned()
.unwrap_or_else(|| autogenerate_dwarf_wasm_path(di));
let (func_names, locals_names) = if let Some(ref name_section) = di.name_section {
(
Some(&name_section.func_names),
Some(&name_section.locals_names),
)
} else {
(None, None)
};
let (unit, root_id, name_id) = {
let comp_dir_id = out_strings.add(path.parent().expect("path dir").to_str().unwrap());
let name = path.file_name().expect("path name").to_str().unwrap();
let name_id = out_strings.add(name);
let out_program = generate_line_info(
addr_tr,
translated,
out_encoding,
&di.wasm_file,
comp_dir_id,
name_id,
name,
)?;
let unit_id = out_units.add(write::Unit::new(out_encoding, out_program));
let unit = out_units.get_mut(unit_id);
let root_id = unit.root();
let root = unit.get_mut(root_id);
let id = out_strings.add(PRODUCER_NAME);
root.set(gimli::DW_AT_producer, write::AttributeValue::StringRef(id));
root.set(gimli::DW_AT_name, write::AttributeValue::StringRef(name_id));
root.set(
gimli::DW_AT_stmt_list,
write::AttributeValue::LineProgramRef,
);
root.set(
gimli::DW_AT_comp_dir,
write::AttributeValue::StringRef(comp_dir_id),
);
(unit, root_id, name_id)
};
let wasm_types = add_wasm_types(unit, root_id, out_strings, vmctx_info);
for (i, map) in addr_tr.map().iter() {
let index = i.index();
if translated.contains(&(index as u32)) {
continue;
}
let start = map.offset as u64;
let end = start + map.len as u64;
let die_id = unit.add(root_id, gimli::DW_TAG_subprogram);
let die = unit.get_mut(die_id);
die.set(
gimli::DW_AT_low_pc,
write::AttributeValue::Address(write::Address::Symbol {
symbol: index,
addend: start as i64,
}),
);
die.set(
gimli::DW_AT_high_pc,
write::AttributeValue::Udata((end - start) as u64),
);
let id = match func_names.and_then(|m| m.get(&(index as u32))) {
Some(n) => out_strings.add(n.to_owned()),
None => out_strings.add(format!("wasm-function[{}]", index)),
};
die.set(gimli::DW_AT_name, write::AttributeValue::StringRef(id));
die.set(
gimli::DW_AT_decl_file,
write::AttributeValue::StringRef(name_id),
);
let f = addr_tr.map().get(i).unwrap();
let f_start = f.addresses[0].wasm;
let wasm_offset = di.wasm_file.code_section_offset + f_start as u64;
die.set(
gimli::DW_AT_decl_file,
write::AttributeValue::Udata(wasm_offset),
);
if let Some(frame_info) = get_function_frame_info(vmctx_info, i, ranges) {
let source_range = addr_tr.func_source_range(i);
generate_vars(
unit,
die_id,
addr_tr,
&frame_info,
&[(source_range.0, source_range.1)],
&wasm_types,
&di.wasm_file.funcs[index],
locals_names.and_then(|m| m.get(&(index as u32))),
out_strings,
);
}
}
Ok(())
}

View File

@@ -0,0 +1,375 @@
use crate::{HashMap, HashSet};
use alloc::string::String;
use alloc::vec::Vec;
use cranelift_entity::EntityRef;
use failure::Error;
use wasmtime_environ::{ModuleVmctxInfo, ValueLabelsRanges};
use gimli;
use gimli::{AttributeValue, DebuggingInformationEntry, Unit, UnitOffset};
use gimli::write;
use super::address_transform::AddressTransform;
use super::attr::{clone_die_attributes, FileAttributeContext};
use super::expression::compile_expression;
use super::line_program::clone_line_program;
use super::range_info_builder::RangeInfoBuilder;
use super::utils::{add_internal_types, append_vmctx_info, get_function_frame_info};
use super::{DebugInputContext, Reader, TransformError};
pub(crate) type PendingDieRef = (write::UnitEntryId, gimli::DwAt, UnitOffset);
struct InheritedAttr<T> {
stack: Vec<(usize, T)>,
}
impl<T> InheritedAttr<T> {
fn new() -> Self {
InheritedAttr { stack: Vec::new() }
}
fn update(&mut self, depth: usize) {
while !self.stack.is_empty() && self.stack.last().unwrap().0 >= depth {
self.stack.pop();
}
}
fn push(&mut self, depth: usize, value: T) {
self.stack.push((depth, value));
}
fn top(&self) -> Option<&T> {
self.stack.last().map(|entry| &entry.1)
}
fn is_empty(&self) -> bool {
self.stack.is_empty()
}
}
fn get_base_type_name<R>(
type_entry: &DebuggingInformationEntry<R>,
unit: &Unit<R, R::Offset>,
context: &DebugInputContext<R>,
) -> Result<String, Error>
where
R: Reader,
{
// FIXME remove recursion.
match type_entry.attr_value(gimli::DW_AT_type)? {
Some(AttributeValue::UnitRef(ref offset)) => {
let mut entries = unit.entries_at_offset(*offset)?;
entries.next_entry()?;
if let Some(die) = entries.current() {
if let Some(AttributeValue::DebugStrRef(str_offset)) =
die.attr_value(gimli::DW_AT_name)?
{
return Ok(String::from(
context.debug_str.get_str(str_offset)?.to_string()?,
));
}
match die.tag() {
gimli::DW_TAG_const_type => {
return Ok(format!("const {}", get_base_type_name(die, unit, context)?));
}
gimli::DW_TAG_pointer_type => {
return Ok(format!("{}*", get_base_type_name(die, unit, context)?));
}
gimli::DW_TAG_reference_type => {
return Ok(format!("{}&", get_base_type_name(die, unit, context)?));
}
gimli::DW_TAG_array_type => {
return Ok(format!("{}[]", get_base_type_name(die, unit, context)?));
}
_ => (),
}
}
}
_ => (),
};
Ok(String::from("??"))
}
fn replace_pointer_type<R>(
parent_id: write::UnitEntryId,
comp_unit: &mut write::Unit,
wp_die_id: write::UnitEntryId,
entry: &DebuggingInformationEntry<R>,
unit: &Unit<R, R::Offset>,
context: &DebugInputContext<R>,
out_strings: &mut write::StringTable,
pending_die_refs: &mut Vec<(write::UnitEntryId, gimli::DwAt, UnitOffset)>,
) -> Result<write::UnitEntryId, Error>
where
R: Reader,
{
let die_id = comp_unit.add(parent_id, gimli::DW_TAG_structure_type);
let die = comp_unit.get_mut(die_id);
let name = format!(
"WebAssemblyPtrWrapper<{}>",
get_base_type_name(entry, unit, context)?
);
die.set(
gimli::DW_AT_name,
write::AttributeValue::StringRef(out_strings.add(name.as_str())),
);
die.set(gimli::DW_AT_byte_size, write::AttributeValue::Data1(4));
let p_die_id = comp_unit.add(die_id, gimli::DW_TAG_template_type_parameter);
let p_die = comp_unit.get_mut(p_die_id);
p_die.set(
gimli::DW_AT_name,
write::AttributeValue::StringRef(out_strings.add("T")),
);
p_die.set(
gimli::DW_AT_type,
write::AttributeValue::ThisUnitEntryRef(wp_die_id),
);
match entry.attr_value(gimli::DW_AT_type)? {
Some(AttributeValue::UnitRef(ref offset)) => {
pending_die_refs.push((p_die_id, gimli::DW_AT_type, *offset))
}
_ => (),
}
let m_die_id = comp_unit.add(die_id, gimli::DW_TAG_member);
let m_die = comp_unit.get_mut(m_die_id);
m_die.set(
gimli::DW_AT_name,
write::AttributeValue::StringRef(out_strings.add("__ptr")),
);
m_die.set(
gimli::DW_AT_type,
write::AttributeValue::ThisUnitEntryRef(wp_die_id),
);
m_die.set(
gimli::DW_AT_data_member_location,
write::AttributeValue::Data1(0),
);
Ok(die_id)
}
pub(crate) fn clone_unit<'a, R>(
unit: Unit<R, R::Offset>,
context: &DebugInputContext<R>,
addr_tr: &'a AddressTransform,
value_ranges: &'a ValueLabelsRanges,
out_encoding: gimli::Encoding,
module_info: &ModuleVmctxInfo,
out_units: &mut write::UnitTable,
out_strings: &mut write::StringTable,
translated: &mut HashSet<u32>,
) -> Result<(), Error>
where
R: Reader,
{
let mut die_ref_map = HashMap::new();
let mut pending_die_refs = Vec::new();
let mut stack = Vec::new();
// Iterate over all of this compilation unit's entries.
let mut entries = unit.entries();
let (mut comp_unit, file_map, cu_low_pc, wp_die_id, vmctx_die_id) =
if let Some((depth_delta, entry)) = entries.next_dfs()? {
assert!(depth_delta == 0);
let (out_line_program, debug_line_offset, file_map) = clone_line_program(
&unit,
entry,
addr_tr,
out_encoding,
context.debug_str,
context.debug_line,
out_strings,
)?;
if entry.tag() == gimli::DW_TAG_compile_unit {
let unit_id = out_units.add(write::Unit::new(out_encoding, out_line_program));
let comp_unit = out_units.get_mut(unit_id);
let root_id = comp_unit.root();
die_ref_map.insert(entry.offset(), root_id);
let cu_low_pc = if let Some(AttributeValue::Addr(addr)) =
entry.attr_value(gimli::DW_AT_low_pc)?
{
addr
} else {
// FIXME? return Err(TransformError("No low_pc for unit header").into());
0
};
clone_die_attributes(
entry,
context,
addr_tr,
None,
unit.encoding(),
comp_unit,
root_id,
None,
None,
cu_low_pc,
out_strings,
&die_ref_map,
&mut pending_die_refs,
FileAttributeContext::Root(Some(debug_line_offset)),
)?;
let (wp_die_id, vmctx_die_id) =
add_internal_types(comp_unit, root_id, out_strings, module_info);
stack.push(root_id);
(comp_unit, file_map, cu_low_pc, wp_die_id, vmctx_die_id)
} else {
return Err(TransformError("Unexpected unit header").into());
}
} else {
return Ok(()); // empty
};
let mut skip_at_depth = None;
let mut current_frame_base = InheritedAttr::new();
let mut current_value_range = InheritedAttr::new();
let mut current_scope_ranges = InheritedAttr::new();
while let Some((depth_delta, entry)) = entries.next_dfs()? {
let depth_delta = if let Some((depth, cached)) = skip_at_depth {
let new_depth = depth + depth_delta;
if new_depth > 0 {
skip_at_depth = Some((new_depth, cached));
continue;
}
skip_at_depth = None;
new_depth + cached
} else {
depth_delta
};
if !context
.reachable
.contains(&entry.offset().to_unit_section_offset(&unit))
{
// entry is not reachable: discarding all its info.
skip_at_depth = Some((0, depth_delta));
continue;
}
let new_stack_len = stack.len().wrapping_add(depth_delta as usize);
current_frame_base.update(new_stack_len);
current_scope_ranges.update(new_stack_len);
current_value_range.update(new_stack_len);
let range_builder = if entry.tag() == gimli::DW_TAG_subprogram {
let range_builder = RangeInfoBuilder::from_subprogram_die(
entry,
context,
unit.encoding(),
addr_tr,
cu_low_pc,
)?;
if let RangeInfoBuilder::Function(func_index) = range_builder {
if let Some(frame_info) =
get_function_frame_info(module_info, func_index, value_ranges)
{
current_value_range.push(new_stack_len, frame_info);
}
translated.insert(func_index.index() as u32);
current_scope_ranges.push(new_stack_len, range_builder.get_ranges(addr_tr));
Some(range_builder)
} else {
// FIXME current_scope_ranges.push()
None
}
} else {
let high_pc = entry.attr_value(gimli::DW_AT_high_pc)?;
let ranges = entry.attr_value(gimli::DW_AT_ranges)?;
if high_pc.is_some() || ranges.is_some() {
let range_builder =
RangeInfoBuilder::from(entry, context, unit.encoding(), cu_low_pc)?;
current_scope_ranges.push(new_stack_len, range_builder.get_ranges(addr_tr));
Some(range_builder)
} else {
None
}
};
if depth_delta <= 0 {
for _ in depth_delta..1 {
stack.pop();
}
} else {
assert!(depth_delta == 1);
}
if let Some(AttributeValue::Exprloc(expr)) = entry.attr_value(gimli::DW_AT_frame_base)? {
if let Some(expr) = compile_expression(&expr, unit.encoding(), None)? {
current_frame_base.push(new_stack_len, expr);
}
}
let parent = stack.last().unwrap();
if entry.tag() == gimli::DW_TAG_pointer_type {
// Wrap pointer types.
// TODO reference types?
let die_id = replace_pointer_type(
*parent,
comp_unit,
wp_die_id,
entry,
&unit,
context,
out_strings,
&mut pending_die_refs,
)?;
stack.push(die_id);
assert!(stack.len() == new_stack_len);
die_ref_map.insert(entry.offset(), die_id);
continue;
}
let die_id = comp_unit.add(*parent, entry.tag());
stack.push(die_id);
assert!(stack.len() == new_stack_len);
die_ref_map.insert(entry.offset(), die_id);
clone_die_attributes(
entry,
context,
addr_tr,
current_value_range.top(),
unit.encoding(),
&mut comp_unit,
die_id,
range_builder,
current_scope_ranges.top(),
cu_low_pc,
out_strings,
&die_ref_map,
&mut pending_die_refs,
FileAttributeContext::Children(&file_map, current_frame_base.top()),
)?;
if entry.tag() == gimli::DW_TAG_subprogram && !current_scope_ranges.is_empty() {
append_vmctx_info(
comp_unit,
die_id,
vmctx_die_id,
addr_tr,
current_value_range.top(),
current_scope_ranges.top().expect("range"),
out_strings,
)?;
}
}
for (die_id, attr_name, offset) in pending_die_refs {
let die = comp_unit.get_mut(die_id);
if let Some(unit_id) = die_ref_map.get(&offset) {
die.set(attr_name, write::AttributeValue::ThisUnitEntryRef(*unit_id));
} else {
// TODO check why loosing DIEs
}
}
Ok(())
}

View File

@@ -0,0 +1,155 @@
use alloc::vec::Vec;
use cranelift_wasm::DefinedFuncIndex;
use failure::Error;
use wasmtime_environ::{ModuleVmctxInfo, ValueLabelsRanges};
use gimli;
use gimli::write;
use super::address_transform::AddressTransform;
use super::expression::{CompiledExpression, FunctionFrameInfo};
pub(crate) fn add_internal_types(
comp_unit: &mut write::Unit,
root_id: write::UnitEntryId,
out_strings: &mut write::StringTable,
module_info: &ModuleVmctxInfo,
) -> (write::UnitEntryId, write::UnitEntryId) {
let wp_die_id = comp_unit.add(root_id, gimli::DW_TAG_base_type);
let wp_die = comp_unit.get_mut(wp_die_id);
wp_die.set(
gimli::DW_AT_name,
write::AttributeValue::StringRef(out_strings.add("WebAssemblyPtr")),
);
wp_die.set(gimli::DW_AT_byte_size, write::AttributeValue::Data1(4));
wp_die.set(
gimli::DW_AT_encoding,
write::AttributeValue::Encoding(gimli::DW_ATE_unsigned),
);
let memory_byte_die_id = comp_unit.add(root_id, gimli::DW_TAG_base_type);
let memory_byte_die = comp_unit.get_mut(memory_byte_die_id);
memory_byte_die.set(
gimli::DW_AT_name,
write::AttributeValue::StringRef(out_strings.add("u8")),
);
memory_byte_die.set(
gimli::DW_AT_encoding,
write::AttributeValue::Encoding(gimli::DW_ATE_unsigned),
);
memory_byte_die.set(gimli::DW_AT_byte_size, write::AttributeValue::Data1(1));
let memory_bytes_die_id = comp_unit.add(root_id, gimli::DW_TAG_pointer_type);
let memory_bytes_die = comp_unit.get_mut(memory_bytes_die_id);
memory_bytes_die.set(
gimli::DW_AT_name,
write::AttributeValue::StringRef(out_strings.add("u8*")),
);
memory_bytes_die.set(
gimli::DW_AT_type,
write::AttributeValue::ThisUnitEntryRef(memory_byte_die_id),
);
let memory_offset = module_info.memory_offset;
let vmctx_die_id = comp_unit.add(root_id, gimli::DW_TAG_structure_type);
let vmctx_die = comp_unit.get_mut(vmctx_die_id);
vmctx_die.set(
gimli::DW_AT_name,
write::AttributeValue::StringRef(out_strings.add("WasmtimeVMContext")),
);
vmctx_die.set(
gimli::DW_AT_byte_size,
write::AttributeValue::Data4(memory_offset as u32 + 8),
);
let m_die_id = comp_unit.add(vmctx_die_id, gimli::DW_TAG_member);
let m_die = comp_unit.get_mut(m_die_id);
m_die.set(
gimli::DW_AT_name,
write::AttributeValue::StringRef(out_strings.add("memory")),
);
m_die.set(
gimli::DW_AT_type,
write::AttributeValue::ThisUnitEntryRef(memory_bytes_die_id),
);
m_die.set(
gimli::DW_AT_data_member_location,
write::AttributeValue::Udata(memory_offset as u64),
);
let vmctx_ptr_die_id = comp_unit.add(root_id, gimli::DW_TAG_pointer_type);
let vmctx_ptr_die = comp_unit.get_mut(vmctx_ptr_die_id);
vmctx_ptr_die.set(
gimli::DW_AT_name,
write::AttributeValue::StringRef(out_strings.add("WasmtimeVMContext*")),
);
vmctx_ptr_die.set(
gimli::DW_AT_type,
write::AttributeValue::ThisUnitEntryRef(vmctx_die_id),
);
(wp_die_id, vmctx_ptr_die_id)
}
pub(crate) fn append_vmctx_info(
comp_unit: &mut write::Unit,
parent_id: write::UnitEntryId,
vmctx_die_id: write::UnitEntryId,
addr_tr: &AddressTransform,
frame_info: Option<&FunctionFrameInfo>,
scope_ranges: &[(u64, u64)],
out_strings: &mut write::StringTable,
) -> Result<(), Error> {
let loc = {
let endian = gimli::RunTimeEndian::Little;
let expr = CompiledExpression::vmctx();
let mut locs = Vec::new();
for (begin, length, data) in
expr.build_with_locals(scope_ranges, addr_tr, frame_info, endian)
{
locs.push(write::Location::StartLength {
begin,
length,
data,
});
}
let list_id = comp_unit.locations.add(write::LocationList(locs));
write::AttributeValue::LocationListRef(list_id)
};
let var_die_id = comp_unit.add(parent_id, gimli::DW_TAG_variable);
let var_die = comp_unit.get_mut(var_die_id);
var_die.set(
gimli::DW_AT_name,
write::AttributeValue::StringRef(out_strings.add("__vmctx")),
);
var_die.set(
gimli::DW_AT_type,
write::AttributeValue::ThisUnitEntryRef(vmctx_die_id),
);
var_die.set(gimli::DW_AT_location, loc);
Ok(())
}
pub(crate) fn get_function_frame_info<'a, 'b, 'c>(
module_info: &'b ModuleVmctxInfo,
func_index: DefinedFuncIndex,
value_ranges: &'c ValueLabelsRanges,
) -> Option<FunctionFrameInfo<'a>>
where
'b: 'a,
'c: 'a,
{
if let Some(value_ranges) = value_ranges.get(func_index) {
let frame_info = FunctionFrameInfo {
value_ranges,
memory_offset: module_info.memory_offset,
stack_slots: &module_info.stack_slots[func_index],
};
Some(frame_info)
} else {
None
}
}

View File

@@ -0,0 +1,147 @@
use alloc::string::String;
use alloc::vec::Vec;
use gimli::write::{Address, Dwarf, EndianVec, Result, Sections, Writer};
use gimli::{RunTimeEndian, SectionId};
use core::result;
use faerie::artifact::{Decl, SectionKind};
use faerie::*;
#[derive(Clone)]
struct DebugReloc {
offset: u32,
size: u8,
name: String,
addend: i64,
}
pub enum ResolvedSymbol {
PhysicalAddress(u64),
Reloc { name: String, addend: i64 },
}
pub trait SymbolResolver {
fn resolve_symbol(&self, symbol: usize, addend: i64) -> ResolvedSymbol;
}
pub fn emit_dwarf(
artifact: &mut Artifact,
mut dwarf: Dwarf,
symbol_resolver: &dyn SymbolResolver,
) -> result::Result<(), failure::Error> {
let endian = RunTimeEndian::Little;
let mut sections = Sections::new(WriterRelocate::new(endian, symbol_resolver));
dwarf.write(&mut sections)?;
sections.for_each_mut(|id, s| -> result::Result<(), failure::Error> {
artifact.declare_with(
id.name(),
Decl::section(SectionKind::Debug),
s.writer.take(),
)
})?;
sections.for_each_mut(|id, s| -> result::Result<(), failure::Error> {
for reloc in &s.relocs {
artifact.link_with(
faerie::Link {
from: id.name(),
to: &reloc.name,
at: u64::from(reloc.offset),
},
faerie::Reloc::Debug {
size: reloc.size,
addend: reloc.addend as i32,
},
)?;
}
Ok(())
})?;
Ok(())
}
#[derive(Clone)]
pub struct WriterRelocate<'a> {
relocs: Vec<DebugReloc>,
writer: EndianVec<RunTimeEndian>,
symbol_resolver: &'a dyn SymbolResolver,
}
impl<'a> WriterRelocate<'a> {
pub fn new(endian: RunTimeEndian, symbol_resolver: &'a dyn SymbolResolver) -> Self {
WriterRelocate {
relocs: Vec::new(),
writer: EndianVec::new(endian),
symbol_resolver,
}
}
}
impl<'a> Writer for WriterRelocate<'a> {
type Endian = RunTimeEndian;
fn endian(&self) -> Self::Endian {
self.writer.endian()
}
fn len(&self) -> usize {
self.writer.len()
}
fn write(&mut self, bytes: &[u8]) -> Result<()> {
self.writer.write(bytes)
}
fn write_at(&mut self, offset: usize, bytes: &[u8]) -> Result<()> {
self.writer.write_at(offset, bytes)
}
fn write_address(&mut self, address: Address, size: u8) -> Result<()> {
match address {
Address::Constant(val) => self.write_udata(val, size),
Address::Symbol { symbol, addend } => {
match self.symbol_resolver.resolve_symbol(symbol, addend as i64) {
ResolvedSymbol::PhysicalAddress(addr) => self.write_udata(addr, size),
ResolvedSymbol::Reloc { name, addend } => {
let offset = self.len() as u64;
self.relocs.push(DebugReloc {
offset: offset as u32,
size,
name,
addend,
});
self.write_udata(addend as u64, size)
}
}
}
}
}
fn write_offset(&mut self, val: usize, section: SectionId, size: u8) -> Result<()> {
let offset = self.len() as u32;
let name = section.name().to_string();
self.relocs.push(DebugReloc {
offset,
size,
name,
addend: val as i64,
});
self.write_udata(val as u64, size)
}
fn write_offset_at(
&mut self,
offset: usize,
val: usize,
section: SectionId,
size: u8,
) -> Result<()> {
let name = section.name().to_string();
self.relocs.push(DebugReloc {
offset: offset as u32,
size,
name,
addend: val as i64,
});
self.write_udata_at(offset, val as u64, size)
}
}

3
crates/environ/.gitignore vendored Normal file
View File

@@ -0,0 +1,3 @@
target/
**/*.rs.bk
Cargo.lock

56
crates/environ/Cargo.toml Normal file
View File

@@ -0,0 +1,56 @@
[package]
name = "wasmtime-environ"
version = "0.2.0"
authors = ["The Wasmtime Project Developers"]
description = "Standalone environment support for WebAsssembly code in Cranelift"
repository = "https://github.com/CraneStation/wasmtime"
documentation = "https://docs.rs/wasmtime-environ/"
categories = ["wasm"]
keywords = ["webassembly", "wasm"]
license = "Apache-2.0 WITH LLVM-exception"
readme = "README.md"
edition = "2018"
[dependencies]
cranelift-codegen = { version = "0.49", features = ["enable-serde"] }
cranelift-entity = { version = "0.49", features = ["enable-serde"] }
cranelift-wasm = { version = "0.49", features = ["enable-serde"] }
lightbeam = { path = "../lightbeam", optional = true }
indexmap = "1.0.2"
rayon = "1.1"
thiserror = "1.0.4"
directories = "2.0.1"
sha2 = "0.8.0"
base64 = "0.10.1"
serde = { version = "1.0.94", features = ["derive"] }
bincode = "1.1.4"
lazy_static = "1.3.0"
spin = "0.5.0"
log = { version = "0.4.8", default-features = false }
zstd = "0.4"
toml = "0.5"
file-per-thread-logger = "0.1.1"
[target.'cfg(target_os = "windows")'.dependencies]
winapi = "0.3.7"
[target.'cfg(not(target_os = "windows"))'.dependencies]
libc = "0.2.60"
errno = "0.2.4"
[dev-dependencies]
tempfile = "3"
target-lexicon = { version = "0.9.0", default-features = false }
pretty_env_logger = "0.3.0"
rand = { version = "0.7.0", features = ["small_rng"] }
cranelift-codegen = { version = "0.49", features = ["enable-serde", "all-arch"] }
filetime = "0.2.7"
[features]
default = ["std"]
std = ["cranelift-codegen/std", "cranelift-wasm/std"]
core = ["cranelift-codegen/core", "cranelift-wasm/core"]
[badges]
maintenance = { status = "experimental" }
travis-ci = { repository = "CraneStation/wasmtime" }

220
crates/environ/LICENSE Normal file
View File

@@ -0,0 +1,220 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
--- LLVM Exceptions to the Apache 2.0 License ----
As an exception, if, as a result of your compiling your source code, portions
of this Software are embedded into an Object form of such source code, you
may redistribute such embedded portions in such Object form without complying
with the conditions of Sections 4(a), 4(b) and 4(d) of the License.
In addition, if you combine or link compiled forms of this Software with
software that is licensed under the GPLv2 ("Combined Software") and if a
court of competent jurisdiction determines that the patent provision (Section
3), the indemnity provision (Section 9) or other Section of the License
conflicts with the conditions of the GPLv2, you may retroactively and
prospectively choose to deem waived or otherwise exclude such Section(s) of
the License, but only in their entirety and only with respect to the Combined
Software.

6
crates/environ/README.md Normal file
View File

@@ -0,0 +1,6 @@
This is the `wasmtime-environ` crate, which contains the implementations
of the `ModuleEnvironment` and `FuncEnvironment` traits from
[`cranelift-wasm`](https://crates.io/crates/cranelift-wasm). They effectively
implement an ABI for basic wasm compilation that defines how linear memories
are allocated, how indirect calls work, and other details. They can be used
for JITing, native object files, or other purposes.

9
crates/environ/build.rs Normal file
View File

@@ -0,0 +1,9 @@
use std::process::Command;
fn main() {
let git_rev = match Command::new("git").args(&["rev-parse", "HEAD"]).output() {
Ok(output) => String::from_utf8(output.stdout).unwrap(),
Err(_) => String::from("git-not-found"),
};
println!("cargo:rustc-env=GIT_REV={}", git_rev);
}

View File

@@ -0,0 +1,59 @@
//! Data structures to provide transformation of the source
// addresses of a WebAssembly module into the native code.
use alloc::vec::Vec;
use cranelift_codegen::ir;
use cranelift_entity::PrimaryMap;
use cranelift_wasm::DefinedFuncIndex;
use serde::{Deserialize, Serialize};
/// Single source location to generated address mapping.
#[derive(Serialize, Deserialize, Debug, Clone, PartialEq, Eq)]
pub struct InstructionAddressMap {
/// Original source location.
pub srcloc: ir::SourceLoc,
/// Generated instructions offset.
pub code_offset: usize,
/// Generated instructions length.
pub code_len: usize,
}
/// Function and its instructions addresses mappings.
#[derive(Serialize, Deserialize, Debug, Clone, PartialEq, Eq)]
pub struct FunctionAddressMap {
/// Instructions maps.
/// The array is sorted by the InstructionAddressMap::code_offset field.
pub instructions: Vec<InstructionAddressMap>,
/// Function start source location (normally declaration).
pub start_srcloc: ir::SourceLoc,
/// Function end source location.
pub end_srcloc: ir::SourceLoc,
/// Generated function body offset if applicable, otherwise 0.
pub body_offset: usize,
/// Generated function body length.
pub body_len: usize,
}
/// Module functions addresses mappings.
pub type ModuleAddressMap = PrimaryMap<DefinedFuncIndex, FunctionAddressMap>;
/// Value ranges for functions.
pub type ValueLabelsRanges = PrimaryMap<DefinedFuncIndex, cranelift_codegen::ValueLabelsRanges>;
/// Stack slots for functions.
pub type StackSlots = PrimaryMap<DefinedFuncIndex, ir::StackSlots>;
/// Module `vmctx` related info.
pub struct ModuleVmctxInfo {
/// The memory definition offset in the VMContext structure.
pub memory_offset: i64,
/// The functions stack slots.
pub stack_slots: StackSlots,
}

295
crates/environ/src/cache.rs Normal file
View File

@@ -0,0 +1,295 @@
use crate::address_map::{ModuleAddressMap, ValueLabelsRanges};
use crate::compilation::{Compilation, Relocations, Traps};
use crate::module::Module;
use crate::module_environ::FunctionBodyData;
use alloc::string::{String, ToString};
use core::hash::Hasher;
use cranelift_codegen::{ir, isa};
use cranelift_entity::PrimaryMap;
use cranelift_wasm::DefinedFuncIndex;
use lazy_static::lazy_static;
use log::{debug, trace, warn};
use serde::{Deserialize, Serialize};
use sha2::{Digest, Sha256};
use std::fs;
use std::io::Write;
use std::path::{Path, PathBuf};
#[macro_use] // for tests
mod config;
mod worker;
use config::{cache_config, CacheConfig};
pub use config::{create_new_config, init};
use worker::{worker, Worker};
lazy_static! {
static ref SELF_MTIME: String = {
std::env::current_exe()
.map_err(|_| warn!("Failed to get path of current executable"))
.ok()
.and_then(|path| {
fs::metadata(&path)
.map_err(|_| warn!("Failed to get metadata of current executable"))
.ok()
})
.and_then(|metadata| {
metadata
.modified()
.map_err(|_| warn!("Failed to get metadata of current executable"))
.ok()
})
.map(|mtime| match mtime.duration_since(std::time::UNIX_EPOCH) {
Ok(duration) => format!("{}", duration.as_millis()),
Err(err) => format!("m{}", err.duration().as_millis()),
})
.unwrap_or_else(|| "no-mtime".to_string())
};
}
pub struct ModuleCacheEntry<'config, 'worker>(Option<ModuleCacheEntryInner<'config, 'worker>>);
struct ModuleCacheEntryInner<'config, 'worker> {
mod_cache_path: PathBuf,
cache_config: &'config CacheConfig,
worker: &'worker Worker,
}
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq)]
pub struct ModuleCacheData {
compilation: Compilation,
relocations: Relocations,
address_transforms: ModuleAddressMap,
value_ranges: ValueLabelsRanges,
stack_slots: PrimaryMap<DefinedFuncIndex, ir::StackSlots>,
traps: Traps,
}
type ModuleCacheDataTupleType = (
Compilation,
Relocations,
ModuleAddressMap,
ValueLabelsRanges,
PrimaryMap<DefinedFuncIndex, ir::StackSlots>,
Traps,
);
struct Sha256Hasher(Sha256);
impl<'config, 'worker> ModuleCacheEntry<'config, 'worker> {
pub fn new<'data>(
module: &Module,
function_body_inputs: &PrimaryMap<DefinedFuncIndex, FunctionBodyData<'data>>,
isa: &dyn isa::TargetIsa,
compiler_name: &str,
generate_debug_info: bool,
) -> Self {
let cache_config = cache_config();
if cache_config.enabled() {
Self(Some(ModuleCacheEntryInner::new(
module,
function_body_inputs,
isa,
compiler_name,
generate_debug_info,
cache_config,
worker(),
)))
} else {
Self(None)
}
}
#[cfg(test)]
fn from_inner<'data>(inner: ModuleCacheEntryInner<'config, 'worker>) -> Self {
Self(Some(inner))
}
pub fn get_data(&self) -> Option<ModuleCacheData> {
if let Some(inner) = &self.0 {
inner.get_data().map(|val| {
inner.worker.on_cache_get_async(&inner.mod_cache_path); // call on success
val
})
} else {
None
}
}
pub fn update_data(&self, data: &ModuleCacheData) {
if let Some(inner) = &self.0 {
inner.update_data(data).map(|val| {
inner.worker.on_cache_update_async(&inner.mod_cache_path); // call on success
val
});
}
}
}
impl<'config, 'worker> ModuleCacheEntryInner<'config, 'worker> {
fn new<'data>(
module: &Module,
function_body_inputs: &PrimaryMap<DefinedFuncIndex, FunctionBodyData<'data>>,
isa: &dyn isa::TargetIsa,
compiler_name: &str,
generate_debug_info: bool,
cache_config: &'config CacheConfig,
worker: &'worker Worker,
) -> Self {
let hash = Sha256Hasher::digest(module, function_body_inputs);
let compiler_dir = if cfg!(debug_assertions) {
format!(
"{comp_name}-{comp_ver}-{comp_mtime}",
comp_name = compiler_name,
comp_ver = env!("GIT_REV"),
comp_mtime = *SELF_MTIME,
)
} else {
format!(
"{comp_name}-{comp_ver}",
comp_name = compiler_name,
comp_ver = env!("GIT_REV"),
)
};
let mod_filename = format!(
"mod-{mod_hash}{mod_dbg}",
mod_hash = base64::encode_config(&hash, base64::URL_SAFE_NO_PAD), // standard encoding uses '/' which can't be used for filename
mod_dbg = if generate_debug_info { ".d" } else { "" },
);
let mod_cache_path = cache_config
.directory()
.join(isa.triple().to_string())
.join(compiler_dir)
.join(mod_filename);
Self {
mod_cache_path,
cache_config,
worker,
}
}
fn get_data(&self) -> Option<ModuleCacheData> {
trace!("get_data() for path: {}", self.mod_cache_path.display());
let compressed_cache_bytes = fs::read(&self.mod_cache_path).ok()?;
let cache_bytes = zstd::decode_all(&compressed_cache_bytes[..])
.map_err(|err| warn!("Failed to decompress cached code: {}", err))
.ok()?;
bincode::deserialize(&cache_bytes[..])
.map_err(|err| warn!("Failed to deserialize cached code: {}", err))
.ok()
}
fn update_data(&self, data: &ModuleCacheData) -> Option<()> {
trace!("update_data() for path: {}", self.mod_cache_path.display());
let serialized_data = bincode::serialize(&data)
.map_err(|err| warn!("Failed to serialize cached code: {}", err))
.ok()?;
let compressed_data = zstd::encode_all(
&serialized_data[..],
self.cache_config.baseline_compression_level(),
)
.map_err(|err| warn!("Failed to compress cached code: {}", err))
.ok()?;
// Optimize syscalls: first, try writing to disk. It should succeed in most cases.
// Otherwise, try creating the cache directory and retry writing to the file.
if fs_write_atomic(&self.mod_cache_path, "mod", &compressed_data) {
return Some(());
}
debug!(
"Attempting to create the cache directory, because \
failed to write cached code to disk, path: {}",
self.mod_cache_path.display(),
);
let cache_dir = self.mod_cache_path.parent().unwrap();
fs::create_dir_all(cache_dir)
.map_err(|err| {
warn!(
"Failed to create cache directory, path: {}, message: {}",
cache_dir.display(),
err
)
})
.ok()?;
if fs_write_atomic(&self.mod_cache_path, "mod", &compressed_data) {
Some(())
} else {
None
}
}
}
impl ModuleCacheData {
pub fn from_tuple(data: ModuleCacheDataTupleType) -> Self {
Self {
compilation: data.0,
relocations: data.1,
address_transforms: data.2,
value_ranges: data.3,
stack_slots: data.4,
traps: data.5,
}
}
pub fn to_tuple(self) -> ModuleCacheDataTupleType {
(
self.compilation,
self.relocations,
self.address_transforms,
self.value_ranges,
self.stack_slots,
self.traps,
)
}
}
impl Sha256Hasher {
pub fn digest<'data>(
module: &Module,
function_body_inputs: &PrimaryMap<DefinedFuncIndex, FunctionBodyData<'data>>,
) -> [u8; 32] {
let mut hasher = Self(Sha256::new());
module.hash_for_cache(function_body_inputs, &mut hasher);
hasher.0.result().into()
}
}
impl Hasher for Sha256Hasher {
fn finish(&self) -> u64 {
panic!("Sha256Hasher doesn't support finish!");
}
fn write(&mut self, bytes: &[u8]) {
self.0.input(bytes);
}
}
// Assumption: path inside cache directory.
// Then, we don't have to use sound OS-specific exclusive file access.
// Note: there's no need to remove temporary file here - cleanup task will do it later.
fn fs_write_atomic(path: &Path, reason: &str, contents: &[u8]) -> bool {
let lock_path = path.with_extension(format!("wip-atomic-write-{}", reason));
fs::OpenOptions::new()
.create_new(true) // atomic file creation (assumption: no one will open it without this flag)
.write(true)
.open(&lock_path)
.and_then(|mut file| file.write_all(contents))
// file should go out of scope and be closed at this point
.and_then(|()| fs::rename(&lock_path, &path)) // atomic file rename
.map_err(|err| {
warn!(
"Failed to write file with rename, lock path: {}, target path: {}, err: {}",
lock_path.display(),
path.display(),
err
)
})
.is_ok()
}
#[cfg(test)]
mod tests;

625
crates/environ/src/cache/config.rs vendored Normal file
View File

@@ -0,0 +1,625 @@
//! Module for configuring the cache system.
use super::worker;
use alloc::string::{String, ToString};
use alloc::vec::Vec;
use core::time::Duration;
use directories::ProjectDirs;
use lazy_static::lazy_static;
use log::{debug, error, trace, warn};
use serde::{
de::{self, Deserializer},
Deserialize,
};
use spin::Once;
use std::fmt::Debug;
use std::fs;
use std::mem;
use std::path::{Path, PathBuf};
use std::sync::atomic::{AtomicBool, Ordering};
// wrapped, so we have named section in config,
// also, for possible future compatibility
#[derive(Deserialize, Debug)]
#[serde(deny_unknown_fields)]
struct Config {
cache: CacheConfig,
}
#[derive(Deserialize, Debug, Clone)]
#[serde(deny_unknown_fields)]
pub struct CacheConfig {
#[serde(skip)]
errors: Vec<String>,
enabled: bool,
directory: Option<PathBuf>,
#[serde(
default,
rename = "worker-event-queue-size",
deserialize_with = "deserialize_si_prefix"
)]
worker_event_queue_size: Option<u64>,
#[serde(rename = "baseline-compression-level")]
baseline_compression_level: Option<i32>,
#[serde(rename = "optimized-compression-level")]
optimized_compression_level: Option<i32>,
#[serde(
default,
rename = "optimized-compression-usage-counter-threshold",
deserialize_with = "deserialize_si_prefix"
)]
optimized_compression_usage_counter_threshold: Option<u64>,
#[serde(
default,
rename = "cleanup-interval",
deserialize_with = "deserialize_duration"
)]
cleanup_interval: Option<Duration>,
#[serde(
default,
rename = "optimizing-compression-task-timeout",
deserialize_with = "deserialize_duration"
)]
optimizing_compression_task_timeout: Option<Duration>,
#[serde(
default,
rename = "allowed-clock-drift-for-files-from-future",
deserialize_with = "deserialize_duration"
)]
allowed_clock_drift_for_files_from_future: Option<Duration>,
#[serde(
default,
rename = "file-count-soft-limit",
deserialize_with = "deserialize_si_prefix"
)]
file_count_soft_limit: Option<u64>,
#[serde(
default,
rename = "files-total-size-soft-limit",
deserialize_with = "deserialize_disk_space"
)]
files_total_size_soft_limit: Option<u64>,
#[serde(
default,
rename = "file-count-limit-percent-if-deleting",
deserialize_with = "deserialize_percent"
)]
file_count_limit_percent_if_deleting: Option<u8>,
#[serde(
default,
rename = "files-total-size-limit-percent-if-deleting",
deserialize_with = "deserialize_percent"
)]
files_total_size_limit_percent_if_deleting: Option<u8>,
}
// Private static, so only internal function can access it.
static CONFIG: Once<CacheConfig> = Once::new();
static INIT_CALLED: AtomicBool = AtomicBool::new(false);
/// Returns cache configuration.
///
/// If system has not been initialized, it disables it.
/// You mustn't call init() after it.
pub fn cache_config() -> &'static CacheConfig {
CONFIG.call_once(CacheConfig::new_cache_disabled)
}
/// Initializes the cache system. Should be called exactly once,
/// and before using the cache system. Otherwise it can panic.
/// Returns list of errors. If empty, initialization succeeded.
pub fn init<P: AsRef<Path> + Debug>(
enabled: bool,
config_file: Option<P>,
init_file_per_thread_logger: Option<&'static str>,
) -> &'static Vec<String> {
INIT_CALLED
.compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst)
.expect("Cache system init must be called at most once");
assert!(
CONFIG.r#try().is_none(),
"Cache system init must be called before using the system."
);
let conf_file_str = format!("{:?}", config_file);
let conf = CONFIG.call_once(|| CacheConfig::from_file(enabled, config_file));
if conf.errors.is_empty() {
if conf.enabled() {
worker::init(init_file_per_thread_logger);
}
debug!("Cache init(\"{}\"): {:#?}", conf_file_str, conf)
} else {
error!(
"Cache init(\"{}\"): errors: {:#?}",
conf_file_str, conf.errors,
)
}
&conf.errors
}
/// Creates a new configuration file at specified path, or default path if None is passed.
/// Fails if file already exists.
pub fn create_new_config<P: AsRef<Path> + Debug>(
config_file: Option<P>,
) -> Result<PathBuf, String> {
trace!("Creating new config file, path: {:?}", config_file);
let config_file = config_file.as_ref().map_or_else(
|| DEFAULT_CONFIG_PATH.as_ref().map(|p| p.as_ref()),
|p| Ok(p.as_ref()),
)?;
if config_file.exists() {
Err(format!(
"Specified config file already exists! Path: {}",
config_file.display()
))?;
}
let parent_dir = config_file
.parent()
.ok_or_else(|| format!("Invalid cache config path: {}", config_file.display()))?;
fs::create_dir_all(parent_dir).map_err(|err| {
format!(
"Failed to create config directory, config path: {}, error: {}",
config_file.display(),
err
)
})?;
let content = "\
# Comment out certain settings to use default values.
# For more settings, please refer to the documentation:
# https://github.com/CraneStation/wasmtime/blob/master/CACHE_CONFIGURATION.md
[cache]
enabled = true
";
fs::write(&config_file, &content).map_err(|err| {
format!(
"Failed to flush config to the disk, path: {}, msg: {}",
config_file.display(),
err
)
})?;
Ok(config_file.to_path_buf())
}
// permitted levels from: https://docs.rs/zstd/0.4.28+zstd.1.4.3/zstd/stream/write/struct.Encoder.html
const ZSTD_COMPRESSION_LEVELS: std::ops::RangeInclusive<i32> = 0..=21;
lazy_static! {
static ref PROJECT_DIRS: Option<ProjectDirs> =
ProjectDirs::from("", "CraneStation", "wasmtime");
static ref DEFAULT_CONFIG_PATH: Result<PathBuf, String> = PROJECT_DIRS
.as_ref()
.map(|proj_dirs| proj_dirs.config_dir().join("wasmtime-cache-config.toml"))
.ok_or_else(|| "Config file not specified and failed to get the default".to_string());
}
// Default settings, you're welcome to tune them!
// TODO: what do we want to warn users about?
// At the moment of writing, the modules couldn't depend on anothers,
// so we have at most one module per wasmtime instance
// if changed, update CACHE_CONFIGURATION.md
const DEFAULT_WORKER_EVENT_QUEUE_SIZE: u64 = 0x10;
const WORKER_EVENT_QUEUE_SIZE_WARNING_TRESHOLD: u64 = 3;
// should be quick and provide good enough compression
// if changed, update CACHE_CONFIGURATION.md
const DEFAULT_BASELINE_COMPRESSION_LEVEL: i32 = zstd::DEFAULT_COMPRESSION_LEVEL;
// should provide significantly better compression than baseline
// if changed, update CACHE_CONFIGURATION.md
const DEFAULT_OPTIMIZED_COMPRESSION_LEVEL: i32 = 20;
// shouldn't be to low to avoid recompressing too many files
// if changed, update CACHE_CONFIGURATION.md
const DEFAULT_OPTIMIZED_COMPRESSION_USAGE_COUNTER_THRESHOLD: u64 = 0x100;
// if changed, update CACHE_CONFIGURATION.md
const DEFAULT_CLEANUP_INTERVAL: Duration = Duration::from_secs(60 * 60);
// if changed, update CACHE_CONFIGURATION.md
const DEFAULT_OPTIMIZING_COMPRESSION_TASK_TIMEOUT: Duration = Duration::from_secs(30 * 60);
// the default assumes problems with timezone configuration on network share + some clock drift
// please notice 24 timezones = max 23h difference between some of them
// if changed, update CACHE_CONFIGURATION.md
const DEFAULT_ALLOWED_CLOCK_DRIFT_FOR_FILES_FROM_FUTURE: Duration =
Duration::from_secs(60 * 60 * 24);
// if changed, update CACHE_CONFIGURATION.md
const DEFAULT_FILE_COUNT_SOFT_LIMIT: u64 = 0x10_000;
// if changed, update CACHE_CONFIGURATION.md
const DEFAULT_FILES_TOTAL_SIZE_SOFT_LIMIT: u64 = 1024 * 1024 * 512;
// if changed, update CACHE_CONFIGURATION.md
const DEFAULT_FILE_COUNT_LIMIT_PERCENT_IF_DELETING: u8 = 70;
// if changed, update CACHE_CONFIGURATION.md
const DEFAULT_FILES_TOTAL_SIZE_LIMIT_PERCENT_IF_DELETING: u8 = 70;
// Deserializers of our custom formats
// can be replaced with const generics later
macro_rules! generate_deserializer {
($name:ident($numname:ident: $numty:ty, $unitname:ident: &str) -> $retty:ty {$body:expr}) => {
fn $name<'de, D>(deserializer: D) -> Result<$retty, D::Error>
where
D: Deserializer<'de>,
{
let text = Option::<String>::deserialize(deserializer)?;
let text = match text {
None => return Ok(None),
Some(text) => text,
};
let text = text.trim();
let split_point = text.find(|c: char| !c.is_numeric());
let (num, unit) = split_point.map_or_else(|| (text, ""), |p| text.split_at(p));
let deserialized = (|| {
let $numname = num.parse::<$numty>().ok()?;
let $unitname = unit.trim();
$body
})();
if deserialized.is_some() {
Ok(deserialized)
} else {
Err(de::Error::custom(
"Invalid value, please refer to the documentation",
))
}
}
};
}
generate_deserializer!(deserialize_duration(num: u64, unit: &str) -> Option<Duration> {
match unit {
"s" => Some(Duration::from_secs(num)),
"m" => Some(Duration::from_secs(num * 60)),
"h" => Some(Duration::from_secs(num * 60 * 60)),
"d" => Some(Duration::from_secs(num * 60 * 60 * 24)),
_ => None,
}
});
generate_deserializer!(deserialize_si_prefix(num: u64, unit: &str) -> Option<u64> {
match unit {
"" => Some(num),
"K" => num.checked_mul(1_000),
"M" => num.checked_mul(1_000_000),
"G" => num.checked_mul(1_000_000_000),
"T" => num.checked_mul(1_000_000_000_000),
"P" => num.checked_mul(1_000_000_000_000_000),
_ => None,
}
});
generate_deserializer!(deserialize_disk_space(num: u64, unit: &str) -> Option<u64> {
match unit {
"" => Some(num),
"K" => num.checked_mul(1_000),
"Ki" => num.checked_mul(1u64 << 10),
"M" => num.checked_mul(1_000_000),
"Mi" => num.checked_mul(1u64 << 20),
"G" => num.checked_mul(1_000_000_000),
"Gi" => num.checked_mul(1u64 << 30),
"T" => num.checked_mul(1_000_000_000_000),
"Ti" => num.checked_mul(1u64 << 40),
"P" => num.checked_mul(1_000_000_000_000_000),
"Pi" => num.checked_mul(1u64 << 50),
_ => None,
}
});
generate_deserializer!(deserialize_percent(num: u8, unit: &str) -> Option<u8> {
match unit {
"%" => Some(num),
_ => None,
}
});
static CACHE_IMPROPER_CONFIG_ERROR_MSG: &str =
"Cache system should be enabled and all settings must be validated or defaulted";
macro_rules! generate_setting_getter {
($setting:ident: $setting_type:ty) => {
/// Returns `$setting`.
///
/// Panics if the cache is disabled.
pub fn $setting(&self) -> $setting_type {
self
.$setting
.expect(CACHE_IMPROPER_CONFIG_ERROR_MSG)
}
};
}
impl CacheConfig {
generate_setting_getter!(worker_event_queue_size: u64);
generate_setting_getter!(baseline_compression_level: i32);
generate_setting_getter!(optimized_compression_level: i32);
generate_setting_getter!(optimized_compression_usage_counter_threshold: u64);
generate_setting_getter!(cleanup_interval: Duration);
generate_setting_getter!(optimizing_compression_task_timeout: Duration);
generate_setting_getter!(allowed_clock_drift_for_files_from_future: Duration);
generate_setting_getter!(file_count_soft_limit: u64);
generate_setting_getter!(files_total_size_soft_limit: u64);
generate_setting_getter!(file_count_limit_percent_if_deleting: u8);
generate_setting_getter!(files_total_size_limit_percent_if_deleting: u8);
/// Returns true if and only if the cache is enabled.
pub fn enabled(&self) -> bool {
self.enabled
}
/// Returns path to the cache directory.
///
/// Panics if the cache is disabled.
pub fn directory(&self) -> &PathBuf {
self.directory
.as_ref()
.expect(CACHE_IMPROPER_CONFIG_ERROR_MSG)
}
pub fn new_cache_disabled() -> Self {
Self {
errors: Vec::new(),
enabled: false,
directory: None,
worker_event_queue_size: None,
baseline_compression_level: None,
optimized_compression_level: None,
optimized_compression_usage_counter_threshold: None,
cleanup_interval: None,
optimizing_compression_task_timeout: None,
allowed_clock_drift_for_files_from_future: None,
file_count_soft_limit: None,
files_total_size_soft_limit: None,
file_count_limit_percent_if_deleting: None,
files_total_size_limit_percent_if_deleting: None,
}
}
fn new_cache_enabled_template() -> Self {
let mut conf = Self::new_cache_disabled();
conf.enabled = true;
conf
}
fn new_cache_with_errors(errors: Vec<String>) -> Self {
let mut conf = Self::new_cache_disabled();
conf.errors = errors;
conf
}
pub fn from_file<P: AsRef<Path>>(enabled: bool, config_file: Option<P>) -> Self {
if !enabled {
return Self::new_cache_disabled();
}
let mut config = match Self::load_and_parse_file(config_file) {
Ok(data) => data,
Err(err) => return Self::new_cache_with_errors(vec![err]),
};
// validate values and fill in defaults
config.validate_directory_or_default();
config.validate_worker_event_queue_size_or_default();
config.validate_baseline_compression_level_or_default();
config.validate_optimized_compression_level_or_default();
config.validate_optimized_compression_usage_counter_threshold_or_default();
config.validate_cleanup_interval_or_default();
config.validate_optimizing_compression_task_timeout_or_default();
config.validate_allowed_clock_drift_for_files_from_future_or_default();
config.validate_file_count_soft_limit_or_default();
config.validate_files_total_size_soft_limit_or_default();
config.validate_file_count_limit_percent_if_deleting_or_default();
config.validate_files_total_size_limit_percent_if_deleting_or_default();
config.disable_if_any_error();
config
}
fn load_and_parse_file<P: AsRef<Path>>(config_file: Option<P>) -> Result<Self, String> {
// get config file path
let (config_file, user_custom_file) = config_file.as_ref().map_or_else(
|| DEFAULT_CONFIG_PATH.as_ref().map(|p| (p.as_ref(), false)),
|p| Ok((p.as_ref(), true)),
)?;
// read config, or use default one
let entity_exists = config_file.exists();
match (entity_exists, user_custom_file) {
(false, false) => Ok(Self::new_cache_enabled_template()),
_ => match fs::read(&config_file) {
Ok(bytes) => match toml::from_slice::<Config>(&bytes[..]) {
Ok(config) => Ok(config.cache),
Err(err) => Err(format!(
"Failed to parse config file, path: {}, error: {}",
config_file.display(),
err
)),
},
Err(err) => Err(format!(
"Failed to read config file, path: {}, error: {}",
config_file.display(),
err
)),
},
}
}
fn validate_directory_or_default(&mut self) {
if self.directory.is_none() {
match &*PROJECT_DIRS {
Some(proj_dirs) => self.directory = Some(proj_dirs.cache_dir().to_path_buf()),
None => {
self.errors.push(
"Cache directory not specified and failed to get the default".to_string(),
);
return;
}
}
}
// On Windows, if we want long paths, we need '\\?\' prefix, but it doesn't work
// with relative paths. One way to get absolute path (the only one?) is to use
// fs::canonicalize, but it requires that given path exists. The extra advantage
// of this method is fact that the method prepends '\\?\' on Windows.
let cache_dir = self.directory.as_ref().unwrap();
if !cache_dir.is_absolute() {
self.errors.push(format!(
"Cache directory path has to be absolute, path: {}",
cache_dir.display(),
));
return;
}
match fs::create_dir_all(cache_dir) {
Ok(()) => (),
Err(err) => {
self.errors.push(format!(
"Failed to create the cache directory, path: {}, error: {}",
cache_dir.display(),
err
));
return;
}
};
match fs::canonicalize(cache_dir) {
Ok(p) => self.directory = Some(p),
Err(err) => {
self.errors.push(format!(
"Failed to canonicalize the cache directory, path: {}, error: {}",
cache_dir.display(),
err
));
}
}
}
fn validate_worker_event_queue_size_or_default(&mut self) {
if self.worker_event_queue_size.is_none() {
self.worker_event_queue_size = Some(DEFAULT_WORKER_EVENT_QUEUE_SIZE);
}
if self.worker_event_queue_size.unwrap() < WORKER_EVENT_QUEUE_SIZE_WARNING_TRESHOLD {
warn!("Detected small worker event queue size. Some messages might be lost.");
}
}
fn validate_baseline_compression_level_or_default(&mut self) {
if self.baseline_compression_level.is_none() {
self.baseline_compression_level = Some(DEFAULT_BASELINE_COMPRESSION_LEVEL);
}
if !ZSTD_COMPRESSION_LEVELS.contains(&self.baseline_compression_level.unwrap()) {
self.errors.push(format!(
"Invalid baseline compression level: {} not in {:#?}",
self.baseline_compression_level.unwrap(),
ZSTD_COMPRESSION_LEVELS
));
}
}
// assumption: baseline compression level has been verified
fn validate_optimized_compression_level_or_default(&mut self) {
if self.optimized_compression_level.is_none() {
self.optimized_compression_level = Some(DEFAULT_OPTIMIZED_COMPRESSION_LEVEL);
}
let opt_lvl = self.optimized_compression_level.unwrap();
let base_lvl = self.baseline_compression_level.unwrap();
if !ZSTD_COMPRESSION_LEVELS.contains(&opt_lvl) {
self.errors.push(format!(
"Invalid optimized compression level: {} not in {:#?}",
opt_lvl, ZSTD_COMPRESSION_LEVELS
));
}
if opt_lvl < base_lvl {
self.errors.push(format!(
"Invalid optimized compression level is lower than baseline: {} < {}",
opt_lvl, base_lvl
));
}
}
fn validate_optimized_compression_usage_counter_threshold_or_default(&mut self) {
if self.optimized_compression_usage_counter_threshold.is_none() {
self.optimized_compression_usage_counter_threshold =
Some(DEFAULT_OPTIMIZED_COMPRESSION_USAGE_COUNTER_THRESHOLD);
}
}
fn validate_cleanup_interval_or_default(&mut self) {
if self.cleanup_interval.is_none() {
self.cleanup_interval = Some(DEFAULT_CLEANUP_INTERVAL);
}
}
fn validate_optimizing_compression_task_timeout_or_default(&mut self) {
if self.optimizing_compression_task_timeout.is_none() {
self.optimizing_compression_task_timeout =
Some(DEFAULT_OPTIMIZING_COMPRESSION_TASK_TIMEOUT);
}
}
fn validate_allowed_clock_drift_for_files_from_future_or_default(&mut self) {
if self.allowed_clock_drift_for_files_from_future.is_none() {
self.allowed_clock_drift_for_files_from_future =
Some(DEFAULT_ALLOWED_CLOCK_DRIFT_FOR_FILES_FROM_FUTURE);
}
}
fn validate_file_count_soft_limit_or_default(&mut self) {
if self.file_count_soft_limit.is_none() {
self.file_count_soft_limit = Some(DEFAULT_FILE_COUNT_SOFT_LIMIT);
}
}
fn validate_files_total_size_soft_limit_or_default(&mut self) {
if self.files_total_size_soft_limit.is_none() {
self.files_total_size_soft_limit = Some(DEFAULT_FILES_TOTAL_SIZE_SOFT_LIMIT);
}
}
fn validate_file_count_limit_percent_if_deleting_or_default(&mut self) {
if self.file_count_limit_percent_if_deleting.is_none() {
self.file_count_limit_percent_if_deleting =
Some(DEFAULT_FILE_COUNT_LIMIT_PERCENT_IF_DELETING);
}
let percent = self.file_count_limit_percent_if_deleting.unwrap();
if percent > 100 {
self.errors.push(format!(
"Invalid files count limit percent if deleting: {} not in range 0-100%",
percent
));
}
}
fn validate_files_total_size_limit_percent_if_deleting_or_default(&mut self) {
if self.files_total_size_limit_percent_if_deleting.is_none() {
self.files_total_size_limit_percent_if_deleting =
Some(DEFAULT_FILES_TOTAL_SIZE_LIMIT_PERCENT_IF_DELETING);
}
let percent = self.files_total_size_limit_percent_if_deleting.unwrap();
if percent > 100 {
self.errors.push(format!(
"Invalid files total size limit percent if deleting: {} not in range 0-100%",
percent
));
}
}
fn disable_if_any_error(&mut self) {
if !self.errors.is_empty() {
let mut conf = Self::new_cache_disabled();
mem::swap(self, &mut conf);
mem::swap(&mut self.errors, &mut conf.errors);
}
}
}
#[cfg(test)]
#[macro_use]
pub mod tests;

581
crates/environ/src/cache/config/tests.rs vendored Normal file
View File

@@ -0,0 +1,581 @@
use super::CacheConfig;
use core::time::Duration;
use std::fs;
use std::path::PathBuf;
use tempfile::{self, TempDir};
// note: config loading during validation creates cache directory to canonicalize its path,
// that's why these function and macro always use custom cache directory
// note: tempdir removes directory when being dropped, so we need to return it to the caller,
// so the paths are valid
pub fn test_prolog() -> (TempDir, PathBuf, PathBuf) {
let _ = pretty_env_logger::try_init();
let temp_dir = tempfile::tempdir().expect("Can't create temporary directory");
let cache_dir = temp_dir.path().join("cache-dir");
let config_path = temp_dir.path().join("cache-config.toml");
(temp_dir, cache_dir, config_path)
}
macro_rules! load_config {
($config_path:ident, $content_fmt:expr, $cache_dir:ident) => {{
let config_path = &$config_path;
let content = format!(
$content_fmt,
cache_dir = toml::to_string_pretty(&format!("{}", $cache_dir.display())).unwrap()
);
fs::write(config_path, content).expect("Failed to write test config file");
CacheConfig::from_file(true, Some(config_path))
}};
}
// test without macros to test being disabled
#[test]
fn test_disabled() {
let dir = tempfile::tempdir().expect("Can't create temporary directory");
let config_path = dir.path().join("cache-config.toml");
let config_content = "[cache]\n\
enabled = true\n";
fs::write(&config_path, config_content).expect("Failed to write test config file");
let conf = CacheConfig::from_file(false, Some(&config_path));
assert!(!conf.enabled());
assert!(conf.errors.is_empty());
let config_content = "[cache]\n\
enabled = false\n";
fs::write(&config_path, config_content).expect("Failed to write test config file");
let conf = CacheConfig::from_file(true, Some(&config_path));
assert!(!conf.enabled());
assert!(conf.errors.is_empty());
}
#[test]
fn test_unrecognized_settings() {
let (_td, cd, cp) = test_prolog();
let conf = load_config!(
cp,
"unrecognized-setting = 42\n\
[cache]\n\
enabled = true\n\
directory = {cache_dir}",
cd
);
assert!(!conf.enabled());
assert!(!conf.errors.is_empty());
let conf = load_config!(
cp,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
unrecognized-setting = 42",
cd
);
assert!(!conf.enabled());
assert!(!conf.errors.is_empty());
}
#[test]
fn test_all_settings() {
let (_td, cd, cp) = test_prolog();
let conf = load_config!(
cp,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
worker-event-queue-size = '16'\n\
baseline-compression-level = 3\n\
optimized-compression-level = 20\n\
optimized-compression-usage-counter-threshold = '256'\n\
cleanup-interval = '1h'\n\
optimizing-compression-task-timeout = '30m'\n\
allowed-clock-drift-for-files-from-future = '1d'\n\
file-count-soft-limit = '65536'\n\
files-total-size-soft-limit = '512Mi'\n\
file-count-limit-percent-if-deleting = '70%'\n\
files-total-size-limit-percent-if-deleting = '70%'",
cd
);
check_conf(&conf, &cd);
let conf = load_config!(
cp,
// added some white spaces
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
worker-event-queue-size = ' 16\t'\n\
baseline-compression-level = 3\n\
optimized-compression-level =\t 20\n\
optimized-compression-usage-counter-threshold = '256'\n\
cleanup-interval = ' 1h'\n\
optimizing-compression-task-timeout = '30 m'\n\
allowed-clock-drift-for-files-from-future = '1\td'\n\
file-count-soft-limit = '\t \t65536\t'\n\
files-total-size-soft-limit = '512\t\t Mi '\n\
file-count-limit-percent-if-deleting = '70\t%'\n\
files-total-size-limit-percent-if-deleting = ' 70 %'",
cd
);
check_conf(&conf, &cd);
fn check_conf(conf: &CacheConfig, cd: &PathBuf) {
eprintln!("errors: {:#?}", conf.errors);
assert!(conf.enabled());
assert!(conf.errors.is_empty());
assert_eq!(
conf.directory(),
&fs::canonicalize(cd).expect("canonicalize failed")
);
assert_eq!(conf.worker_event_queue_size(), 0x10);
assert_eq!(conf.baseline_compression_level(), 3);
assert_eq!(conf.optimized_compression_level(), 20);
assert_eq!(conf.optimized_compression_usage_counter_threshold(), 0x100);
assert_eq!(conf.cleanup_interval(), Duration::from_secs(60 * 60));
assert_eq!(
conf.optimizing_compression_task_timeout(),
Duration::from_secs(30 * 60)
);
assert_eq!(
conf.allowed_clock_drift_for_files_from_future(),
Duration::from_secs(60 * 60 * 24)
);
assert_eq!(conf.file_count_soft_limit(), 0x10_000);
assert_eq!(conf.files_total_size_soft_limit(), 512 * (1u64 << 20));
assert_eq!(conf.file_count_limit_percent_if_deleting(), 70);
assert_eq!(conf.files_total_size_limit_percent_if_deleting(), 70);
}
}
#[test]
fn test_compression_level_settings() {
let (_td, cd, cp) = test_prolog();
let conf = load_config!(
cp,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
baseline-compression-level = 1\n\
optimized-compression-level = 21",
cd
);
assert!(conf.enabled());
assert!(conf.errors.is_empty());
assert_eq!(conf.baseline_compression_level(), 1);
assert_eq!(conf.optimized_compression_level(), 21);
let conf = load_config!(
cp,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
baseline-compression-level = -1\n\
optimized-compression-level = 21",
cd
);
assert!(!conf.enabled());
assert!(!conf.errors.is_empty());
let conf = load_config!(
cp,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
baseline-compression-level = 15\n\
optimized-compression-level = 10",
cd
);
assert!(!conf.enabled());
assert!(!conf.errors.is_empty());
}
#[test]
fn test_si_prefix_settings() {
let (_td, cd, cp) = test_prolog();
let conf = load_config!(
cp,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
worker-event-queue-size = '42'\n\
optimized-compression-usage-counter-threshold = '4K'\n\
file-count-soft-limit = '3M'",
cd
);
assert!(conf.enabled());
assert!(conf.errors.is_empty());
assert_eq!(conf.worker_event_queue_size(), 42);
assert_eq!(conf.optimized_compression_usage_counter_threshold(), 4_000);
assert_eq!(conf.file_count_soft_limit(), 3_000_000);
let conf = load_config!(
cp,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
worker-event-queue-size = '2G'\n\
optimized-compression-usage-counter-threshold = '4444T'\n\
file-count-soft-limit = '1P'",
cd
);
assert!(conf.enabled());
assert!(conf.errors.is_empty());
assert_eq!(conf.worker_event_queue_size(), 2_000_000_000);
assert_eq!(
conf.optimized_compression_usage_counter_threshold(),
4_444_000_000_000_000
);
assert_eq!(conf.file_count_soft_limit(), 1_000_000_000_000_000);
// different errors
let conf = load_config!(
cp,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
worker-event-queue-size = '2g'",
cd
);
assert!(!conf.enabled());
assert!(!conf.errors.is_empty());
let conf = load_config!(
cp,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
file-count-soft-limit = 1",
cd
);
assert!(!conf.enabled());
assert!(!conf.errors.is_empty());
let conf = load_config!(
cp,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
file-count-soft-limit = '-31337'",
cd
);
assert!(!conf.enabled());
assert!(!conf.errors.is_empty());
let conf = load_config!(
cp,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
file-count-soft-limit = '3.14M'",
cd
);
assert!(!conf.enabled());
assert!(!conf.errors.is_empty());
}
#[test]
fn test_disk_space_settings() {
let (_td, cd, cp) = test_prolog();
let conf = load_config!(
cp,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
files-total-size-soft-limit = '76'",
cd
);
assert!(conf.enabled());
assert!(conf.errors.is_empty());
assert_eq!(conf.files_total_size_soft_limit(), 76);
let conf = load_config!(
cp,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
files-total-size-soft-limit = '42 Mi'",
cd
);
assert!(conf.enabled());
assert!(conf.errors.is_empty());
assert_eq!(conf.files_total_size_soft_limit(), 42 * (1u64 << 20));
let conf = load_config!(
cp,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
files-total-size-soft-limit = '2 Gi'",
cd
);
assert!(conf.enabled());
assert!(conf.errors.is_empty());
assert_eq!(conf.files_total_size_soft_limit(), 2 * (1u64 << 30));
let conf = load_config!(
cp,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
files-total-size-soft-limit = '31337 Ti'",
cd
);
assert!(conf.enabled());
assert!(conf.errors.is_empty());
assert_eq!(conf.files_total_size_soft_limit(), 31337 * (1u64 << 40));
let conf = load_config!(
cp,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
files-total-size-soft-limit = '7 Pi'",
cd
);
assert!(conf.enabled());
assert!(conf.errors.is_empty());
assert_eq!(conf.files_total_size_soft_limit(), 7 * (1u64 << 50));
let conf = load_config!(
cp,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
files-total-size-soft-limit = '7M'",
cd
);
assert!(conf.enabled());
assert!(conf.errors.is_empty());
assert_eq!(conf.files_total_size_soft_limit(), 7_000_000);
// different errors
let conf = load_config!(
cp,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
files-total-size-soft-limit = '7 mi'",
cd
);
assert!(!conf.enabled());
assert!(!conf.errors.is_empty());
let conf = load_config!(
cp,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
files-total-size-soft-limit = 1",
cd
);
assert!(!conf.enabled());
assert!(!conf.errors.is_empty());
let conf = load_config!(
cp,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
files-total-size-soft-limit = '-31337'",
cd
);
assert!(!conf.enabled());
assert!(!conf.errors.is_empty());
let conf = load_config!(
cp,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
files-total-size-soft-limit = '3.14Ki'",
cd
);
assert!(!conf.enabled());
assert!(!conf.errors.is_empty());
}
#[test]
fn test_duration_settings() {
let (_td, cd, cp) = test_prolog();
let conf = load_config!(
cp,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
cleanup-interval = '100s'\n\
optimizing-compression-task-timeout = '3m'\n\
allowed-clock-drift-for-files-from-future = '4h'",
cd
);
assert!(conf.enabled());
assert!(conf.errors.is_empty());
assert_eq!(conf.cleanup_interval(), Duration::from_secs(100));
assert_eq!(
conf.optimizing_compression_task_timeout(),
Duration::from_secs(3 * 60)
);
assert_eq!(
conf.allowed_clock_drift_for_files_from_future(),
Duration::from_secs(4 * 60 * 60)
);
let conf = load_config!(
cp,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
cleanup-interval = '2d'\n\
optimizing-compression-task-timeout = '333 m'",
cd
);
assert!(conf.enabled());
assert!(conf.errors.is_empty());
assert_eq!(
conf.cleanup_interval(),
Duration::from_secs(2 * 24 * 60 * 60)
);
assert_eq!(
conf.optimizing_compression_task_timeout(),
Duration::from_secs(333 * 60)
);
// different errors
let conf = load_config!(
cp,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
optimizing-compression-task-timeout = '333'",
cd
);
assert!(!conf.enabled());
assert!(!conf.errors.is_empty());
let conf = load_config!(
cp,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
optimizing-compression-task-timeout = 333",
cd
);
assert!(!conf.enabled());
assert!(!conf.errors.is_empty());
let conf = load_config!(
cp,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
optimizing-compression-task-timeout = '10 M'",
cd
);
assert!(!conf.enabled());
assert!(!conf.errors.is_empty());
let conf = load_config!(
cp,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
optimizing-compression-task-timeout = '10 min'",
cd
);
assert!(!conf.enabled());
assert!(!conf.errors.is_empty());
let conf = load_config!(
cp,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
optimizing-compression-task-timeout = '-10s'",
cd
);
assert!(!conf.enabled());
assert!(!conf.errors.is_empty());
let conf = load_config!(
cp,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
optimizing-compression-task-timeout = '1.5m'",
cd
);
assert!(!conf.enabled());
assert!(!conf.errors.is_empty());
}
#[test]
fn test_percent_settings() {
let (_td, cd, cp) = test_prolog();
let conf = load_config!(
cp,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
file-count-limit-percent-if-deleting = '62%'\n\
files-total-size-limit-percent-if-deleting = '23 %'",
cd
);
assert!(conf.enabled());
assert!(conf.errors.is_empty());
assert_eq!(conf.file_count_limit_percent_if_deleting(), 62);
assert_eq!(conf.files_total_size_limit_percent_if_deleting(), 23);
// different errors
let conf = load_config!(
cp,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
files-total-size-limit-percent-if-deleting = '23'",
cd
);
assert!(!conf.enabled());
assert!(!conf.errors.is_empty());
let conf = load_config!(
cp,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
files-total-size-limit-percent-if-deleting = '22.5%'",
cd
);
assert!(!conf.enabled());
assert!(!conf.errors.is_empty());
let conf = load_config!(
cp,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
files-total-size-limit-percent-if-deleting = '0.5'",
cd
);
assert!(!conf.enabled());
assert!(!conf.errors.is_empty());
let conf = load_config!(
cp,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
files-total-size-limit-percent-if-deleting = '-1%'",
cd
);
assert!(!conf.enabled());
assert!(!conf.errors.is_empty());
let conf = load_config!(
cp,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
files-total-size-limit-percent-if-deleting = '101%'",
cd
);
assert!(!conf.enabled());
assert!(!conf.errors.is_empty());
}

354
crates/environ/src/cache/tests.rs vendored Normal file
View File

@@ -0,0 +1,354 @@
use super::config::tests::test_prolog;
use super::*;
use crate::address_map::{FunctionAddressMap, InstructionAddressMap};
use crate::compilation::{CompiledFunction, Relocation, RelocationTarget, TrapInformation};
use crate::module::{MemoryPlan, MemoryStyle, Module};
use alloc::boxed::Box;
use alloc::vec::Vec;
use core::cmp::min;
use cranelift_codegen::{binemit, ir, isa, settings, ValueLocRange};
use cranelift_entity::EntityRef;
use cranelift_entity::{PrimaryMap, SecondaryMap};
use cranelift_wasm::{DefinedFuncIndex, FuncIndex, Global, GlobalInit, Memory, SignatureIndex};
use rand::rngs::SmallRng;
use rand::{Rng, SeedableRng};
use std::fs;
use std::str::FromStr;
use target_lexicon::triple;
// Since cache system is a global thing, each test needs to be run in seperate process.
// So, init() tests are run as integration tests.
// However, caching is a private thing, an implementation detail, and needs to be tested
// from the inside of the module.
// We test init() in exactly one test, rest of the tests doesn't rely on it.
#[test]
fn test_cache_init() {
let (_tempdir, cache_dir, config_path) = test_prolog();
let baseline_compression_level = 4;
let config_content = format!(
"[cache]\n\
enabled = true\n\
directory = {}\n\
baseline-compression-level = {}\n",
toml::to_string_pretty(&format!("{}", cache_dir.display())).unwrap(),
baseline_compression_level,
);
fs::write(&config_path, config_content).expect("Failed to write test config file");
let errors = init(true, Some(&config_path), None);
assert!(errors.is_empty());
// test if we can use config
let cache_config = cache_config();
assert!(cache_config.enabled());
// assumption: config init creates cache directory and returns canonicalized path
assert_eq!(
*cache_config.directory(),
fs::canonicalize(cache_dir).unwrap()
);
assert_eq!(
cache_config.baseline_compression_level(),
baseline_compression_level
);
// test if we can use worker
let worker = worker();
worker.on_cache_update_async(config_path);
}
#[test]
fn test_write_read_cache() {
let (_tempdir, cache_dir, config_path) = test_prolog();
let cache_config = load_config!(
config_path,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
baseline-compression-level = 3\n",
cache_dir
);
assert!(cache_config.enabled());
let worker = Worker::start_new(&cache_config, None);
// assumption: config load creates cache directory and returns canonicalized path
assert_eq!(
*cache_config.directory(),
fs::canonicalize(cache_dir).unwrap()
);
let mut rng = SmallRng::from_seed([
0x42, 0x04, 0xF3, 0x44, 0x11, 0x22, 0x33, 0x44, 0x67, 0x68, 0xFF, 0x00, 0x44, 0x23, 0x7F,
0x96,
]);
let mut code_container = Vec::new();
code_container.resize(0x4000, 0);
rng.fill(&mut code_container[..]);
let isa1 = new_isa("riscv64-unknown-unknown");
let isa2 = new_isa("i386");
let module1 = new_module(&mut rng);
let module2 = new_module(&mut rng);
let function_body_inputs1 = new_function_body_inputs(&mut rng, &code_container);
let function_body_inputs2 = new_function_body_inputs(&mut rng, &code_container);
let compiler1 = "test-1";
let compiler2 = "test-2";
let entry1 = ModuleCacheEntry::from_inner(ModuleCacheEntryInner::new(
&module1,
&function_body_inputs1,
&*isa1,
compiler1,
false,
&cache_config,
&worker,
));
assert!(entry1.0.is_some());
assert!(entry1.get_data().is_none());
let data1 = new_module_cache_data(&mut rng);
entry1.update_data(&data1);
assert_eq!(entry1.get_data().expect("Cache should be available"), data1);
let entry2 = ModuleCacheEntry::from_inner(ModuleCacheEntryInner::new(
&module2,
&function_body_inputs1,
&*isa1,
compiler1,
false,
&cache_config,
&worker,
));
let data2 = new_module_cache_data(&mut rng);
entry2.update_data(&data2);
assert_eq!(entry1.get_data().expect("Cache should be available"), data1);
assert_eq!(entry2.get_data().expect("Cache should be available"), data2);
let entry3 = ModuleCacheEntry::from_inner(ModuleCacheEntryInner::new(
&module1,
&function_body_inputs2,
&*isa1,
compiler1,
false,
&cache_config,
&worker,
));
let data3 = new_module_cache_data(&mut rng);
entry3.update_data(&data3);
assert_eq!(entry1.get_data().expect("Cache should be available"), data1);
assert_eq!(entry2.get_data().expect("Cache should be available"), data2);
assert_eq!(entry3.get_data().expect("Cache should be available"), data3);
let entry4 = ModuleCacheEntry::from_inner(ModuleCacheEntryInner::new(
&module1,
&function_body_inputs1,
&*isa2,
compiler1,
false,
&cache_config,
&worker,
));
let data4 = new_module_cache_data(&mut rng);
entry4.update_data(&data4);
assert_eq!(entry1.get_data().expect("Cache should be available"), data1);
assert_eq!(entry2.get_data().expect("Cache should be available"), data2);
assert_eq!(entry3.get_data().expect("Cache should be available"), data3);
assert_eq!(entry4.get_data().expect("Cache should be available"), data4);
let entry5 = ModuleCacheEntry::from_inner(ModuleCacheEntryInner::new(
&module1,
&function_body_inputs1,
&*isa1,
compiler2,
false,
&cache_config,
&worker,
));
let data5 = new_module_cache_data(&mut rng);
entry5.update_data(&data5);
assert_eq!(entry1.get_data().expect("Cache should be available"), data1);
assert_eq!(entry2.get_data().expect("Cache should be available"), data2);
assert_eq!(entry3.get_data().expect("Cache should be available"), data3);
assert_eq!(entry4.get_data().expect("Cache should be available"), data4);
assert_eq!(entry5.get_data().expect("Cache should be available"), data5);
let data6 = new_module_cache_data(&mut rng);
entry1.update_data(&data6);
assert_eq!(entry1.get_data().expect("Cache should be available"), data6);
assert_eq!(entry2.get_data().expect("Cache should be available"), data2);
assert_eq!(entry3.get_data().expect("Cache should be available"), data3);
assert_eq!(entry4.get_data().expect("Cache should be available"), data4);
assert_eq!(entry5.get_data().expect("Cache should be available"), data5);
assert!(data1 != data2 && data1 != data3 && data1 != data4 && data1 != data5 && data1 != data6);
}
fn new_isa(name: &str) -> Box<dyn isa::TargetIsa> {
let shared_builder = settings::builder();
let shared_flags = settings::Flags::new(shared_builder);
isa::lookup(triple!(name))
.expect("can't find specified isa")
.finish(shared_flags)
}
fn new_module(rng: &mut impl Rng) -> Module {
// There are way too many fields. Just fill in some of them.
let mut m = Module::new();
if rng.gen_bool(0.5) {
m.signatures.push(ir::Signature {
params: vec![],
returns: vec![],
call_conv: isa::CallConv::Fast,
});
}
for i in 0..rng.gen_range(1, 0x8) {
m.functions.push(SignatureIndex::new(i));
}
if rng.gen_bool(0.8) {
m.memory_plans.push(MemoryPlan {
memory: Memory {
minimum: rng.gen(),
maximum: rng.gen(),
shared: rng.gen(),
},
style: MemoryStyle::Dynamic,
offset_guard_size: rng.gen(),
});
}
if rng.gen_bool(0.4) {
m.globals.push(Global {
ty: ir::Type::int(16).unwrap(),
mutability: rng.gen(),
initializer: GlobalInit::I32Const(rng.gen()),
});
}
m
}
fn new_function_body_inputs<'data>(
rng: &mut impl Rng,
code_container: &'data Vec<u8>,
) -> PrimaryMap<DefinedFuncIndex, FunctionBodyData<'data>> {
let len = code_container.len();
let mut pos = rng.gen_range(0, code_container.len());
(2..rng.gen_range(4, 14))
.map(|j| {
let (old_pos, end) = (pos, min(pos + rng.gen_range(0x10, 0x200), len));
pos = end % len;
FunctionBodyData {
data: &code_container[old_pos..end],
module_offset: (rng.next_u64() + j) as usize,
}
})
.collect()
}
fn new_module_cache_data(rng: &mut impl Rng) -> ModuleCacheData {
let funcs = (0..rng.gen_range(0, 10))
.map(|i| {
let mut sm = SecondaryMap::new(); // doesn't implement from iterator
sm.resize(i as usize * 2);
sm.values_mut().enumerate().for_each(|(j, v)| {
if rng.gen_bool(0.33) {
*v = (j as u32) * 3 / 4
}
});
CompiledFunction {
body: (0..(i * 3 / 2)).collect(),
jt_offsets: sm,
unwind_info: (0..(i * 3 / 2)).collect(),
}
})
.collect();
let relocs = (0..rng.gen_range(1, 0x10))
.map(|i| {
vec![
Relocation {
reloc: binemit::Reloc::X86CallPCRel4,
reloc_target: RelocationTarget::UserFunc(FuncIndex::new(i as usize * 42)),
offset: i + rng.next_u32(),
addend: 0,
},
Relocation {
reloc: binemit::Reloc::Arm32Call,
reloc_target: RelocationTarget::LibCall(ir::LibCall::CeilF64),
offset: rng.gen_range(4, i + 55),
addend: (42 * i) as i64,
},
]
})
.collect();
let trans = (4..rng.gen_range(4, 0x10))
.map(|i| FunctionAddressMap {
instructions: vec![InstructionAddressMap {
srcloc: ir::SourceLoc::new(rng.gen()),
code_offset: rng.gen(),
code_len: i,
}],
start_srcloc: ir::SourceLoc::new(rng.gen()),
end_srcloc: ir::SourceLoc::new(rng.gen()),
body_offset: rng.gen(),
body_len: 0x31337,
})
.collect();
let value_ranges = (4..rng.gen_range(4, 0x10))
.map(|i| {
(i..i + rng.gen_range(4, 8))
.map(|k| {
(
ir::ValueLabel::new(k),
(0..rng.gen_range(0, 4))
.map(|_| ValueLocRange {
loc: ir::ValueLoc::Reg(rng.gen()),
start: rng.gen(),
end: rng.gen(),
})
.collect(),
)
})
.collect()
})
.collect();
let stack_slots = (0..rng.gen_range(0, 0x6))
.map(|_| {
let mut slots = ir::StackSlots::new();
slots.push(ir::StackSlotData {
kind: ir::StackSlotKind::SpillSlot,
size: rng.gen(),
offset: rng.gen(),
});
slots.frame_size = rng.gen();
slots
})
.collect();
let traps = (0..rng.gen_range(0, 0xd))
.map(|i| {
((i..i + rng.gen_range(0, 4))
.map(|_| TrapInformation {
code_offset: rng.gen(),
source_loc: ir::SourceLoc::new(rng.gen()),
trap_code: ir::TrapCode::StackOverflow,
})
.collect())
})
.collect();
ModuleCacheData::from_tuple((
Compilation::new(funcs),
relocs,
trans,
value_ranges,
stack_slots,
traps,
))
}

912
crates/environ/src/cache/worker.rs vendored Normal file
View File

@@ -0,0 +1,912 @@
//! Background worker that watches over the cache.
//!
//! It cleans up old cache, updates statistics and optimizes the cache.
//! We allow losing some messages (it doesn't hurt) and some races,
//! but we guarantee eventual consistency and fault tolerancy.
//! Background tasks can be CPU intensive, but the worker thread has low priority.
use super::{cache_config, fs_write_atomic, CacheConfig};
use alloc::vec::Vec;
use core::cmp;
use core::time::Duration;
use log::{debug, info, trace, warn};
use serde::{Deserialize, Serialize};
use spin::Once;
use std::collections::HashMap;
use std::ffi::OsStr;
use std::fs;
use std::path::{Path, PathBuf};
use std::sync::atomic::{self, AtomicBool};
use std::sync::mpsc::{sync_channel, Receiver, SyncSender};
#[cfg(test)]
use std::sync::{Arc, Condvar, Mutex};
use std::thread;
#[cfg(not(test))]
use std::time::SystemTime;
#[cfg(test)]
use tests::system_time_stub::SystemTimeStub as SystemTime;
pub(super) struct Worker {
sender: SyncSender<CacheEvent>,
#[cfg(test)]
stats: Arc<(Mutex<WorkerStats>, Condvar)>,
}
struct WorkerThread {
receiver: Receiver<CacheEvent>,
cache_config: CacheConfig,
#[cfg(test)]
stats: Arc<(Mutex<WorkerStats>, Condvar)>,
}
#[cfg(test)]
#[derive(Default)]
struct WorkerStats {
dropped: u32,
sent: u32,
handled: u32,
}
static WORKER: Once<Worker> = Once::new();
static INIT_CALLED: AtomicBool = AtomicBool::new(false);
pub(super) fn worker() -> &'static Worker {
WORKER
.r#try()
.expect("Cache worker must be initialized before usage")
}
pub(super) fn init(init_file_per_thread_logger: Option<&'static str>) {
INIT_CALLED
.compare_exchange(
false,
true,
atomic::Ordering::SeqCst,
atomic::Ordering::SeqCst,
)
.expect("Cache worker init must be called at most once");
let worker = Worker::start_new(cache_config(), init_file_per_thread_logger);
WORKER.call_once(|| worker);
}
#[derive(Debug, Clone)]
enum CacheEvent {
OnCacheGet(PathBuf),
OnCacheUpdate(PathBuf),
}
impl Worker {
pub(super) fn start_new(
cache_config: &CacheConfig,
init_file_per_thread_logger: Option<&'static str>,
) -> Self {
let queue_size = match cache_config.worker_event_queue_size() {
num if num <= usize::max_value() as u64 => num as usize,
_ => usize::max_value(),
};
let (tx, rx) = sync_channel(queue_size);
#[cfg(test)]
let stats = Arc::new((Mutex::new(WorkerStats::default()), Condvar::new()));
let worker_thread = WorkerThread {
receiver: rx,
cache_config: cache_config.clone(),
#[cfg(test)]
stats: stats.clone(),
};
// when self is dropped, sender will be dropped, what will cause the channel
// to hang, and the worker thread to exit -- it happens in the tests
// non-tests binary has only a static worker, so Rust doesn't drop it
thread::spawn(move || worker_thread.run(init_file_per_thread_logger));
Self {
sender: tx,
#[cfg(test)]
stats,
}
}
pub(super) fn on_cache_get_async(&self, path: impl AsRef<Path>) {
let event = CacheEvent::OnCacheGet(path.as_ref().to_path_buf());
self.send_cache_event(event);
}
pub(super) fn on_cache_update_async(&self, path: impl AsRef<Path>) {
let event = CacheEvent::OnCacheUpdate(path.as_ref().to_path_buf());
self.send_cache_event(event);
}
#[inline]
fn send_cache_event(&self, event: CacheEvent) {
#[cfg(test)]
let mut stats = self
.stats
.0
.lock()
.expect("Failed to acquire worker stats lock");
match self.sender.try_send(event.clone()) {
Ok(()) => {
#[cfg(test)]
let _ = stats.sent += 1;
}
Err(err) => {
info!(
"Failed to send asynchronously message to worker thread, \
event: {:?}, error: {}",
event, err
);
#[cfg(test)]
let _ = stats.dropped += 1;
}
}
}
#[cfg(test)]
pub(super) fn events_dropped(&self) -> u32 {
let stats = self
.stats
.0
.lock()
.expect("Failed to acquire worker stats lock");
stats.dropped
}
#[cfg(test)]
pub(super) fn wait_for_all_events_handled(&self) {
let (stats, condvar) = &*self.stats;
let mut stats = stats.lock().expect("Failed to acquire worker stats lock");
while stats.handled != stats.sent {
stats = condvar
.wait(stats)
.expect("Failed to reacquire worker stats lock");
}
}
}
#[derive(Serialize, Deserialize)]
struct ModuleCacheStatistics {
pub usages: u64,
#[serde(rename = "optimized-compression")]
pub compression_level: i32,
}
impl ModuleCacheStatistics {
fn default(cache_config: &CacheConfig) -> Self {
Self {
usages: 0,
compression_level: cache_config.baseline_compression_level(),
}
}
}
enum CacheEntry {
Recognized {
path: PathBuf,
mtime: SystemTime,
size: u64,
},
Unrecognized {
path: PathBuf,
is_dir: bool,
},
}
impl WorkerThread {
fn run(self, init_file_per_thread_logger: Option<&'static str>) {
#[cfg(not(test))] // We want to test the worker without relying on init() being called
assert!(INIT_CALLED.load(atomic::Ordering::SeqCst));
if let Some(prefix) = init_file_per_thread_logger {
file_per_thread_logger::initialize(prefix);
}
debug!("Cache worker thread started.");
Self::lower_thread_priority();
#[cfg(test)]
let (stats, condvar) = &*self.stats;
for event in self.receiver.iter() {
match event {
CacheEvent::OnCacheGet(path) => self.handle_on_cache_get(path),
CacheEvent::OnCacheUpdate(path) => self.handle_on_cache_update(path),
}
#[cfg(test)]
{
let mut stats = stats.lock().expect("Failed to acquire worker stats lock");
stats.handled += 1;
condvar.notify_all();
}
}
// The receiver can stop iteration iff the channel has hung up.
// The channel will hung when sender is dropped. It only happens in tests.
// In non-test case we have static worker and Rust doesn't drop static variables.
#[cfg(not(test))]
unreachable!()
}
#[cfg(target_os = "windows")]
fn lower_thread_priority() {
use core::convert::TryInto;
use winapi::um::processthreadsapi::{GetCurrentThread, SetThreadPriority};
use winapi::um::winbase::THREAD_MODE_BACKGROUND_BEGIN;
// https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-setthreadpriority
// https://docs.microsoft.com/en-us/windows/win32/procthread/scheduling-priorities
if unsafe {
SetThreadPriority(
GetCurrentThread(),
THREAD_MODE_BACKGROUND_BEGIN.try_into().unwrap(),
)
} == 0
{
warn!(
"Failed to lower worker thread priority. It might affect application performance."
);
}
}
#[cfg(not(target_os = "windows"))]
fn lower_thread_priority() {
// http://man7.org/linux/man-pages/man7/sched.7.html
const NICE_DELTA_FOR_BACKGROUND_TASKS: i32 = 3;
errno::set_errno(errno::Errno(0));
let current_nice = unsafe { libc::nice(NICE_DELTA_FOR_BACKGROUND_TASKS) };
let errno_val = errno::errno().0;
if errno_val != 0 {
warn!("Failed to lower worker thread priority. It might affect application performance. errno: {}", errno_val);
} else {
debug!("New nice value of worker thread: {}", current_nice);
}
}
/// Increases the usage counter and recompresses the file
/// if the usage counter reached configurable treshold.
fn handle_on_cache_get(&self, path: PathBuf) {
trace!("handle_on_cache_get() for path: {}", path.display());
// construct .stats file path
let filename = path.file_name().unwrap().to_str().unwrap();
let stats_path = path.with_file_name(format!("{}.stats", filename));
// load .stats file (default if none or error)
let mut stats = read_stats_file(stats_path.as_ref())
.unwrap_or_else(|| ModuleCacheStatistics::default(&self.cache_config));
// step 1: update the usage counter & write to the disk
// it's racy, but it's fine (the counter will be just smaller,
// sometimes will retrigger recompression)
stats.usages += 1;
if !write_stats_file(stats_path.as_ref(), &stats) {
return;
}
// step 2: recompress if there's a need
let opt_compr_lvl = self.cache_config.optimized_compression_level();
if stats.compression_level >= opt_compr_lvl
|| stats.usages
< self
.cache_config
.optimized_compression_usage_counter_threshold()
{
return;
}
let lock_path = if let Some(p) = acquire_task_fs_lock(
path.as_ref(),
self.cache_config.optimizing_compression_task_timeout(),
self.cache_config
.allowed_clock_drift_for_files_from_future(),
) {
p
} else {
return;
};
trace!("Trying to recompress file: {}", path.display());
// recompress, write to other file, rename (it's atomic file content exchange)
// and update the stats file
fs::read(&path)
.map_err(|err| {
warn!(
"Failed to read old cache file, path: {}, err: {}",
path.display(),
err
)
})
.ok()
.and_then(|compressed_cache_bytes| {
zstd::decode_all(&compressed_cache_bytes[..])
.map_err(|err| warn!("Failed to decompress cached code: {}", err))
.ok()
})
.and_then(|cache_bytes| {
zstd::encode_all(
&cache_bytes[..],
opt_compr_lvl,
)
.map_err(|err| warn!("Failed to compress cached code: {}", err))
.ok()
})
.and_then(|recompressed_cache_bytes| {
fs::write(&lock_path, &recompressed_cache_bytes)
.map_err(|err| {
warn!(
"Failed to write recompressed cache, path: {}, err: {}",
lock_path.display(),
err
)
})
.ok()
})
.and_then(|()| {
fs::rename(&lock_path, &path)
.map_err(|err| {
warn!(
"Failed to rename recompressed cache, path from: {}, path to: {}, err: {}",
lock_path.display(),
path.display(),
err
);
if let Err(err) = fs::remove_file(&lock_path) {
warn!(
"Failed to clean up (remove) recompressed cache, path {}, err: {}",
lock_path.display(),
err
);
}
})
.ok()
})
.map(|()| {
// update stats file (reload it! recompression can take some time)
if let Some(mut new_stats) = read_stats_file(stats_path.as_ref()) {
if new_stats.compression_level >= opt_compr_lvl {
// Rare race:
// two instances with different opt_compr_lvl: we don't know in which order they updated
// the cache file and the stats file (they are not updated together atomically)
// Possible solution is to use directories per cache entry, but it complicates the system
// and is not worth it.
debug!("DETECTED task did more than once (or race with new file): recompression of {}. \
Note: if optimized compression level setting has changed in the meantine, \
the stats file might contain inconsistent compression level due to race.", path.display());
}
else {
new_stats.compression_level = opt_compr_lvl;
let _ = write_stats_file(stats_path.as_ref(), &new_stats);
}
if new_stats.usages < stats.usages {
debug!("DETECTED lower usage count (new file or race with counter increasing): file {}", path.display());
}
}
else {
debug!("Can't read stats file again to update compression level (it might got cleaned up): file {}", stats_path.display());
}
});
trace!("Task finished: recompress file: {}", path.display());
}
fn handle_on_cache_update(&self, path: PathBuf) {
trace!("handle_on_cache_update() for path: {}", path.display());
// ---------------------- step 1: create .stats file
// construct .stats file path
let filename = path
.file_name()
.expect("Expected valid cache file name")
.to_str()
.expect("Expected valid cache file name");
let stats_path = path.with_file_name(format!("{}.stats", filename));
// create and write stats file
let mut stats = ModuleCacheStatistics::default(&self.cache_config);
stats.usages += 1;
write_stats_file(&stats_path, &stats);
// ---------------------- step 2: perform cleanup task if needed
// acquire lock for cleanup task
// Lock is a proof of recent cleanup task, so we don't want to delete them.
// Expired locks will be deleted by the cleanup task.
let cleanup_file = self.cache_config.directory().join(".cleanup"); // some non existing marker file
if acquire_task_fs_lock(
&cleanup_file,
self.cache_config.cleanup_interval(),
self.cache_config
.allowed_clock_drift_for_files_from_future(),
)
.is_none()
{
return;
}
trace!("Trying to clean up cache");
let mut cache_index = self.list_cache_contents();
let future_tolerance = SystemTime::now()
.checked_add(
self.cache_config
.allowed_clock_drift_for_files_from_future(),
)
.expect("Brace your cache, the next Big Bang is coming (time overflow)");
cache_index.sort_unstable_by(|lhs, rhs| {
// sort by age
use CacheEntry::*;
match (lhs, rhs) {
(Recognized { mtime: lhs_mt, .. }, Recognized { mtime: rhs_mt, .. }) => {
match (*lhs_mt > future_tolerance, *rhs_mt > future_tolerance) {
// later == younger
(false, false) => rhs_mt.cmp(lhs_mt),
// files from far future are treated as oldest recognized files
// we want to delete them, so the cache keeps track of recent files
// however, we don't delete them uncodintionally,
// because .stats file can be overwritten with a meaningful mtime
(true, false) => cmp::Ordering::Greater,
(false, true) => cmp::Ordering::Less,
(true, true) => cmp::Ordering::Equal,
}
}
// unrecognized is kind of infinity
(Recognized { .. }, Unrecognized { .. }) => cmp::Ordering::Less,
(Unrecognized { .. }, Recognized { .. }) => cmp::Ordering::Greater,
(Unrecognized { .. }, Unrecognized { .. }) => cmp::Ordering::Equal,
}
});
// find "cut" boundary:
// - remove unrecognized files anyway,
// - remove some cache files if some quota has been exceeded
let mut total_size = 0u64;
let mut start_delete_idx = None;
let mut start_delete_idx_if_deleting_recognized_items: Option<usize> = None;
let total_size_limit = self.cache_config.files_total_size_soft_limit();
let file_count_limit = self.cache_config.file_count_soft_limit();
let tsl_if_deleting = total_size_limit
.checked_mul(
self.cache_config
.files_total_size_limit_percent_if_deleting() as u64,
)
.unwrap()
/ 100;
let fcl_if_deleting = file_count_limit
.checked_mul(self.cache_config.file_count_limit_percent_if_deleting() as u64)
.unwrap()
/ 100;
for (idx, item) in cache_index.iter().enumerate() {
let size = if let CacheEntry::Recognized { size, .. } = item {
size
} else {
start_delete_idx = Some(idx);
break;
};
total_size += size;
if start_delete_idx_if_deleting_recognized_items.is_none() {
if total_size > tsl_if_deleting || (idx + 1) as u64 > fcl_if_deleting {
start_delete_idx_if_deleting_recognized_items = Some(idx);
}
}
if total_size > total_size_limit || (idx + 1) as u64 > file_count_limit {
start_delete_idx = start_delete_idx_if_deleting_recognized_items;
break;
}
}
if let Some(idx) = start_delete_idx {
for item in &cache_index[idx..] {
let (result, path, entity) = match item {
CacheEntry::Recognized { path, .. }
| CacheEntry::Unrecognized {
path,
is_dir: false,
} => (fs::remove_file(path), path, "file"),
CacheEntry::Unrecognized { path, is_dir: true } => {
(fs::remove_dir_all(path), path, "directory")
}
};
if let Err(err) = result {
warn!(
"Failed to remove {} during cleanup, path: {}, err: {}",
entity,
path.display(),
err
);
}
}
}
trace!("Task finished: clean up cache");
}
// Be fault tolerant: list as much as you can, and ignore the rest
fn list_cache_contents(&self) -> Vec<CacheEntry> {
fn enter_dir(
vec: &mut Vec<CacheEntry>,
dir_path: &Path,
level: u8,
cache_config: &CacheConfig,
) {
macro_rules! unwrap_or {
($result:expr, $cont:stmt, $err_msg:expr) => {
unwrap_or!($result, $cont, $err_msg, dir_path)
};
($result:expr, $cont:stmt, $err_msg:expr, $path:expr) => {
match $result {
Ok(val) => val,
Err(err) => {
warn!(
"{}, level: {}, path: {}, msg: {}",
$err_msg,
level,
$path.display(),
err
);
$cont
}
}
};
}
macro_rules! add_unrecognized {
(file: $path:expr) => {
add_unrecognized!(false, $path)
};
(dir: $path:expr) => {
add_unrecognized!(true, $path)
};
($is_dir:expr, $path:expr) => {
vec.push(CacheEntry::Unrecognized {
path: $path.to_path_buf(),
is_dir: $is_dir,
});
};
}
macro_rules! add_unrecognized_and {
([ $( $ty:ident: $path:expr ),* ], $cont:stmt) => {{
$( add_unrecognized!($ty: $path); )*
$cont
}};
}
// If we fail to list a directory, something bad is happening anyway
// (something touches our cache or we have disk failure)
// Try to delete it, so we can stay within soft limits of the cache size.
// This comment applies later in this function, too.
let it = unwrap_or!(
fs::read_dir(dir_path),
add_unrecognized_and!([dir: dir_path], return),
"Failed to list cache directory, deleting it"
);
let mut cache_files = HashMap::new();
for entry in it {
// read_dir() returns an iterator over results - in case some of them are errors
// we don't know their names, so we can't delete them. We don't want to delete
// the whole directory with good entries too, so we just ignore the erroneous entries.
let entry = unwrap_or!(
entry,
continue,
"Failed to read a cache dir entry (NOT deleting it, it still occupies space)"
);
let path = entry.path();
match (level, path.is_dir()) {
(0..=1, true) => enter_dir(vec, &path, level + 1, cache_config),
(0..=1, false) => {
if level == 0 && path.file_stem() == Some(OsStr::new(".cleanup")) {
if path.extension().is_some() {
// assume it's cleanup lock
if !is_fs_lock_expired(
Some(&entry),
&path,
cache_config.cleanup_interval(),
cache_config.allowed_clock_drift_for_files_from_future(),
) {
continue; // skip active lock
}
}
}
add_unrecognized!(file: path);
}
(2, false) => {
let ext = path.extension();
if ext.is_none() || ext == Some(OsStr::new("stats")) {
// mod or stats file
cache_files.insert(path, entry);
} else {
let recognized = if let Some(ext_str) = ext.unwrap().to_str() {
// check if valid lock
ext_str.starts_with("wip-")
&& !is_fs_lock_expired(
Some(&entry),
&path,
cache_config.optimizing_compression_task_timeout(),
cache_config.allowed_clock_drift_for_files_from_future(),
)
} else {
// if it's None, i.e. not valid UTF-8 string, then that's not our lock for sure
false
};
if !recognized {
add_unrecognized!(file: path);
}
}
}
(_, is_dir) => add_unrecognized!(is_dir, path),
}
}
// associate module with its stats & handle them
// assumption: just mods and stats
for (path, entry) in cache_files.iter() {
let path_buf: PathBuf;
let (mod_, stats_, is_mod) = match path.extension() {
Some(_) => {
path_buf = path.with_extension("");
(
cache_files.get(&path_buf).map(|v| (&path_buf, v)),
Some((path, entry)),
false,
)
}
None => {
path_buf = path.with_extension("stats");
(
Some((path, entry)),
cache_files.get(&path_buf).map(|v| (&path_buf, v)),
true,
)
}
};
// construct a cache entry
match (mod_, stats_, is_mod) {
(Some((mod_path, mod_entry)), Some((stats_path, stats_entry)), true) => {
let mod_metadata = unwrap_or!(
mod_entry.metadata(),
add_unrecognized_and!([file: stats_path, file: mod_path], continue),
"Failed to get metadata, deleting BOTH module cache and stats files",
mod_path
);
let stats_mtime = unwrap_or!(
stats_entry.metadata().and_then(|m| m.modified()),
add_unrecognized_and!(
[file: stats_path],
unwrap_or!(
mod_metadata.modified(),
add_unrecognized_and!([file: stats_path, file: mod_path], continue),
"Failed to get mtime, deleting BOTH module cache and stats files",
mod_path
)
),
"Failed to get metadata/mtime, deleting the file",
stats_path
);
// .into() called for the SystemTimeStub if cfg(test)
#[allow(clippy::identity_conversion)]
vec.push(CacheEntry::Recognized {
path: mod_path.to_path_buf(),
mtime: stats_mtime.into(),
size: mod_metadata.len(),
})
}
(Some(_), Some(_), false) => (), // was or will be handled by previous branch
(Some((mod_path, mod_entry)), None, _) => {
let (mod_metadata, mod_mtime) = unwrap_or!(
mod_entry
.metadata()
.and_then(|md| md.modified().map(|mt| (md, mt))),
add_unrecognized_and!([file: mod_path], continue),
"Failed to get metadata/mtime, deleting the file",
mod_path
);
// .into() called for the SystemTimeStub if cfg(test)
#[allow(clippy::identity_conversion)]
vec.push(CacheEntry::Recognized {
path: mod_path.to_path_buf(),
mtime: mod_mtime.into(),
size: mod_metadata.len(),
})
}
(None, Some((stats_path, _stats_entry)), _) => {
debug!("Found orphaned stats file: {}", stats_path.display());
add_unrecognized!(file: stats_path);
}
_ => unreachable!(),
}
}
}
let mut vec = Vec::new();
enter_dir(
&mut vec,
self.cache_config.directory(),
0,
&self.cache_config,
);
vec
}
}
fn read_stats_file(path: &Path) -> Option<ModuleCacheStatistics> {
fs::read(path)
.map_err(|err| {
trace!(
"Failed to read stats file, path: {}, err: {}",
path.display(),
err
)
})
.and_then(|bytes| {
toml::from_slice::<ModuleCacheStatistics>(&bytes[..]).map_err(|err| {
trace!(
"Failed to parse stats file, path: {}, err: {}",
path.display(),
err,
)
})
})
.ok()
}
fn write_stats_file(path: &Path, stats: &ModuleCacheStatistics) -> bool {
toml::to_string_pretty(&stats)
.map_err(|err| {
warn!(
"Failed to serialize stats file, path: {}, err: {}",
path.display(),
err
)
})
.and_then(|serialized| {
if fs_write_atomic(path, "stats", serialized.as_bytes()) {
Ok(())
} else {
Err(())
}
})
.is_ok()
}
/// Tries to acquire a lock for specific task.
///
/// Returns Some(path) to the lock if succeeds. The task path must not
/// contain any extension and have file stem.
///
/// To release a lock you need either manually rename or remove it,
/// or wait until it expires and cleanup task removes it.
///
/// Note: this function is racy. Main idea is: be fault tolerant and
/// never block some task. The price is that we rarely do some task
/// more than once.
fn acquire_task_fs_lock(
task_path: &Path,
timeout: Duration,
allowed_future_drift: Duration,
) -> Option<PathBuf> {
assert!(task_path.extension().is_none());
assert!(task_path.file_stem().is_some());
// list directory
let dir_path = task_path.parent()?;
let it = fs::read_dir(dir_path)
.map_err(|err| {
warn!(
"Failed to list cache directory, path: {}, err: {}",
dir_path.display(),
err
)
})
.ok()?;
// look for existing locks
for entry in it {
let entry = entry
.map_err(|err| {
warn!(
"Failed to list cache directory, path: {}, err: {}",
dir_path.display(),
err
)
})
.ok()?;
let path = entry.path();
if path.is_dir() || path.file_stem() != task_path.file_stem() {
continue;
}
// check extension and mtime
match path.extension() {
None => continue,
Some(ext) => {
if let Some(ext_str) = ext.to_str() {
// if it's None, i.e. not valid UTF-8 string, then that's not our lock for sure
if ext_str.starts_with("wip-")
&& !is_fs_lock_expired(Some(&entry), &path, timeout, allowed_future_drift)
{
return None;
}
}
}
}
}
// create the lock
let lock_path = task_path.with_extension(format!("wip-{}", std::process::id()));
let _file = fs::OpenOptions::new()
.create_new(true)
.write(true)
.open(&lock_path)
.map_err(|err| {
warn!(
"Failed to create lock file (note: it shouldn't exists): path: {}, err: {}",
lock_path.display(),
err
)
})
.ok()?;
Some(lock_path)
}
// we have either both, or just path; dir entry is desirable since on some platforms we can get
// metadata without extra syscalls
// futhermore: it's better to get a path if we have it instead of allocating a new one from the dir entry
fn is_fs_lock_expired(
entry: Option<&fs::DirEntry>,
path: &PathBuf,
threshold: Duration,
allowed_future_drift: Duration,
) -> bool {
let mtime = match entry
.map_or_else(|| path.metadata(), |e| e.metadata())
.and_then(|metadata| metadata.modified())
{
Ok(mt) => mt,
Err(err) => {
warn!(
"Failed to get metadata/mtime, treating as an expired lock, path: {}, err: {}",
path.display(),
err
);
return true; // can't read mtime, treat as expired, so this task will not be starved
}
};
// DON'T use: mtime.elapsed() -- we must call SystemTime directly for the tests to be deterministic
match SystemTime::now().duration_since(mtime) {
Ok(elapsed) => elapsed >= threshold,
Err(err) => {
trace!(
"Found mtime in the future, treating as a not expired lock, path: {}, err: {}",
path.display(),
err
);
// the lock is expired if the time is too far in the future
// it is fine to have network share and not synchronized clocks,
// but it's not good when user changes time in their system clock
err.duration() > allowed_future_drift
}
}
}
#[cfg(test)]
mod tests;

758
crates/environ/src/cache/worker/tests.rs vendored Normal file
View File

@@ -0,0 +1,758 @@
use super::*;
use crate::cache::config::tests::test_prolog;
use core::iter::repeat;
use std::process;
// load_config! comes from crate::cache(::config::tests);
// when doing anything with the tests, make sure they are DETERMINISTIC
// -- the result shouldn't rely on system time!
pub mod system_time_stub;
#[test]
fn test_on_get_create_stats_file() {
let (_tempdir, cache_dir, config_path) = test_prolog();
let cache_config = load_config!(
config_path,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}",
cache_dir
);
assert!(cache_config.enabled());
let worker = Worker::start_new(&cache_config, None);
let mod_file = cache_dir.join("some-mod");
worker.on_cache_get_async(mod_file);
worker.wait_for_all_events_handled();
assert_eq!(worker.events_dropped(), 0);
let stats_file = cache_dir.join("some-mod.stats");
let stats = read_stats_file(&stats_file).expect("Failed to read stats file");
assert_eq!(stats.usages, 1);
assert_eq!(
stats.compression_level,
cache_config.baseline_compression_level()
);
}
#[test]
fn test_on_get_update_usage_counter() {
let (_tempdir, cache_dir, config_path) = test_prolog();
let cache_config = load_config!(
config_path,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
worker-event-queue-size = '16'",
cache_dir
);
assert!(cache_config.enabled());
let worker = Worker::start_new(&cache_config, None);
let mod_file = cache_dir.join("some-mod");
let stats_file = cache_dir.join("some-mod.stats");
let default_stats = ModuleCacheStatistics::default(&cache_config);
assert!(write_stats_file(&stats_file, &default_stats));
let mut usages = 0;
for times_used in &[4, 7, 2] {
for _ in 0..*times_used {
worker.on_cache_get_async(mod_file.clone());
usages += 1;
}
worker.wait_for_all_events_handled();
assert_eq!(worker.events_dropped(), 0);
let stats = read_stats_file(&stats_file).expect("Failed to read stats file");
assert_eq!(stats.usages, usages);
}
}
#[test]
fn test_on_get_recompress_no_mod_file() {
let (_tempdir, cache_dir, config_path) = test_prolog();
let cache_config = load_config!(
config_path,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
worker-event-queue-size = '16'\n\
baseline-compression-level = 3\n\
optimized-compression-level = 7\n\
optimized-compression-usage-counter-threshold = '256'",
cache_dir
);
assert!(cache_config.enabled());
let worker = Worker::start_new(&cache_config, None);
let mod_file = cache_dir.join("some-mod");
let stats_file = cache_dir.join("some-mod.stats");
let mut start_stats = ModuleCacheStatistics::default(&cache_config);
start_stats.usages = 250;
assert!(write_stats_file(&stats_file, &start_stats));
let mut usages = start_stats.usages;
for times_used in &[4, 7, 2] {
for _ in 0..*times_used {
worker.on_cache_get_async(mod_file.clone());
usages += 1;
}
worker.wait_for_all_events_handled();
assert_eq!(worker.events_dropped(), 0);
let stats = read_stats_file(&stats_file).expect("Failed to read stats file");
assert_eq!(stats.usages, usages);
assert_eq!(
stats.compression_level,
cache_config.baseline_compression_level()
);
}
}
#[test]
fn test_on_get_recompress_with_mod_file() {
let (_tempdir, cache_dir, config_path) = test_prolog();
let cache_config = load_config!(
config_path,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
worker-event-queue-size = '16'\n\
baseline-compression-level = 3\n\
optimized-compression-level = 7\n\
optimized-compression-usage-counter-threshold = '256'",
cache_dir
);
assert!(cache_config.enabled());
let worker = Worker::start_new(&cache_config, None);
let mod_file = cache_dir.join("some-mod");
let mod_data = "some test data to be compressed";
let data = zstd::encode_all(
mod_data.as_bytes(),
cache_config.baseline_compression_level(),
)
.expect("Failed to compress sample mod file");
fs::write(&mod_file, &data).expect("Failed to write sample mod file");
let stats_file = cache_dir.join("some-mod.stats");
let mut start_stats = ModuleCacheStatistics::default(&cache_config);
start_stats.usages = 250;
assert!(write_stats_file(&stats_file, &start_stats));
// scenarios:
// 1. Shouldn't be recompressed
// 2. Should be recompressed
// 3. After lowering compression level, should be recompressed
let scenarios = [(4, false), (7, true), (2, false)];
let mut usages = start_stats.usages;
assert!(usages < cache_config.optimized_compression_usage_counter_threshold());
let mut tested_higher_opt_compr_lvl = false;
for (times_used, lower_compr_lvl) in &scenarios {
for _ in 0..*times_used {
worker.on_cache_get_async(mod_file.clone());
usages += 1;
}
worker.wait_for_all_events_handled();
assert_eq!(worker.events_dropped(), 0);
let mut stats = read_stats_file(&stats_file).expect("Failed to read stats file");
assert_eq!(stats.usages, usages);
assert_eq!(
stats.compression_level,
if usages < cache_config.optimized_compression_usage_counter_threshold() {
cache_config.baseline_compression_level()
} else {
cache_config.optimized_compression_level()
}
);
let compressed_data = fs::read(&mod_file).expect("Failed to read mod file");
let decoded_data =
zstd::decode_all(&compressed_data[..]).expect("Failed to decompress mod file");
assert_eq!(decoded_data, mod_data.as_bytes());
if *lower_compr_lvl {
assert!(usages >= cache_config.optimized_compression_usage_counter_threshold());
tested_higher_opt_compr_lvl = true;
stats.compression_level -= 1;
assert!(write_stats_file(&stats_file, &stats));
}
}
assert!(usages >= cache_config.optimized_compression_usage_counter_threshold());
assert!(tested_higher_opt_compr_lvl);
}
#[test]
fn test_on_get_recompress_lock() {
let (_tempdir, cache_dir, config_path) = test_prolog();
let cache_config = load_config!(
config_path,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
worker-event-queue-size = '16'\n\
baseline-compression-level = 3\n\
optimized-compression-level = 7\n\
optimized-compression-usage-counter-threshold = '256'\n\
optimizing-compression-task-timeout = '30m'\n\
allowed-clock-drift-for-files-from-future = '1d'",
cache_dir
);
assert!(cache_config.enabled());
let worker = Worker::start_new(&cache_config, None);
let mod_file = cache_dir.join("some-mod");
let mod_data = "some test data to be compressed";
let data = zstd::encode_all(
mod_data.as_bytes(),
cache_config.baseline_compression_level(),
)
.expect("Failed to compress sample mod file");
fs::write(&mod_file, &data).expect("Failed to write sample mod file");
let stats_file = cache_dir.join("some-mod.stats");
let mut start_stats = ModuleCacheStatistics::default(&cache_config);
start_stats.usages = 255;
let lock_file = cache_dir.join("some-mod.wip-lock");
let scenarios = [
// valid lock
(true, "past", Duration::from_secs(30 * 60 - 1)),
// valid future lock
(true, "future", Duration::from_secs(24 * 60 * 60)),
// expired lock
(false, "past", Duration::from_secs(30 * 60)),
// expired future lock
(false, "future", Duration::from_secs(24 * 60 * 60 + 1)),
];
for (lock_valid, duration_sign, duration) in &scenarios {
assert!(write_stats_file(&stats_file, &start_stats)); // restore usage & compression level
create_file_with_mtime(&lock_file, "", duration_sign, &duration);
worker.on_cache_get_async(mod_file.clone());
worker.wait_for_all_events_handled();
assert_eq!(worker.events_dropped(), 0);
let stats = read_stats_file(&stats_file).expect("Failed to read stats file");
assert_eq!(stats.usages, start_stats.usages + 1);
assert_eq!(
stats.compression_level,
if *lock_valid {
cache_config.baseline_compression_level()
} else {
cache_config.optimized_compression_level()
}
);
let compressed_data = fs::read(&mod_file).expect("Failed to read mod file");
let decoded_data =
zstd::decode_all(&compressed_data[..]).expect("Failed to decompress mod file");
assert_eq!(decoded_data, mod_data.as_bytes());
}
}
#[test]
fn test_on_update_fresh_stats_file() {
let (_tempdir, cache_dir, config_path) = test_prolog();
let cache_config = load_config!(
config_path,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
worker-event-queue-size = '16'\n\
baseline-compression-level = 3\n\
optimized-compression-level = 7\n\
cleanup-interval = '1h'",
cache_dir
);
assert!(cache_config.enabled());
let worker = Worker::start_new(&cache_config, None);
let mod_file = cache_dir.join("some-mod");
let stats_file = cache_dir.join("some-mod.stats");
let cleanup_certificate = cache_dir.join(".cleanup.wip-done");
create_file_with_mtime(&cleanup_certificate, "", "future", &Duration::from_secs(0));
// the below created by the worker if it cleans up
let worker_lock_file = cache_dir.join(format!(".cleanup.wip-{}", process::id()));
// scenarios:
// 1. Create new stats file
// 2. Overwrite existing file
for update_file in &[true, false] {
worker.on_cache_update_async(mod_file.clone());
worker.wait_for_all_events_handled();
assert_eq!(worker.events_dropped(), 0);
let mut stats = read_stats_file(&stats_file).expect("Failed to read stats file");
assert_eq!(stats.usages, 1);
assert_eq!(
stats.compression_level,
cache_config.baseline_compression_level()
);
if *update_file {
stats.usages += 42;
stats.compression_level += 1;
assert!(write_stats_file(&stats_file, &stats));
}
assert!(!worker_lock_file.exists());
}
}
#[test]
fn test_on_update_cleanup_limits_trash_locks() {
let (_tempdir, cache_dir, config_path) = test_prolog();
let cache_config = load_config!(
config_path,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
worker-event-queue-size = '16'\n\
cleanup-interval = '30m'\n\
optimizing-compression-task-timeout = '30m'\n\
allowed-clock-drift-for-files-from-future = '1d'\n\
file-count-soft-limit = '5'\n\
files-total-size-soft-limit = '30K'\n\
file-count-limit-percent-if-deleting = '70%'\n\
files-total-size-limit-percent-if-deleting = '70%'
",
cache_dir
);
assert!(cache_config.enabled());
let worker = Worker::start_new(&cache_config, None);
let content_1k = "a".repeat(1_000);
let content_10k = "a".repeat(10_000);
let mods_files_dir = cache_dir.join("target-triple").join("compiler-version");
let mod_with_stats = mods_files_dir.join("mod-with-stats");
let trash_dirs = [
mods_files_dir.join("trash"),
mods_files_dir.join("trash").join("trash"),
];
let trash_files = [
cache_dir.join("trash-file"),
cache_dir.join("trash-file.wip-lock"),
cache_dir.join("target-triple").join("trash.txt"),
cache_dir.join("target-triple").join("trash.txt.wip-lock"),
mods_files_dir.join("trash.ogg"),
mods_files_dir.join("trash").join("trash.doc"),
mods_files_dir.join("trash").join("trash.doc.wip-lock"),
mods_files_dir.join("trash").join("trash").join("trash.xls"),
mods_files_dir
.join("trash")
.join("trash")
.join("trash.xls.wip-lock"),
];
let mod_locks = [
// valid lock
(
mods_files_dir.join("mod0.wip-lock"),
true,
"past",
Duration::from_secs(30 * 60 - 1),
),
// valid future lock
(
mods_files_dir.join("mod1.wip-lock"),
true,
"future",
Duration::from_secs(24 * 60 * 60),
),
// expired lock
(
mods_files_dir.join("mod2.wip-lock"),
false,
"past",
Duration::from_secs(30 * 60),
),
// expired future lock
(
mods_files_dir.join("mod3.wip-lock"),
false,
"future",
Duration::from_secs(24 * 60 * 60 + 1),
),
];
// the below created by the worker if it cleans up
let worker_lock_file = cache_dir.join(format!(".cleanup.wip-{}", process::id()));
let scenarios = [
// Close to limits, but not reached, only trash deleted
(2, 2, 4),
// File count limit exceeded
(1, 10, 3),
// Total size limit exceeded
(4, 0, 2),
// Both limits exceeded
(3, 5, 3),
];
for (files_10k, files_1k, remaining_files) in &scenarios {
let mut secs_ago = 100;
for d in &trash_dirs {
fs::create_dir_all(d).expect("Failed to create directories");
}
for f in &trash_files {
create_file_with_mtime(f, "", "past", &Duration::from_secs(0));
}
for (f, _, sign, duration) in &mod_locks {
create_file_with_mtime(f, "", sign, &duration);
}
let mut mods_paths = vec![];
for content in repeat(&content_10k)
.take(*files_10k)
.chain(repeat(&content_1k).take(*files_1k))
{
mods_paths.push(mods_files_dir.join(format!("test-mod-{}", mods_paths.len())));
create_file_with_mtime(
mods_paths.last().unwrap(),
content,
"past",
&Duration::from_secs(secs_ago),
);
assert!(secs_ago > 0);
secs_ago -= 1;
}
// creating .stats file updates mtime what affects test results
// so we use a separate nonexistent module here (orphaned .stats will be removed anyway)
worker.on_cache_update_async(mod_with_stats.clone());
worker.wait_for_all_events_handled();
assert_eq!(worker.events_dropped(), 0);
for ent in trash_dirs.iter().chain(trash_files.iter()) {
assert!(!ent.exists());
}
for (f, valid, ..) in &mod_locks {
assert_eq!(f.exists(), *valid);
}
for (idx, path) in mods_paths.iter().enumerate() {
let should_exist = idx >= mods_paths.len() - *remaining_files;
assert_eq!(path.exists(), should_exist);
if should_exist {
// cleanup before next iteration
fs::remove_file(path).expect("Failed to remove a file");
}
}
fs::remove_file(&worker_lock_file).expect("Failed to remove lock file");
}
}
#[test]
fn test_on_update_cleanup_lru_policy() {
let (_tempdir, cache_dir, config_path) = test_prolog();
let cache_config = load_config!(
config_path,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
worker-event-queue-size = '16'\n\
file-count-soft-limit = '5'\n\
files-total-size-soft-limit = '30K'\n\
file-count-limit-percent-if-deleting = '80%'\n\
files-total-size-limit-percent-if-deleting = '70%'",
cache_dir
);
assert!(cache_config.enabled());
let worker = Worker::start_new(&cache_config, None);
let content_1k = "a".repeat(1_000);
let content_5k = "a".repeat(5_000);
let content_10k = "a".repeat(10_000);
let mods_files_dir = cache_dir.join("target-triple").join("compiler-version");
fs::create_dir_all(&mods_files_dir).expect("Failed to create directories");
let nonexistent_mod_file = cache_dir.join("nonexistent-mod");
let orphaned_stats_file = cache_dir.join("orphaned-mod.stats");
let worker_lock_file = cache_dir.join(format!(".cleanup.wip-{}", process::id()));
// content, how long ago created, how long ago stats created (if created), should be alive
let scenarios = [
&[
(&content_10k, 29, None, false),
(&content_10k, 28, None, false),
(&content_10k, 27, None, false),
(&content_1k, 26, None, true),
(&content_10k, 25, None, true),
(&content_1k, 24, None, true),
],
&[
(&content_10k, 29, None, false),
(&content_10k, 28, None, false),
(&content_10k, 27, None, true),
(&content_1k, 26, None, true),
(&content_5k, 25, None, true),
(&content_1k, 24, None, true),
],
&[
(&content_10k, 29, Some(19), true),
(&content_10k, 28, None, false),
(&content_10k, 27, None, false),
(&content_1k, 26, Some(18), true),
(&content_5k, 25, None, true),
(&content_1k, 24, None, true),
],
&[
(&content_10k, 29, Some(19), true),
(&content_10k, 28, Some(18), true),
(&content_10k, 27, None, false),
(&content_1k, 26, Some(17), true),
(&content_5k, 25, None, false),
(&content_1k, 24, None, false),
],
&[
(&content_10k, 29, Some(19), true),
(&content_10k, 28, None, false),
(&content_1k, 27, None, false),
(&content_5k, 26, Some(18), true),
(&content_1k, 25, None, false),
(&content_10k, 24, None, false),
],
];
for mods in &scenarios {
let filenames = (0..mods.len())
.map(|i| {
(
mods_files_dir.join(format!("mod-{}", i)),
mods_files_dir.join(format!("mod-{}.stats", i)),
)
})
.collect::<Vec<_>>();
for ((content, mod_secs_ago, create_stats, _), (mod_filename, stats_filename)) in
mods.iter().zip(filenames.iter())
{
create_file_with_mtime(
mod_filename,
content,
"past",
&Duration::from_secs(*mod_secs_ago),
);
if let Some(stats_secs_ago) = create_stats {
create_file_with_mtime(
stats_filename,
"cleanup doesn't care",
"past",
&Duration::from_secs(*stats_secs_ago),
);
}
}
create_file_with_mtime(
&orphaned_stats_file,
"cleanup doesn't care",
"past",
&Duration::from_secs(0),
);
worker.on_cache_update_async(nonexistent_mod_file.clone());
worker.wait_for_all_events_handled();
assert_eq!(worker.events_dropped(), 0);
assert!(!orphaned_stats_file.exists());
for ((_, _, create_stats, alive), (mod_filename, stats_filename)) in
mods.iter().zip(filenames.iter())
{
assert_eq!(mod_filename.exists(), *alive);
assert_eq!(stats_filename.exists(), *alive && create_stats.is_some());
// cleanup for next iteration
if *alive {
fs::remove_file(&mod_filename).expect("Failed to remove a file");
if create_stats.is_some() {
fs::remove_file(&stats_filename).expect("Failed to remove a file");
}
}
}
fs::remove_file(&worker_lock_file).expect("Failed to remove lock file");
}
}
// clock drift should be applied to mod cache & stats, too
// however, postpone deleting files to as late as possible
#[test]
fn test_on_update_cleanup_future_files() {
let (_tempdir, cache_dir, config_path) = test_prolog();
let cache_config = load_config!(
config_path,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
worker-event-queue-size = '16'\n\
allowed-clock-drift-for-files-from-future = '1d'\n\
file-count-soft-limit = '3'\n\
files-total-size-soft-limit = '1M'\n\
file-count-limit-percent-if-deleting = '70%'\n\
files-total-size-limit-percent-if-deleting = '70%'",
cache_dir
);
assert!(cache_config.enabled());
let worker = Worker::start_new(&cache_config, None);
let content_1k = "a".repeat(1_000);
let mods_files_dir = cache_dir.join("target-triple").join("compiler-version");
fs::create_dir_all(&mods_files_dir).expect("Failed to create directories");
let nonexistent_mod_file = cache_dir.join("nonexistent-mod");
// the below created by the worker if it cleans up
let worker_lock_file = cache_dir.join(format!(".cleanup.wip-{}", process::id()));
let scenarios: [&[_]; 5] = [
// NOT cleaning up, everythings ok
&[
(Duration::from_secs(0), None, true),
(Duration::from_secs(24 * 60 * 60), None, true),
],
// NOT cleaning up, everythings ok
&[
(Duration::from_secs(0), None, true),
(Duration::from_secs(24 * 60 * 60 + 1), None, true),
],
// cleaning up, removing files from oldest
&[
(Duration::from_secs(0), None, false),
(Duration::from_secs(24 * 60 * 60), None, true),
(Duration::from_secs(1), None, false),
(Duration::from_secs(2), None, true),
],
// cleaning up, removing files from oldest; deleting file from far future
&[
(Duration::from_secs(0), None, false),
(Duration::from_secs(1), None, true),
(Duration::from_secs(24 * 60 * 60 + 1), None, false),
(Duration::from_secs(2), None, true),
],
// cleaning up, removing files from oldest; file from far future should have .stats from +-now => it's a legitimate file
&[
(Duration::from_secs(0), None, false),
(Duration::from_secs(1), None, false),
(
Duration::from_secs(24 * 60 * 60 + 1),
Some(Duration::from_secs(3)),
true,
),
(Duration::from_secs(2), None, true),
],
];
for mods in &scenarios {
let filenames = (0..mods.len())
.map(|i| {
(
mods_files_dir.join(format!("mod-{}", i)),
mods_files_dir.join(format!("mod-{}.stats", i)),
)
})
.collect::<Vec<_>>();
for ((duration, opt_stats_duration, _), (mod_filename, stats_filename)) in
mods.iter().zip(filenames.iter())
{
create_file_with_mtime(mod_filename, &content_1k, "future", duration);
if let Some(stats_duration) = opt_stats_duration {
create_file_with_mtime(stats_filename, "", "future", stats_duration);
}
}
worker.on_cache_update_async(nonexistent_mod_file.clone());
worker.wait_for_all_events_handled();
assert_eq!(worker.events_dropped(), 0);
for ((_, opt_stats_duration, alive), (mod_filename, stats_filename)) in
mods.iter().zip(filenames.iter())
{
assert_eq!(mod_filename.exists(), *alive);
assert_eq!(
stats_filename.exists(),
*alive && opt_stats_duration.is_some()
);
if *alive {
fs::remove_file(mod_filename).expect("Failed to remove a file");
if opt_stats_duration.is_some() {
fs::remove_file(stats_filename).expect("Failed to remove a file");
}
}
}
fs::remove_file(&worker_lock_file).expect("Failed to remove lock file");
}
}
// this tests if worker triggered cleanup or not when some cleanup lock/certificate was out there
#[test]
fn test_on_update_cleanup_self_lock() {
let (_tempdir, cache_dir, config_path) = test_prolog();
let cache_config = load_config!(
config_path,
"[cache]\n\
enabled = true\n\
directory = {cache_dir}\n\
worker-event-queue-size = '16'\n\
cleanup-interval = '30m'\n\
allowed-clock-drift-for-files-from-future = '1d'",
cache_dir
);
assert!(cache_config.enabled());
let worker = Worker::start_new(&cache_config, None);
let mod_file = cache_dir.join("some-mod");
let trash_file = cache_dir.join("trash-file.txt");
let lock_file = cache_dir.join(".cleanup.wip-lock");
// the below created by the worker if it cleans up
let worker_lock_file = cache_dir.join(format!(".cleanup.wip-{}", process::id()));
let scenarios = [
// valid lock
(true, "past", Duration::from_secs(30 * 60 - 1)),
// valid future lock
(true, "future", Duration::from_secs(24 * 60 * 60)),
// expired lock
(false, "past", Duration::from_secs(30 * 60)),
// expired future lock
(false, "future", Duration::from_secs(24 * 60 * 60 + 1)),
];
for (lock_valid, duration_sign, duration) in &scenarios {
create_file_with_mtime(
&trash_file,
"with trash content",
"future",
&Duration::from_secs(0),
);
create_file_with_mtime(&lock_file, "", duration_sign, &duration);
worker.on_cache_update_async(mod_file.clone());
worker.wait_for_all_events_handled();
assert_eq!(worker.events_dropped(), 0);
assert_eq!(trash_file.exists(), *lock_valid);
assert_eq!(lock_file.exists(), *lock_valid);
if *lock_valid {
assert!(!worker_lock_file.exists());
} else {
fs::remove_file(&worker_lock_file).expect("Failed to remove lock file");
}
}
}
fn create_file_with_mtime(filename: &Path, contents: &str, offset_sign: &str, offset: &Duration) {
fs::write(filename, contents).expect("Failed to create a file");
let mtime = match offset_sign {
"past" => system_time_stub::NOW
.checked_sub(*offset)
.expect("Failed to calculate new mtime"),
"future" => system_time_stub::NOW
.checked_add(*offset)
.expect("Failed to calculate new mtime"),
_ => unreachable!(),
};
filetime::set_file_mtime(filename, mtime.into()).expect("Failed to set mtime");
}

View File

@@ -0,0 +1,29 @@
use lazy_static::lazy_static;
use std::time::{Duration, SystemTime, SystemTimeError};
lazy_static! {
pub static ref NOW: SystemTime = SystemTime::now(); // no need for RefCell and set_now() for now
}
#[derive(PartialOrd, PartialEq, Ord, Eq)]
pub struct SystemTimeStub(SystemTime);
impl SystemTimeStub {
pub fn now() -> Self {
Self(*NOW)
}
pub fn checked_add(&self, duration: Duration) -> Option<Self> {
self.0.checked_add(duration).map(|t| t.into())
}
pub fn duration_since(&self, earlier: SystemTime) -> Result<Duration, SystemTimeError> {
self.0.duration_since(earlier)
}
}
impl From<SystemTime> for SystemTimeStub {
fn from(time: SystemTime) -> Self {
Self(time)
}
}

View File

@@ -0,0 +1,187 @@
//! A `Compilation` contains the compiled function bodies for a WebAssembly
//! module.
use crate::address_map::{ModuleAddressMap, ValueLabelsRanges};
use crate::module;
use crate::module_environ::FunctionBodyData;
use alloc::vec::Vec;
use cranelift_codegen::{binemit, ir, isa, CodegenError};
use cranelift_entity::PrimaryMap;
use cranelift_wasm::{DefinedFuncIndex, FuncIndex, ModuleTranslationState, WasmError};
use serde::{Deserialize, Serialize};
use std::ops::Range;
use thiserror::Error;
/// Compiled function: machine code body, jump table offsets, and unwind information.
#[derive(Serialize, Deserialize, Debug, Clone, PartialEq, Eq)]
pub struct CompiledFunction {
/// The function body.
pub body: Vec<u8>,
/// The jump tables offsets (in the body).
pub jt_offsets: ir::JumpTableOffsets,
/// The unwind information.
pub unwind_info: Vec<u8>,
}
type Functions = PrimaryMap<DefinedFuncIndex, CompiledFunction>;
/// The result of compiling a WebAssembly module's functions.
#[derive(Deserialize, Serialize, Debug, PartialEq, Eq)]
pub struct Compilation {
/// Compiled machine code for the function bodies.
functions: Functions,
}
impl Compilation {
/// Creates a compilation artifact from a contiguous function buffer and a set of ranges
pub fn new(functions: Functions) -> Self {
Self { functions }
}
/// Allocates the compilation result with the given function bodies.
pub fn from_buffer(
buffer: Vec<u8>,
functions: impl IntoIterator<Item = (Range<usize>, ir::JumpTableOffsets, Range<usize>)>,
) -> Self {
Self::new(
functions
.into_iter()
.map(|(body_range, jt_offsets, unwind_range)| CompiledFunction {
body: buffer[body_range].to_vec(),
jt_offsets,
unwind_info: buffer[unwind_range].to_vec(),
})
.collect(),
)
}
/// Gets the bytes of a single function
pub fn get(&self, func: DefinedFuncIndex) -> &CompiledFunction {
&self.functions[func]
}
/// Gets the number of functions defined.
pub fn len(&self) -> usize {
self.functions.len()
}
/// Gets functions jump table offsets.
pub fn get_jt_offsets(&self) -> PrimaryMap<DefinedFuncIndex, ir::JumpTableOffsets> {
self.functions
.iter()
.map(|(_, func)| func.jt_offsets.clone())
.collect::<PrimaryMap<DefinedFuncIndex, _>>()
}
}
impl<'a> IntoIterator for &'a Compilation {
type IntoIter = Iter<'a>;
type Item = <Self::IntoIter as Iterator>::Item;
fn into_iter(self) -> Self::IntoIter {
Iter {
iterator: self.functions.iter(),
}
}
}
pub struct Iter<'a> {
iterator: <&'a Functions as IntoIterator>::IntoIter,
}
impl<'a> Iterator for Iter<'a> {
type Item = &'a CompiledFunction;
fn next(&mut self) -> Option<Self::Item> {
self.iterator.next().map(|(_, b)| b)
}
}
/// A record of a relocation to perform.
#[derive(Serialize, Deserialize, Debug, Clone, PartialEq, Eq)]
pub struct Relocation {
/// The relocation code.
pub reloc: binemit::Reloc,
/// Relocation target.
pub reloc_target: RelocationTarget,
/// The offset where to apply the relocation.
pub offset: binemit::CodeOffset,
/// The addend to add to the relocation value.
pub addend: binemit::Addend,
}
/// Destination function. Can be either user function or some special one, like `memory.grow`.
#[derive(Serialize, Deserialize, Debug, Copy, Clone, PartialEq, Eq)]
pub enum RelocationTarget {
/// The user function index.
UserFunc(FuncIndex),
/// A compiler-generated libcall.
LibCall(ir::LibCall),
/// Function for growing a locally-defined 32-bit memory by the specified amount of pages.
Memory32Grow,
/// Function for growing an imported 32-bit memory by the specified amount of pages.
ImportedMemory32Grow,
/// Function for query current size of a locally-defined 32-bit linear memory.
Memory32Size,
/// Function for query current size of an imported 32-bit linear memory.
ImportedMemory32Size,
/// Jump table index.
JumpTable(FuncIndex, ir::JumpTable),
}
/// Relocations to apply to function bodies.
pub type Relocations = PrimaryMap<DefinedFuncIndex, Vec<Relocation>>;
/// Information about trap.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq)]
pub struct TrapInformation {
/// The offset of the trapping instruction in native code. It is relative to the beginning of the function.
pub code_offset: binemit::CodeOffset,
/// Location of trapping instruction in WebAssembly binary module.
pub source_loc: ir::SourceLoc,
/// Code of the trap.
pub trap_code: ir::TrapCode,
}
/// Information about traps associated with the functions where the traps are placed.
pub type Traps = PrimaryMap<DefinedFuncIndex, Vec<TrapInformation>>;
/// An error while compiling WebAssembly to machine code.
#[derive(Error, Debug)]
pub enum CompileError {
/// A wasm translation error occured.
#[error("WebAssembly translation error: {0}")]
Wasm(#[from] WasmError),
/// A compilation error occured.
#[error("Compilation error: {0}")]
Codegen(#[from] CodegenError),
/// A compilation error occured.
#[error("Debug info is not supported with this configuration")]
DebugInfoNotSupported,
}
/// An implementation of a compiler from parsed WebAssembly module to native code.
pub trait Compiler {
/// Compile a parsed module with the given `TargetIsa`.
fn compile_module<'data, 'module>(
module: &'module module::Module,
module_translation: &ModuleTranslationState,
function_body_inputs: PrimaryMap<DefinedFuncIndex, FunctionBodyData<'data>>,
isa: &dyn isa::TargetIsa,
generate_debug_info: bool,
) -> Result<
(
Compilation,
Relocations,
ModuleAddressMap,
ValueLabelsRanges,
PrimaryMap<DefinedFuncIndex, ir::StackSlots>,
Traps,
),
CompileError,
>;
}

View File

@@ -0,0 +1,322 @@
//! Support for compiling with Cranelift.
use crate::address_map::{
FunctionAddressMap, InstructionAddressMap, ModuleAddressMap, ValueLabelsRanges,
};
use crate::cache::{ModuleCacheData, ModuleCacheEntry};
use crate::compilation::{
Compilation, CompileError, CompiledFunction, Relocation, RelocationTarget, Relocations,
TrapInformation, Traps,
};
use crate::func_environ::{
get_func_name, get_imported_memory32_grow_name, get_imported_memory32_size_name,
get_memory32_grow_name, get_memory32_size_name, FuncEnvironment,
};
use crate::module::Module;
use crate::module_environ::FunctionBodyData;
use alloc::vec::Vec;
use cranelift_codegen::binemit;
use cranelift_codegen::ir;
use cranelift_codegen::ir::ExternalName;
use cranelift_codegen::isa;
use cranelift_codegen::Context;
use cranelift_entity::PrimaryMap;
use cranelift_wasm::{DefinedFuncIndex, FuncIndex, FuncTranslator, ModuleTranslationState};
use rayon::prelude::{IntoParallelRefIterator, ParallelIterator};
/// Implementation of a relocation sink that just saves all the information for later
pub struct RelocSink {
/// Current function index.
func_index: FuncIndex,
/// Relocations recorded for the function.
pub func_relocs: Vec<Relocation>,
}
impl binemit::RelocSink for RelocSink {
fn reloc_ebb(
&mut self,
_offset: binemit::CodeOffset,
_reloc: binemit::Reloc,
_ebb_offset: binemit::CodeOffset,
) {
// This should use the `offsets` field of `ir::Function`.
panic!("ebb headers not yet implemented");
}
fn reloc_external(
&mut self,
offset: binemit::CodeOffset,
reloc: binemit::Reloc,
name: &ExternalName,
addend: binemit::Addend,
) {
let reloc_target = if *name == get_memory32_grow_name() {
RelocationTarget::Memory32Grow
} else if *name == get_imported_memory32_grow_name() {
RelocationTarget::ImportedMemory32Grow
} else if *name == get_memory32_size_name() {
RelocationTarget::Memory32Size
} else if *name == get_imported_memory32_size_name() {
RelocationTarget::ImportedMemory32Size
} else if let ExternalName::User { namespace, index } = *name {
debug_assert!(namespace == 0);
RelocationTarget::UserFunc(FuncIndex::from_u32(index))
} else if let ExternalName::LibCall(libcall) = *name {
RelocationTarget::LibCall(libcall)
} else {
panic!("unrecognized external name")
};
self.func_relocs.push(Relocation {
reloc,
reloc_target,
offset,
addend,
});
}
fn reloc_constant(
&mut self,
_code_offset: binemit::CodeOffset,
_reloc: binemit::Reloc,
_constant_offset: ir::ConstantOffset,
) {
// Do nothing for now: cranelift emits constant data after the function code and also emits
// function code with correct relative offsets to the constant data.
}
fn reloc_jt(&mut self, offset: binemit::CodeOffset, reloc: binemit::Reloc, jt: ir::JumpTable) {
self.func_relocs.push(Relocation {
reloc,
reloc_target: RelocationTarget::JumpTable(self.func_index, jt),
offset,
addend: 0,
});
}
}
impl RelocSink {
/// Return a new `RelocSink` instance.
pub fn new(func_index: FuncIndex) -> Self {
Self {
func_index,
func_relocs: Vec::new(),
}
}
}
struct TrapSink {
pub traps: Vec<TrapInformation>,
}
impl TrapSink {
fn new() -> Self {
Self { traps: Vec::new() }
}
}
impl binemit::TrapSink for TrapSink {
fn trap(
&mut self,
code_offset: binemit::CodeOffset,
source_loc: ir::SourceLoc,
trap_code: ir::TrapCode,
) {
self.traps.push(TrapInformation {
code_offset,
source_loc,
trap_code,
});
}
}
fn get_function_address_map<'data>(
context: &Context,
data: &FunctionBodyData<'data>,
body_len: usize,
isa: &dyn isa::TargetIsa,
) -> FunctionAddressMap {
let mut instructions = Vec::new();
let func = &context.func;
let mut ebbs = func.layout.ebbs().collect::<Vec<_>>();
ebbs.sort_by_key(|ebb| func.offsets[*ebb]); // Ensure inst offsets always increase
let encinfo = isa.encoding_info();
for ebb in ebbs {
for (offset, inst, size) in func.inst_offsets(ebb, &encinfo) {
let srcloc = func.srclocs[inst];
instructions.push(InstructionAddressMap {
srcloc,
code_offset: offset as usize,
code_len: size as usize,
});
}
}
// Generate artificial srcloc for function start/end to identify boundary
// within module. Similar to FuncTranslator::cur_srcloc(): it will wrap around
// if byte code is larger than 4 GB.
let start_srcloc = ir::SourceLoc::new(data.module_offset as u32);
let end_srcloc = ir::SourceLoc::new((data.module_offset + data.data.len()) as u32);
FunctionAddressMap {
instructions,
start_srcloc,
end_srcloc,
body_offset: 0,
body_len,
}
}
/// A compiler that compiles a WebAssembly module with Cranelift, translating the Wasm to Cranelift IR,
/// optimizing it and then translating to assembly.
pub struct Cranelift;
impl crate::compilation::Compiler for Cranelift {
/// Compile the module using Cranelift, producing a compilation result with
/// associated relocations.
fn compile_module<'data, 'module>(
module: &'module Module,
module_translation: &ModuleTranslationState,
function_body_inputs: PrimaryMap<DefinedFuncIndex, FunctionBodyData<'data>>,
isa: &dyn isa::TargetIsa,
generate_debug_info: bool,
) -> Result<
(
Compilation,
Relocations,
ModuleAddressMap,
ValueLabelsRanges,
PrimaryMap<DefinedFuncIndex, ir::StackSlots>,
Traps,
),
CompileError,
> {
let cache_entry = ModuleCacheEntry::new(
module,
&function_body_inputs,
isa,
"cranelift",
generate_debug_info,
);
let data = match cache_entry.get_data() {
Some(data) => data,
None => {
let mut functions = PrimaryMap::with_capacity(function_body_inputs.len());
let mut relocations = PrimaryMap::with_capacity(function_body_inputs.len());
let mut address_transforms = PrimaryMap::with_capacity(function_body_inputs.len());
let mut value_ranges = PrimaryMap::with_capacity(function_body_inputs.len());
let mut stack_slots = PrimaryMap::with_capacity(function_body_inputs.len());
let mut traps = PrimaryMap::with_capacity(function_body_inputs.len());
function_body_inputs
.into_iter()
.collect::<Vec<(DefinedFuncIndex, &FunctionBodyData<'data>)>>()
.par_iter()
.map_init(
|| FuncTranslator::new(),
|func_translator, (i, input)| {
let func_index = module.func_index(*i);
let mut context = Context::new();
context.func.name = get_func_name(func_index);
context.func.signature =
module.signatures[module.functions[func_index]].clone();
if generate_debug_info {
context.func.collect_debug_info();
}
func_translator.translate(
module_translation,
input.data,
input.module_offset,
&mut context.func,
&mut FuncEnvironment::new(isa.frontend_config(), module),
)?;
let mut code_buf: Vec<u8> = Vec::new();
let mut unwind_info = Vec::new();
let mut reloc_sink = RelocSink::new(func_index);
let mut trap_sink = TrapSink::new();
let mut stackmap_sink = binemit::NullStackmapSink {};
context.compile_and_emit(
isa,
&mut code_buf,
&mut reloc_sink,
&mut trap_sink,
&mut stackmap_sink,
)?;
context.emit_unwind_info(isa, &mut unwind_info);
let address_transform = if generate_debug_info {
let body_len = code_buf.len();
Some(get_function_address_map(&context, input, body_len, isa))
} else {
None
};
let ranges = if generate_debug_info {
Some(context.build_value_labels_ranges(isa)?)
} else {
None
};
Ok((
code_buf,
context.func.jt_offsets,
reloc_sink.func_relocs,
address_transform,
ranges,
context.func.stack_slots,
trap_sink.traps,
unwind_info,
))
},
)
.collect::<Result<Vec<_>, CompileError>>()?
.into_iter()
.for_each(
|(
function,
func_jt_offsets,
relocs,
address_transform,
ranges,
sss,
function_traps,
unwind_info,
)| {
functions.push(CompiledFunction {
body: function,
jt_offsets: func_jt_offsets,
unwind_info,
});
relocations.push(relocs);
if let Some(address_transform) = address_transform {
address_transforms.push(address_transform);
}
value_ranges.push(ranges.unwrap_or_default());
stack_slots.push(sss);
traps.push(function_traps);
},
);
// TODO: Reorganize where we create the Vec for the resolved imports.
let data = ModuleCacheData::from_tuple((
Compilation::new(functions),
relocations,
address_transforms,
value_ranges,
stack_slots,
traps,
));
cache_entry.update_data(&data);
data
}
};
Ok(data.to_tuple())
}
}

View File

@@ -0,0 +1,707 @@
use crate::module::{MemoryPlan, MemoryStyle, Module, TableStyle};
use crate::vmoffsets::VMOffsets;
use crate::WASM_PAGE_SIZE;
use alloc::vec::Vec;
use core::clone::Clone;
use core::convert::TryFrom;
use cranelift_codegen::cursor::FuncCursor;
use cranelift_codegen::ir;
use cranelift_codegen::ir::condcodes::*;
use cranelift_codegen::ir::immediates::{Offset32, Uimm64};
use cranelift_codegen::ir::types::*;
use cranelift_codegen::ir::{AbiParam, ArgumentPurpose, Function, InstBuilder, Signature};
use cranelift_codegen::isa::TargetFrontendConfig;
use cranelift_entity::EntityRef;
use cranelift_wasm::{
self, FuncIndex, GlobalIndex, GlobalVariable, MemoryIndex, SignatureIndex, TableIndex,
WasmResult,
};
#[cfg(feature = "lightbeam")]
use cranelift_wasm::{DefinedFuncIndex, DefinedGlobalIndex, DefinedMemoryIndex, DefinedTableIndex};
/// Compute an `ir::ExternalName` for a given wasm function index.
pub fn get_func_name(func_index: FuncIndex) -> ir::ExternalName {
ir::ExternalName::user(0, func_index.as_u32())
}
/// Compute an `ir::ExternalName` for the `memory.grow` libcall for
/// 32-bit locally-defined memories.
pub fn get_memory32_grow_name() -> ir::ExternalName {
ir::ExternalName::user(1, 0)
}
/// Compute an `ir::ExternalName` for the `memory.grow` libcall for
/// 32-bit imported memories.
pub fn get_imported_memory32_grow_name() -> ir::ExternalName {
ir::ExternalName::user(1, 1)
}
/// Compute an `ir::ExternalName` for the `memory.size` libcall for
/// 32-bit locally-defined memories.
pub fn get_memory32_size_name() -> ir::ExternalName {
ir::ExternalName::user(1, 2)
}
/// Compute an `ir::ExternalName` for the `memory.size` libcall for
/// 32-bit imported memories.
pub fn get_imported_memory32_size_name() -> ir::ExternalName {
ir::ExternalName::user(1, 3)
}
/// An index type for builtin functions.
pub struct BuiltinFunctionIndex(u32);
impl BuiltinFunctionIndex {
/// Returns an index for wasm's `memory.grow` builtin function.
pub const fn get_memory32_grow_index() -> Self {
Self(0)
}
/// Returns an index for wasm's imported `memory.grow` builtin function.
pub const fn get_imported_memory32_grow_index() -> Self {
Self(1)
}
/// Returns an index for wasm's `memory.size` builtin function.
pub const fn get_memory32_size_index() -> Self {
Self(2)
}
/// Returns an index for wasm's imported `memory.size` builtin function.
pub const fn get_imported_memory32_size_index() -> Self {
Self(3)
}
/// Returns the total number of builtin functions.
pub const fn builtin_functions_total_number() -> u32 {
4
}
/// Return the index as an u32 number.
pub const fn index(&self) -> u32 {
self.0
}
}
/// The `FuncEnvironment` implementation for use by the `ModuleEnvironment`.
pub struct FuncEnvironment<'module_environment> {
/// Target-specified configuration.
target_config: TargetFrontendConfig,
/// The module-level environment which this function-level environment belongs to.
module: &'module_environment Module,
/// The Cranelift global holding the vmctx address.
vmctx: Option<ir::GlobalValue>,
/// The external function signature for implementing wasm's `memory.size`
/// for locally-defined 32-bit memories.
memory32_size_sig: Option<ir::SigRef>,
/// The external function signature for implementing wasm's `memory.grow`
/// for locally-defined memories.
memory_grow_sig: Option<ir::SigRef>,
/// Offsets to struct fields accessed by JIT code.
offsets: VMOffsets,
}
impl<'module_environment> FuncEnvironment<'module_environment> {
pub fn new(target_config: TargetFrontendConfig, module: &'module_environment Module) -> Self {
Self {
target_config,
module,
vmctx: None,
memory32_size_sig: None,
memory_grow_sig: None,
offsets: VMOffsets::new(target_config.pointer_bytes(), module),
}
}
fn pointer_type(&self) -> ir::Type {
self.target_config.pointer_type()
}
fn vmctx(&mut self, func: &mut Function) -> ir::GlobalValue {
self.vmctx.unwrap_or_else(|| {
let vmctx = func.create_global_value(ir::GlobalValueData::VMContext);
self.vmctx = Some(vmctx);
vmctx
})
}
fn get_memory_grow_sig(&mut self, func: &mut Function) -> ir::SigRef {
let sig = self.memory_grow_sig.unwrap_or_else(|| {
func.import_signature(Signature {
params: vec![
AbiParam::special(self.pointer_type(), ArgumentPurpose::VMContext),
AbiParam::new(I32),
AbiParam::new(I32),
],
returns: vec![AbiParam::new(I32)],
call_conv: self.target_config.default_call_conv,
})
});
self.memory_grow_sig = Some(sig);
sig
}
/// Return the memory.grow function signature to call for the given index, along with the
/// translated index value to pass to it and its index in `VMBuiltinFunctionsArray`.
fn get_memory_grow_func(
&mut self,
func: &mut Function,
index: MemoryIndex,
) -> (ir::SigRef, usize, BuiltinFunctionIndex) {
if self.module.is_imported_memory(index) {
(
self.get_memory_grow_sig(func),
index.index(),
BuiltinFunctionIndex::get_imported_memory32_grow_index(),
)
} else {
(
self.get_memory_grow_sig(func),
self.module.defined_memory_index(index).unwrap().index(),
BuiltinFunctionIndex::get_memory32_grow_index(),
)
}
}
fn get_memory32_size_sig(&mut self, func: &mut Function) -> ir::SigRef {
let sig = self.memory32_size_sig.unwrap_or_else(|| {
func.import_signature(Signature {
params: vec![
AbiParam::special(self.pointer_type(), ArgumentPurpose::VMContext),
AbiParam::new(I32),
],
returns: vec![AbiParam::new(I32)],
call_conv: self.target_config.default_call_conv,
})
});
self.memory32_size_sig = Some(sig);
sig
}
/// Return the memory.size function signature to call for the given index, along with the
/// translated index value to pass to it and its index in `VMBuiltinFunctionsArray`.
fn get_memory_size_func(
&mut self,
func: &mut Function,
index: MemoryIndex,
) -> (ir::SigRef, usize, BuiltinFunctionIndex) {
if self.module.is_imported_memory(index) {
(
self.get_memory32_size_sig(func),
index.index(),
BuiltinFunctionIndex::get_imported_memory32_size_index(),
)
} else {
(
self.get_memory32_size_sig(func),
self.module.defined_memory_index(index).unwrap().index(),
BuiltinFunctionIndex::get_memory32_size_index(),
)
}
}
/// Translates load of builtin function and returns a pair of values `vmctx`
/// and address of the loaded function.
fn translate_load_builtin_function_address(
&mut self,
pos: &mut FuncCursor<'_>,
callee_func_idx: BuiltinFunctionIndex,
) -> (ir::Value, ir::Value) {
// We use an indirect call so that we don't have to patch the code at runtime.
let pointer_type = self.pointer_type();
let vmctx = self.vmctx(&mut pos.func);
let base = pos.ins().global_value(pointer_type, vmctx);
let mut mem_flags = ir::MemFlags::trusted();
mem_flags.set_readonly();
// Load the callee address.
let body_offset =
i32::try_from(self.offsets.vmctx_builtin_function(callee_func_idx)).unwrap();
let func_addr = pos.ins().load(pointer_type, mem_flags, base, body_offset);
(base, func_addr)
}
}
#[cfg(feature = "lightbeam")]
impl lightbeam::ModuleContext for FuncEnvironment<'_> {
type Signature = ir::Signature;
type GlobalType = ir::Type;
fn func_index(&self, defined_func_index: u32) -> u32 {
self.module
.func_index(DefinedFuncIndex::from_u32(defined_func_index))
.as_u32()
}
fn defined_func_index(&self, func_index: u32) -> Option<u32> {
self.module
.defined_func_index(FuncIndex::from_u32(func_index))
.map(DefinedFuncIndex::as_u32)
}
fn defined_global_index(&self, global_index: u32) -> Option<u32> {
self.module
.defined_global_index(GlobalIndex::from_u32(global_index))
.map(DefinedGlobalIndex::as_u32)
}
fn global_type(&self, global_index: u32) -> &Self::GlobalType {
&self.module.globals[GlobalIndex::from_u32(global_index)].ty
}
fn func_type_index(&self, func_idx: u32) -> u32 {
self.module.functions[FuncIndex::from_u32(func_idx)].as_u32()
}
fn signature(&self, index: u32) -> &Self::Signature {
&self.module.signatures[SignatureIndex::from_u32(index)]
}
fn defined_table_index(&self, table_index: u32) -> Option<u32> {
self.module
.defined_table_index(TableIndex::from_u32(table_index))
.map(DefinedTableIndex::as_u32)
}
fn defined_memory_index(&self, memory_index: u32) -> Option<u32> {
self.module
.defined_memory_index(MemoryIndex::from_u32(memory_index))
.map(DefinedMemoryIndex::as_u32)
}
fn vmctx_vmfunction_import_body(&self, func_index: u32) -> u32 {
self.offsets
.vmctx_vmfunction_import_body(FuncIndex::from_u32(func_index))
}
fn vmctx_vmfunction_import_vmctx(&self, func_index: u32) -> u32 {
self.offsets
.vmctx_vmfunction_import_vmctx(FuncIndex::from_u32(func_index))
}
fn vmctx_vmglobal_import_from(&self, global_index: u32) -> u32 {
self.offsets
.vmctx_vmglobal_import_from(GlobalIndex::from_u32(global_index))
}
fn vmctx_vmglobal_definition(&self, defined_global_index: u32) -> u32 {
self.offsets
.vmctx_vmglobal_definition(DefinedGlobalIndex::from_u32(defined_global_index))
}
fn vmctx_vmmemory_import_from(&self, memory_index: u32) -> u32 {
self.offsets
.vmctx_vmmemory_import_from(MemoryIndex::from_u32(memory_index))
}
fn vmctx_vmmemory_definition(&self, defined_memory_index: u32) -> u32 {
self.offsets
.vmctx_vmmemory_definition(DefinedMemoryIndex::from_u32(defined_memory_index))
}
fn vmctx_vmmemory_definition_base(&self, defined_memory_index: u32) -> u32 {
self.offsets
.vmctx_vmmemory_definition_base(DefinedMemoryIndex::from_u32(defined_memory_index))
}
fn vmctx_vmmemory_definition_current_length(&self, defined_memory_index: u32) -> u32 {
self.offsets
.vmctx_vmmemory_definition_current_length(DefinedMemoryIndex::from_u32(
defined_memory_index,
))
}
fn vmmemory_definition_base(&self) -> u8 {
self.offsets.vmmemory_definition_base()
}
fn vmmemory_definition_current_length(&self) -> u8 {
self.offsets.vmmemory_definition_current_length()
}
fn vmctx_vmtable_import_from(&self, table_index: u32) -> u32 {
self.offsets
.vmctx_vmtable_import_from(TableIndex::from_u32(table_index))
}
fn vmctx_vmtable_definition(&self, defined_table_index: u32) -> u32 {
self.offsets
.vmctx_vmtable_definition(DefinedTableIndex::from_u32(defined_table_index))
}
fn vmctx_vmtable_definition_base(&self, defined_table_index: u32) -> u32 {
self.offsets
.vmctx_vmtable_definition_base(DefinedTableIndex::from_u32(defined_table_index))
}
fn vmctx_vmtable_definition_current_elements(&self, defined_table_index: u32) -> u32 {
self.offsets
.vmctx_vmtable_definition_current_elements(DefinedTableIndex::from_u32(
defined_table_index,
))
}
fn vmtable_definition_base(&self) -> u8 {
self.offsets.vmtable_definition_base()
}
fn vmtable_definition_current_elements(&self) -> u8 {
self.offsets.vmtable_definition_current_elements()
}
fn vmcaller_checked_anyfunc_type_index(&self) -> u8 {
self.offsets.vmcaller_checked_anyfunc_type_index()
}
fn vmcaller_checked_anyfunc_func_ptr(&self) -> u8 {
self.offsets.vmcaller_checked_anyfunc_func_ptr()
}
fn vmcaller_checked_anyfunc_vmctx(&self) -> u8 {
self.offsets.vmcaller_checked_anyfunc_vmctx()
}
fn size_of_vmcaller_checked_anyfunc(&self) -> u8 {
self.offsets.size_of_vmcaller_checked_anyfunc()
}
fn vmctx_vmshared_signature_id(&self, signature_idx: u32) -> u32 {
self.offsets
.vmctx_vmshared_signature_id(SignatureIndex::from_u32(signature_idx))
}
// TODO: type of a global
}
impl<'module_environment> cranelift_wasm::FuncEnvironment for FuncEnvironment<'module_environment> {
fn target_config(&self) -> TargetFrontendConfig {
self.target_config
}
fn make_table(&mut self, func: &mut ir::Function, index: TableIndex) -> WasmResult<ir::Table> {
let pointer_type = self.pointer_type();
let (ptr, base_offset, current_elements_offset) = {
let vmctx = self.vmctx(func);
if let Some(def_index) = self.module.defined_table_index(index) {
let base_offset =
i32::try_from(self.offsets.vmctx_vmtable_definition_base(def_index)).unwrap();
let current_elements_offset = i32::try_from(
self.offsets
.vmctx_vmtable_definition_current_elements(def_index),
)
.unwrap();
(vmctx, base_offset, current_elements_offset)
} else {
let from_offset = self.offsets.vmctx_vmtable_import_from(index);
let table = func.create_global_value(ir::GlobalValueData::Load {
base: vmctx,
offset: Offset32::new(i32::try_from(from_offset).unwrap()),
global_type: pointer_type,
readonly: true,
});
let base_offset = i32::from(self.offsets.vmtable_definition_base());
let current_elements_offset =
i32::from(self.offsets.vmtable_definition_current_elements());
(table, base_offset, current_elements_offset)
}
};
let base_gv = func.create_global_value(ir::GlobalValueData::Load {
base: ptr,
offset: Offset32::new(base_offset),
global_type: pointer_type,
readonly: false,
});
let bound_gv = func.create_global_value(ir::GlobalValueData::Load {
base: ptr,
offset: Offset32::new(current_elements_offset),
global_type: self.offsets.type_of_vmtable_definition_current_elements(),
readonly: false,
});
let element_size = match self.module.table_plans[index].style {
TableStyle::CallerChecksSignature => {
u64::from(self.offsets.size_of_vmcaller_checked_anyfunc())
}
};
Ok(func.create_table(ir::TableData {
base_gv,
min_size: Uimm64::new(0),
bound_gv,
element_size: Uimm64::new(element_size),
index_type: I32,
}))
}
fn make_heap(&mut self, func: &mut ir::Function, index: MemoryIndex) -> WasmResult<ir::Heap> {
let pointer_type = self.pointer_type();
let (ptr, base_offset, current_length_offset) = {
let vmctx = self.vmctx(func);
if let Some(def_index) = self.module.defined_memory_index(index) {
let base_offset =
i32::try_from(self.offsets.vmctx_vmmemory_definition_base(def_index)).unwrap();
let current_length_offset = i32::try_from(
self.offsets
.vmctx_vmmemory_definition_current_length(def_index),
)
.unwrap();
(vmctx, base_offset, current_length_offset)
} else {
let from_offset = self.offsets.vmctx_vmmemory_import_from(index);
let memory = func.create_global_value(ir::GlobalValueData::Load {
base: vmctx,
offset: Offset32::new(i32::try_from(from_offset).unwrap()),
global_type: pointer_type,
readonly: true,
});
let base_offset = i32::from(self.offsets.vmmemory_definition_base());
let current_length_offset =
i32::from(self.offsets.vmmemory_definition_current_length());
(memory, base_offset, current_length_offset)
}
};
// If we have a declared maximum, we can make this a "static" heap, which is
// allocated up front and never moved.
let (offset_guard_size, heap_style, readonly_base) = match self.module.memory_plans[index] {
MemoryPlan {
memory: _,
style: MemoryStyle::Dynamic,
offset_guard_size,
} => {
let heap_bound = func.create_global_value(ir::GlobalValueData::Load {
base: ptr,
offset: Offset32::new(current_length_offset),
global_type: self.offsets.type_of_vmmemory_definition_current_length(),
readonly: false,
});
(
Uimm64::new(offset_guard_size),
ir::HeapStyle::Dynamic {
bound_gv: heap_bound,
},
false,
)
}
MemoryPlan {
memory: _,
style: MemoryStyle::Static { bound },
offset_guard_size,
} => (
Uimm64::new(offset_guard_size),
ir::HeapStyle::Static {
bound: Uimm64::new(u64::from(bound) * u64::from(WASM_PAGE_SIZE)),
},
true,
),
};
let heap_base = func.create_global_value(ir::GlobalValueData::Load {
base: ptr,
offset: Offset32::new(base_offset),
global_type: pointer_type,
readonly: readonly_base,
});
Ok(func.create_heap(ir::HeapData {
base: heap_base,
min_size: 0.into(),
offset_guard_size,
style: heap_style,
index_type: I32,
}))
}
fn make_global(
&mut self,
func: &mut ir::Function,
index: GlobalIndex,
) -> WasmResult<GlobalVariable> {
let pointer_type = self.pointer_type();
let (ptr, offset) = {
let vmctx = self.vmctx(func);
if let Some(def_index) = self.module.defined_global_index(index) {
let offset =
i32::try_from(self.offsets.vmctx_vmglobal_definition(def_index)).unwrap();
(vmctx, offset)
} else {
let from_offset = self.offsets.vmctx_vmglobal_import_from(index);
let global = func.create_global_value(ir::GlobalValueData::Load {
base: vmctx,
offset: Offset32::new(i32::try_from(from_offset).unwrap()),
global_type: pointer_type,
readonly: true,
});
(global, 0)
}
};
Ok(GlobalVariable::Memory {
gv: ptr,
offset: offset.into(),
ty: self.module.globals[index].ty,
})
}
fn make_indirect_sig(
&mut self,
func: &mut ir::Function,
index: SignatureIndex,
) -> WasmResult<ir::SigRef> {
Ok(func.import_signature(self.module.signatures[index].clone()))
}
fn make_direct_func(
&mut self,
func: &mut ir::Function,
index: FuncIndex,
) -> WasmResult<ir::FuncRef> {
let sigidx = self.module.functions[index];
let signature = func.import_signature(self.module.signatures[sigidx].clone());
let name = get_func_name(index);
Ok(func.import_function(ir::ExtFuncData {
name,
signature,
// We currently allocate all code segments independently, so nothing
// is colocated.
colocated: false,
}))
}
fn translate_call_indirect(
&mut self,
mut pos: FuncCursor<'_>,
table_index: TableIndex,
table: ir::Table,
sig_index: SignatureIndex,
sig_ref: ir::SigRef,
callee: ir::Value,
call_args: &[ir::Value],
) -> WasmResult<ir::Inst> {
let pointer_type = self.pointer_type();
let table_entry_addr = pos.ins().table_addr(pointer_type, table, callee, 0);
// Dereference table_entry_addr to get the function address.
let mem_flags = ir::MemFlags::trusted();
let func_addr = pos.ins().load(
pointer_type,
mem_flags,
table_entry_addr,
i32::from(self.offsets.vmcaller_checked_anyfunc_func_ptr()),
);
// Check whether `func_addr` is null.
pos.ins().trapz(func_addr, ir::TrapCode::IndirectCallToNull);
// If necessary, check the signature.
match self.module.table_plans[table_index].style {
TableStyle::CallerChecksSignature => {
let sig_id_size = self.offsets.size_of_vmshared_signature_index();
let sig_id_type = Type::int(u16::from(sig_id_size) * 8).unwrap();
let vmctx = self.vmctx(pos.func);
let base = pos.ins().global_value(pointer_type, vmctx);
let offset =
i32::try_from(self.offsets.vmctx_vmshared_signature_id(sig_index)).unwrap();
// Load the caller ID.
let mut mem_flags = ir::MemFlags::trusted();
mem_flags.set_readonly();
let caller_sig_id = pos.ins().load(sig_id_type, mem_flags, base, offset);
// Load the callee ID.
let mem_flags = ir::MemFlags::trusted();
let callee_sig_id = pos.ins().load(
sig_id_type,
mem_flags,
table_entry_addr,
i32::from(self.offsets.vmcaller_checked_anyfunc_type_index()),
);
// Check that they match.
let cmp = pos.ins().icmp(IntCC::Equal, callee_sig_id, caller_sig_id);
pos.ins().trapz(cmp, ir::TrapCode::BadSignature);
}
}
let mut real_call_args = Vec::with_capacity(call_args.len() + 1);
// First append the callee vmctx address.
let vmctx = pos.ins().load(
pointer_type,
mem_flags,
table_entry_addr,
i32::from(self.offsets.vmcaller_checked_anyfunc_vmctx()),
);
real_call_args.push(vmctx);
// Then append the regular call arguments.
real_call_args.extend_from_slice(call_args);
Ok(pos.ins().call_indirect(sig_ref, func_addr, &real_call_args))
}
fn translate_call(
&mut self,
mut pos: FuncCursor<'_>,
callee_index: FuncIndex,
callee: ir::FuncRef,
call_args: &[ir::Value],
) -> WasmResult<ir::Inst> {
let mut real_call_args = Vec::with_capacity(call_args.len() + 1);
// Handle direct calls to locally-defined functions.
if !self.module.is_imported_function(callee_index) {
// First append the callee vmctx address.
real_call_args.push(pos.func.special_param(ArgumentPurpose::VMContext).unwrap());
// Then append the regular call arguments.
real_call_args.extend_from_slice(call_args);
return Ok(pos.ins().call(callee, &real_call_args));
}
// Handle direct calls to imported functions. We use an indirect call
// so that we don't have to patch the code at runtime.
let pointer_type = self.pointer_type();
let sig_ref = pos.func.dfg.ext_funcs[callee].signature;
let vmctx = self.vmctx(&mut pos.func);
let base = pos.ins().global_value(pointer_type, vmctx);
let mem_flags = ir::MemFlags::trusted();
// Load the callee address.
let body_offset =
i32::try_from(self.offsets.vmctx_vmfunction_import_body(callee_index)).unwrap();
let func_addr = pos.ins().load(pointer_type, mem_flags, base, body_offset);
// First append the callee vmctx address.
let vmctx_offset =
i32::try_from(self.offsets.vmctx_vmfunction_import_vmctx(callee_index)).unwrap();
let vmctx = pos.ins().load(pointer_type, mem_flags, base, vmctx_offset);
real_call_args.push(vmctx);
// Then append the regular call arguments.
real_call_args.extend_from_slice(call_args);
Ok(pos.ins().call_indirect(sig_ref, func_addr, &real_call_args))
}
fn translate_memory_grow(
&mut self,
mut pos: FuncCursor<'_>,
index: MemoryIndex,
_heap: ir::Heap,
val: ir::Value,
) -> WasmResult<ir::Value> {
let (func_sig, index_arg, func_idx) = self.get_memory_grow_func(&mut pos.func, index);
let memory_index = pos.ins().iconst(I32, index_arg as i64);
let (vmctx, func_addr) = self.translate_load_builtin_function_address(&mut pos, func_idx);
let call_inst = pos
.ins()
.call_indirect(func_sig, func_addr, &[vmctx, val, memory_index]);
Ok(*pos.func.dfg.inst_results(call_inst).first().unwrap())
}
fn translate_memory_size(
&mut self,
mut pos: FuncCursor<'_>,
index: MemoryIndex,
_heap: ir::Heap,
) -> WasmResult<ir::Value> {
let (func_sig, index_arg, func_idx) = self.get_memory_size_func(&mut pos.func, index);
let memory_index = pos.ins().iconst(I32, index_arg as i64);
let (vmctx, func_addr) = self.translate_load_builtin_function_address(&mut pos, func_idx);
let call_inst = pos
.ins()
.call_indirect(func_sig, func_addr, &[vmctx, memory_index]);
Ok(*pos.func.dfg.inst_results(call_inst).first().unwrap())
}
}

73
crates/environ/src/lib.rs Normal file
View File

@@ -0,0 +1,73 @@
//! Standalone environment for WebAssembly using Cranelift. Provides functions to translate
//! `get_global`, `set_global`, `memory.size`, `memory.grow`, `call_indirect` that hardcode in
//! the translation the base addresses of regions of memory that will hold the globals, tables and
//! linear memories.
#![deny(missing_docs, trivial_numeric_casts, unused_extern_crates)]
#![warn(unused_import_braces)]
#![cfg_attr(feature = "std", deny(unstable_features))]
#![cfg_attr(feature = "clippy", plugin(clippy(conf_file = "../../clippy.toml")))]
#![cfg_attr(
feature = "cargo-clippy",
allow(clippy::new_without_default, clippy::new_without_default_derive)
)]
#![cfg_attr(
feature = "cargo-clippy",
warn(
clippy::float_arithmetic,
clippy::mut_mut,
clippy::nonminimal_bool,
clippy::option_map_unwrap_or,
clippy::option_map_unwrap_or_else,
clippy::print_stdout,
clippy::unicode_not_nfc,
clippy::use_self
)
)]
extern crate alloc;
mod address_map;
mod compilation;
mod func_environ;
mod module;
mod module_environ;
mod tunables;
mod vmoffsets;
mod cache;
pub mod cranelift;
#[cfg(feature = "lightbeam")]
pub mod lightbeam;
pub use crate::address_map::{
FunctionAddressMap, InstructionAddressMap, ModuleAddressMap, ModuleVmctxInfo, ValueLabelsRanges,
};
pub use crate::cache::{create_new_config as cache_create_new_config, init as cache_init};
pub use crate::compilation::{
Compilation, CompileError, CompiledFunction, Compiler, Relocation, RelocationTarget,
Relocations, TrapInformation, Traps,
};
pub use crate::cranelift::Cranelift;
pub use crate::func_environ::BuiltinFunctionIndex;
#[cfg(feature = "lightbeam")]
pub use crate::lightbeam::Lightbeam;
pub use crate::module::{
Export, MemoryPlan, MemoryStyle, Module, TableElements, TablePlan, TableStyle,
};
pub use crate::module_environ::{
translate_signature, DataInitializer, DataInitializerLocation, FunctionBodyData,
ModuleEnvironment, ModuleTranslation,
};
pub use crate::tunables::Tunables;
pub use crate::vmoffsets::{TargetSharedSignatureIndex, VMOffsets};
/// WebAssembly page sizes are defined to be 64KiB.
pub const WASM_PAGE_SIZE: u32 = 0x10000;
/// The number of pages we can have before we run out of byte index space.
pub const WASM_MAX_PAGES: u32 = 0x10000;
/// Version number of this crate.
pub const VERSION: &str = env!("CARGO_PKG_VERSION");

View File

@@ -0,0 +1,83 @@
//! Support for compiling with Lightbeam.
use crate::compilation::{Compilation, CompileError, Relocations, Traps};
use crate::func_environ::FuncEnvironment;
use crate::module::Module;
use crate::module_environ::FunctionBodyData;
// TODO: Put this in `compilation`
use crate::address_map::{ModuleAddressMap, ValueLabelsRanges};
use crate::cranelift::RelocSink;
use cranelift_codegen::{ir, isa};
use cranelift_entity::{PrimaryMap, SecondaryMap};
use cranelift_wasm::{DefinedFuncIndex, ModuleTranslationState};
use lightbeam;
/// A compiler that compiles a WebAssembly module with Lightbeam, directly translating the Wasm file.
pub struct Lightbeam;
impl crate::compilation::Compiler for Lightbeam {
/// Compile the module using Lightbeam, producing a compilation result with
/// associated relocations.
fn compile_module<'data, 'module>(
module: &'module Module,
_module_translation: &ModuleTranslationState,
function_body_inputs: PrimaryMap<DefinedFuncIndex, FunctionBodyData<'data>>,
isa: &dyn isa::TargetIsa,
// TODO
generate_debug_info: bool,
) -> Result<
(
Compilation,
Relocations,
ModuleAddressMap,
ValueLabelsRanges,
PrimaryMap<DefinedFuncIndex, ir::StackSlots>,
Traps,
),
CompileError,
> {
if generate_debug_info {
return Err(CompileError::DebugInfoNotSupported);
}
let env = FuncEnvironment::new(isa.frontend_config(), module);
let mut relocations = PrimaryMap::new();
let mut codegen_session: lightbeam::CodeGenSession<_> =
lightbeam::CodeGenSession::new(function_body_inputs.len() as u32, &env);
for (i, function_body) in &function_body_inputs {
let func_index = module.func_index(i);
let mut reloc_sink = RelocSink::new(func_index);
lightbeam::translate_function(
&mut codegen_session,
&mut reloc_sink,
i.as_u32(),
&lightbeam::wasmparser::FunctionBody::new(0, function_body.data),
)
.expect("Failed to translate function. TODO: Stop this from panicking");
relocations.push(reloc_sink.func_relocs);
}
let code_section = codegen_session
.into_translated_code_section()
.expect("Failed to generate output code. TODO: Stop this from panicking");
// TODO pass jump table offsets to Compilation::from_buffer() when they
// are implemented in lightbeam -- using empty set of offsets for now.
// TODO: pass an empty range for the unwind information until lightbeam emits it
let code_section_ranges_and_jt = code_section
.funcs()
.into_iter()
.map(|r| (r, SecondaryMap::new(), 0..0));
Ok((
Compilation::from_buffer(code_section.buffer().to_vec(), code_section_ranges_and_jt),
relocations,
ModuleAddressMap::new(),
ValueLabelsRanges::new(),
PrimaryMap::new(),
Traps::new(),
))
}
}

View File

@@ -0,0 +1,306 @@
//! Data structures for representing decoded wasm modules.
use crate::module_environ::FunctionBodyData;
use crate::tunables::Tunables;
use alloc::boxed::Box;
use alloc::string::String;
use alloc::vec::Vec;
use core::hash::{Hash, Hasher};
use cranelift_codegen::ir;
use cranelift_entity::{EntityRef, PrimaryMap};
use cranelift_wasm::{
DefinedFuncIndex, DefinedGlobalIndex, DefinedMemoryIndex, DefinedTableIndex, FuncIndex, Global,
GlobalIndex, Memory, MemoryIndex, SignatureIndex, Table, TableIndex,
};
use indexmap::IndexMap;
/// A WebAssembly table initializer.
#[derive(Clone, Debug, Hash)]
pub struct TableElements {
/// The index of a table to initialize.
pub table_index: TableIndex,
/// Optionally, a global variable giving a base index.
pub base: Option<GlobalIndex>,
/// The offset to add to the base.
pub offset: usize,
/// The values to write into the table elements.
pub elements: Box<[FuncIndex]>,
}
/// An entity to export.
#[derive(Clone, Debug, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub enum Export {
/// Function export.
Function(FuncIndex),
/// Table export.
Table(TableIndex),
/// Memory export.
Memory(MemoryIndex),
/// Global export.
Global(GlobalIndex),
}
/// Implemenation styles for WebAssembly linear memory.
#[derive(Debug, Clone, Hash)]
pub enum MemoryStyle {
/// The actual memory can be resized and moved.
Dynamic,
/// Addresss space is allocated up front.
Static {
/// The number of mapped and unmapped pages.
bound: u32,
},
}
impl MemoryStyle {
/// Decide on an implementation style for the given `Memory`.
pub fn for_memory(memory: Memory, tunables: &Tunables) -> (Self, u64) {
if let Some(maximum) = memory.maximum {
if maximum <= tunables.static_memory_bound {
// A heap with a declared maximum can be immovable, so make
// it static.
assert!(tunables.static_memory_bound >= memory.minimum);
return (
Self::Static {
bound: tunables.static_memory_bound,
},
tunables.static_memory_offset_guard_size,
);
}
}
// Otherwise, make it dynamic.
(Self::Dynamic, tunables.dynamic_memory_offset_guard_size)
}
}
/// A WebAssembly linear memory description along with our chosen style for
/// implementing it.
#[derive(Debug, Clone, Hash)]
pub struct MemoryPlan {
/// The WebAssembly linear memory description.
pub memory: Memory,
/// Our chosen implementation style.
pub style: MemoryStyle,
/// Our chosen offset-guard size.
pub offset_guard_size: u64,
}
impl MemoryPlan {
/// Draw up a plan for implementing a `Memory`.
pub fn for_memory(memory: Memory, tunables: &Tunables) -> Self {
let (style, offset_guard_size) = MemoryStyle::for_memory(memory, tunables);
Self {
memory,
style,
offset_guard_size,
}
}
}
/// Implemenation styles for WebAssembly tables.
#[derive(Debug, Clone, Hash)]
pub enum TableStyle {
/// Signatures are stored in the table and checked in the caller.
CallerChecksSignature,
}
impl TableStyle {
/// Decide on an implementation style for the given `Table`.
pub fn for_table(_table: Table, _tunables: &Tunables) -> Self {
Self::CallerChecksSignature
}
}
/// A WebAssembly table description along with our chosen style for
/// implementing it.
#[derive(Debug, Clone, Hash)]
pub struct TablePlan {
/// The WebAssembly table description.
pub table: cranelift_wasm::Table,
/// Our chosen implementation style.
pub style: TableStyle,
}
impl TablePlan {
/// Draw up a plan for implementing a `Table`.
pub fn for_table(table: Table, tunables: &Tunables) -> Self {
let style = TableStyle::for_table(table, tunables);
Self { table, style }
}
}
/// A translated WebAssembly module, excluding the function bodies and
/// memory initializers.
// WARNING: when modifying, make sure that `hash_for_cache` is still valid!
#[derive(Debug)]
pub struct Module {
/// Unprocessed signatures exactly as provided by `declare_signature()`.
pub signatures: PrimaryMap<SignatureIndex, ir::Signature>,
/// Names of imported functions.
pub imported_funcs: PrimaryMap<FuncIndex, (String, String)>,
/// Names of imported tables.
pub imported_tables: PrimaryMap<TableIndex, (String, String)>,
/// Names of imported memories.
pub imported_memories: PrimaryMap<MemoryIndex, (String, String)>,
/// Names of imported globals.
pub imported_globals: PrimaryMap<GlobalIndex, (String, String)>,
/// Types of functions, imported and local.
pub functions: PrimaryMap<FuncIndex, SignatureIndex>,
/// WebAssembly tables.
pub table_plans: PrimaryMap<TableIndex, TablePlan>,
/// WebAssembly linear memory plans.
pub memory_plans: PrimaryMap<MemoryIndex, MemoryPlan>,
/// WebAssembly global variables.
pub globals: PrimaryMap<GlobalIndex, Global>,
/// Exported entities.
pub exports: IndexMap<String, Export>,
/// The module "start" function, if present.
pub start_func: Option<FuncIndex>,
/// WebAssembly table initializers.
pub table_elements: Vec<TableElements>,
}
impl Module {
/// Allocates the module data structures.
pub fn new() -> Self {
Self {
signatures: PrimaryMap::new(),
imported_funcs: PrimaryMap::new(),
imported_tables: PrimaryMap::new(),
imported_memories: PrimaryMap::new(),
imported_globals: PrimaryMap::new(),
functions: PrimaryMap::new(),
table_plans: PrimaryMap::new(),
memory_plans: PrimaryMap::new(),
globals: PrimaryMap::new(),
exports: IndexMap::new(),
start_func: None,
table_elements: Vec::new(),
}
}
/// Convert a `DefinedFuncIndex` into a `FuncIndex`.
pub fn func_index(&self, defined_func: DefinedFuncIndex) -> FuncIndex {
FuncIndex::new(self.imported_funcs.len() + defined_func.index())
}
/// Convert a `FuncIndex` into a `DefinedFuncIndex`. Returns None if the
/// index is an imported function.
pub fn defined_func_index(&self, func: FuncIndex) -> Option<DefinedFuncIndex> {
if func.index() < self.imported_funcs.len() {
None
} else {
Some(DefinedFuncIndex::new(
func.index() - self.imported_funcs.len(),
))
}
}
/// Test whether the given function index is for an imported function.
pub fn is_imported_function(&self, index: FuncIndex) -> bool {
index.index() < self.imported_funcs.len()
}
/// Convert a `DefinedTableIndex` into a `TableIndex`.
pub fn table_index(&self, defined_table: DefinedTableIndex) -> TableIndex {
TableIndex::new(self.imported_tables.len() + defined_table.index())
}
/// Convert a `TableIndex` into a `DefinedTableIndex`. Returns None if the
/// index is an imported table.
pub fn defined_table_index(&self, table: TableIndex) -> Option<DefinedTableIndex> {
if table.index() < self.imported_tables.len() {
None
} else {
Some(DefinedTableIndex::new(
table.index() - self.imported_tables.len(),
))
}
}
/// Test whether the given table index is for an imported table.
pub fn is_imported_table(&self, index: TableIndex) -> bool {
index.index() < self.imported_tables.len()
}
/// Convert a `DefinedMemoryIndex` into a `MemoryIndex`.
pub fn memory_index(&self, defined_memory: DefinedMemoryIndex) -> MemoryIndex {
MemoryIndex::new(self.imported_memories.len() + defined_memory.index())
}
/// Convert a `MemoryIndex` into a `DefinedMemoryIndex`. Returns None if the
/// index is an imported memory.
pub fn defined_memory_index(&self, memory: MemoryIndex) -> Option<DefinedMemoryIndex> {
if memory.index() < self.imported_memories.len() {
None
} else {
Some(DefinedMemoryIndex::new(
memory.index() - self.imported_memories.len(),
))
}
}
/// Test whether the given memory index is for an imported memory.
pub fn is_imported_memory(&self, index: MemoryIndex) -> bool {
index.index() < self.imported_memories.len()
}
/// Convert a `DefinedGlobalIndex` into a `GlobalIndex`.
pub fn global_index(&self, defined_global: DefinedGlobalIndex) -> GlobalIndex {
GlobalIndex::new(self.imported_globals.len() + defined_global.index())
}
/// Convert a `GlobalIndex` into a `DefinedGlobalIndex`. Returns None if the
/// index is an imported global.
pub fn defined_global_index(&self, global: GlobalIndex) -> Option<DefinedGlobalIndex> {
if global.index() < self.imported_globals.len() {
None
} else {
Some(DefinedGlobalIndex::new(
global.index() - self.imported_globals.len(),
))
}
}
/// Test whether the given global index is for an imported global.
pub fn is_imported_global(&self, index: GlobalIndex) -> bool {
index.index() < self.imported_globals.len()
}
/// Computes hash of the module for the purpose of caching.
pub fn hash_for_cache<'data, H>(
&self,
function_body_inputs: &PrimaryMap<DefinedFuncIndex, FunctionBodyData<'data>>,
state: &mut H,
) where
H: Hasher,
{
// There's no need to cache names (strings), start function
// and data initializers (for both memory and tables)
self.signatures.hash(state);
self.functions.hash(state);
self.table_plans.hash(state);
self.memory_plans.hash(state);
self.globals.hash(state);
// IndexMap (self.export) iterates over values in order of item inserts
// Let's actually sort the values.
let mut exports = self.exports.values().collect::<Vec<_>>();
exports.sort();
for val in exports {
val.hash(state);
}
function_body_inputs.hash(state);
}
}

View File

@@ -0,0 +1,396 @@
use crate::func_environ::FuncEnvironment;
use crate::module::{Export, MemoryPlan, Module, TableElements, TablePlan};
use crate::tunables::Tunables;
use alloc::boxed::Box;
use alloc::string::String;
use alloc::vec::Vec;
use core::convert::TryFrom;
use cranelift_codegen::ir;
use cranelift_codegen::ir::{AbiParam, ArgumentPurpose};
use cranelift_codegen::isa::TargetFrontendConfig;
use cranelift_entity::PrimaryMap;
use cranelift_wasm::{
self, translate_module, DefinedFuncIndex, FuncIndex, Global, GlobalIndex, Memory, MemoryIndex,
ModuleTranslationState, SignatureIndex, Table, TableIndex, WasmResult,
};
/// Contains function data: byte code and its offset in the module.
#[derive(Hash)]
pub struct FunctionBodyData<'a> {
/// Body byte code.
pub data: &'a [u8],
/// Body offset in the module file.
pub module_offset: usize,
}
/// The result of translating via `ModuleEnvironment`. Function bodies are not
/// yet translated, and data initializers have not yet been copied out of the
/// original buffer.
pub struct ModuleTranslation<'data> {
/// Compilation setting flags.
pub target_config: TargetFrontendConfig,
/// Module information.
pub module: Module,
/// References to the function bodies.
pub function_body_inputs: PrimaryMap<DefinedFuncIndex, FunctionBodyData<'data>>,
/// References to the data initializers.
pub data_initializers: Vec<DataInitializer<'data>>,
/// Tunable parameters.
pub tunables: Tunables,
/// The decoded Wasm types for the module.
pub module_translation: Option<ModuleTranslationState>,
}
impl<'data> ModuleTranslation<'data> {
/// Return a new `FuncEnvironment` for translating a function.
pub fn func_env(&self) -> FuncEnvironment<'_> {
FuncEnvironment::new(self.target_config, &self.module)
}
}
/// Object containing the standalone environment information.
pub struct ModuleEnvironment<'data> {
/// The result to be filled in.
result: ModuleTranslation<'data>,
}
impl<'data> ModuleEnvironment<'data> {
/// Allocates the enironment data structures.
pub fn new(target_config: TargetFrontendConfig, tunables: Tunables) -> Self {
Self {
result: ModuleTranslation {
target_config,
module: Module::new(),
function_body_inputs: PrimaryMap::new(),
data_initializers: Vec::new(),
tunables,
module_translation: None,
},
}
}
fn pointer_type(&self) -> ir::Type {
self.result.target_config.pointer_type()
}
/// Translate a wasm module using this environment. This consumes the
/// `ModuleEnvironment` and produces a `ModuleTranslation`.
pub fn translate(mut self, data: &'data [u8]) -> WasmResult<ModuleTranslation<'data>> {
assert!(self.result.module_translation.is_none());
let module_translation = translate_module(data, &mut self)?;
self.result.module_translation = Some(module_translation);
Ok(self.result)
}
}
/// This trait is useful for `translate_module` because it tells how to translate
/// enironment-dependent wasm instructions. These functions should not be called by the user.
impl<'data> cranelift_wasm::ModuleEnvironment<'data> for ModuleEnvironment<'data> {
fn target_config(&self) -> TargetFrontendConfig {
self.result.target_config
}
fn reserve_signatures(&mut self, num: u32) -> WasmResult<()> {
self.result
.module
.signatures
.reserve_exact(usize::try_from(num).unwrap());
Ok(())
}
fn declare_signature(&mut self, sig: ir::Signature) -> WasmResult<()> {
let sig = translate_signature(sig, self.pointer_type());
// TODO: Deduplicate signatures.
self.result.module.signatures.push(sig);
Ok(())
}
fn declare_func_import(
&mut self,
sig_index: SignatureIndex,
module: &str,
field: &str,
) -> WasmResult<()> {
debug_assert_eq!(
self.result.module.functions.len(),
self.result.module.imported_funcs.len(),
"Imported functions must be declared first"
);
self.result.module.functions.push(sig_index);
self.result
.module
.imported_funcs
.push((String::from(module), String::from(field)));
Ok(())
}
fn declare_table_import(&mut self, table: Table, module: &str, field: &str) -> WasmResult<()> {
debug_assert_eq!(
self.result.module.table_plans.len(),
self.result.module.imported_tables.len(),
"Imported tables must be declared first"
);
let plan = TablePlan::for_table(table, &self.result.tunables);
self.result.module.table_plans.push(plan);
self.result
.module
.imported_tables
.push((String::from(module), String::from(field)));
Ok(())
}
fn declare_memory_import(
&mut self,
memory: Memory,
module: &str,
field: &str,
) -> WasmResult<()> {
debug_assert_eq!(
self.result.module.memory_plans.len(),
self.result.module.imported_memories.len(),
"Imported memories must be declared first"
);
let plan = MemoryPlan::for_memory(memory, &self.result.tunables);
self.result.module.memory_plans.push(plan);
self.result
.module
.imported_memories
.push((String::from(module), String::from(field)));
Ok(())
}
fn declare_global_import(
&mut self,
global: Global,
module: &str,
field: &str,
) -> WasmResult<()> {
debug_assert_eq!(
self.result.module.globals.len(),
self.result.module.imported_globals.len(),
"Imported globals must be declared first"
);
self.result.module.globals.push(global);
self.result
.module
.imported_globals
.push((String::from(module), String::from(field)));
Ok(())
}
fn finish_imports(&mut self) -> WasmResult<()> {
self.result.module.imported_funcs.shrink_to_fit();
self.result.module.imported_tables.shrink_to_fit();
self.result.module.imported_memories.shrink_to_fit();
self.result.module.imported_globals.shrink_to_fit();
Ok(())
}
fn reserve_func_types(&mut self, num: u32) -> WasmResult<()> {
self.result
.module
.functions
.reserve_exact(usize::try_from(num).unwrap());
self.result
.function_body_inputs
.reserve_exact(usize::try_from(num).unwrap());
Ok(())
}
fn declare_func_type(&mut self, sig_index: SignatureIndex) -> WasmResult<()> {
self.result.module.functions.push(sig_index);
Ok(())
}
fn reserve_tables(&mut self, num: u32) -> WasmResult<()> {
self.result
.module
.table_plans
.reserve_exact(usize::try_from(num).unwrap());
Ok(())
}
fn declare_table(&mut self, table: Table) -> WasmResult<()> {
let plan = TablePlan::for_table(table, &self.result.tunables);
self.result.module.table_plans.push(plan);
Ok(())
}
fn reserve_memories(&mut self, num: u32) -> WasmResult<()> {
self.result
.module
.memory_plans
.reserve_exact(usize::try_from(num).unwrap());
Ok(())
}
fn declare_memory(&mut self, memory: Memory) -> WasmResult<()> {
let plan = MemoryPlan::for_memory(memory, &self.result.tunables);
self.result.module.memory_plans.push(plan);
Ok(())
}
fn reserve_globals(&mut self, num: u32) -> WasmResult<()> {
self.result
.module
.globals
.reserve_exact(usize::try_from(num).unwrap());
Ok(())
}
fn declare_global(&mut self, global: Global) -> WasmResult<()> {
self.result.module.globals.push(global);
Ok(())
}
fn reserve_exports(&mut self, num: u32) -> WasmResult<()> {
self.result
.module
.exports
.reserve(usize::try_from(num).unwrap());
Ok(())
}
fn declare_func_export(&mut self, func_index: FuncIndex, name: &str) -> WasmResult<()> {
self.result
.module
.exports
.insert(String::from(name), Export::Function(func_index));
Ok(())
}
fn declare_table_export(&mut self, table_index: TableIndex, name: &str) -> WasmResult<()> {
self.result
.module
.exports
.insert(String::from(name), Export::Table(table_index));
Ok(())
}
fn declare_memory_export(&mut self, memory_index: MemoryIndex, name: &str) -> WasmResult<()> {
self.result
.module
.exports
.insert(String::from(name), Export::Memory(memory_index));
Ok(())
}
fn declare_global_export(&mut self, global_index: GlobalIndex, name: &str) -> WasmResult<()> {
self.result
.module
.exports
.insert(String::from(name), Export::Global(global_index));
Ok(())
}
fn declare_start_func(&mut self, func_index: FuncIndex) -> WasmResult<()> {
debug_assert!(self.result.module.start_func.is_none());
self.result.module.start_func = Some(func_index);
Ok(())
}
fn reserve_table_elements(&mut self, num: u32) -> WasmResult<()> {
self.result
.module
.table_elements
.reserve_exact(usize::try_from(num).unwrap());
Ok(())
}
fn declare_table_elements(
&mut self,
table_index: TableIndex,
base: Option<GlobalIndex>,
offset: usize,
elements: Box<[FuncIndex]>,
) -> WasmResult<()> {
self.result.module.table_elements.push(TableElements {
table_index,
base,
offset,
elements,
});
Ok(())
}
fn define_function_body(
&mut self,
_module_translation: &ModuleTranslationState,
body_bytes: &'data [u8],
body_offset: usize,
) -> WasmResult<()> {
self.result.function_body_inputs.push(FunctionBodyData {
data: body_bytes,
module_offset: body_offset,
});
Ok(())
}
fn reserve_data_initializers(&mut self, num: u32) -> WasmResult<()> {
self.result
.data_initializers
.reserve_exact(usize::try_from(num).unwrap());
Ok(())
}
fn declare_data_initialization(
&mut self,
memory_index: MemoryIndex,
base: Option<GlobalIndex>,
offset: usize,
data: &'data [u8],
) -> WasmResult<()> {
self.result.data_initializers.push(DataInitializer {
location: DataInitializerLocation {
memory_index,
base,
offset,
},
data,
});
Ok(())
}
}
/// Add environment-specific function parameters.
pub fn translate_signature(mut sig: ir::Signature, pointer_type: ir::Type) -> ir::Signature {
// Prepend the vmctx argument.
sig.params.insert(
0,
AbiParam::special(pointer_type, ArgumentPurpose::VMContext),
);
sig
}
/// A memory index and offset within that memory where a data initialization
/// should is to be performed.
#[derive(Clone)]
pub struct DataInitializerLocation {
/// The index of the memory to initialize.
pub memory_index: MemoryIndex,
/// Optionally a globalvar base to initialize at.
pub base: Option<GlobalIndex>,
/// A constant offset to initialize at.
pub offset: usize,
}
/// A data initializer for linear memory.
pub struct DataInitializer<'data> {
/// The location where the initialization is to be performed.
pub location: DataInitializerLocation,
/// The initialization data.
pub data: &'data [u8],
}

View File

@@ -0,0 +1,44 @@
/// Tunable parameters for WebAssembly compilation.
#[derive(Clone)]
pub struct Tunables {
/// For static heaps, the size of the heap protected by bounds checking.
pub static_memory_bound: u32,
/// The size of the offset guard for static heaps.
pub static_memory_offset_guard_size: u64,
/// The size of the offset guard for dynamic heaps.
pub dynamic_memory_offset_guard_size: u64,
}
impl Default for Tunables {
fn default() -> Self {
Self {
#[cfg(target_pointer_width = "32")]
/// Size in wasm pages of the bound for static memories.
static_memory_bound: 0x4000,
#[cfg(target_pointer_width = "64")]
/// Size in wasm pages of the bound for static memories.
///
/// When we allocate 4 GiB of address space, we can avoid the
/// need for explicit bounds checks.
static_memory_bound: 0x1_0000,
#[cfg(target_pointer_width = "32")]
/// Size in bytes of the offset guard for static memories.
static_memory_offset_guard_size: 0x1_0000,
#[cfg(target_pointer_width = "64")]
/// Size in bytes of the offset guard for static memories.
///
/// Allocating 2 GiB of address space lets us translate wasm
/// offsets into x86 offsets as aggressively as we can.
static_memory_offset_guard_size: 0x8000_0000,
/// Size in bytes of the offset guard for dynamic memories.
///
/// Allocate a small guard to optimize common cases but without
/// wasting too much memor.
dynamic_memory_offset_guard_size: 0x1_0000,
}
}
}

View File

@@ -0,0 +1,583 @@
//! Offsets and sizes of various structs in wasmtime-runtime's vmcontext
//! module.
use crate::module::Module;
use crate::BuiltinFunctionIndex;
use core::convert::TryFrom;
use cranelift_codegen::ir;
use cranelift_wasm::{
DefinedGlobalIndex, DefinedMemoryIndex, DefinedTableIndex, FuncIndex, GlobalIndex, MemoryIndex,
SignatureIndex, TableIndex,
};
#[cfg(target_pointer_width = "32")]
fn cast_to_u32(sz: usize) -> u32 {
u32::try_from(sz).unwrap()
}
#[cfg(target_pointer_width = "64")]
fn cast_to_u32(sz: usize) -> u32 {
match u32::try_from(sz) {
Ok(x) => x,
Err(_) => panic!("overflow in cast from usize to u32"),
}
}
/// Align an offset used in this module to a specific byte-width by rounding up
fn align(offset: u32, width: u32) -> u32 {
(offset + (width - 1)) / width * width
}
/// This class computes offsets to fields within `VMContext` and other
/// related structs that JIT code accesses directly.
pub struct VMOffsets {
/// The size in bytes of a pointer on the target.
pub pointer_size: u8,
/// The number of signature declarations in the module.
pub num_signature_ids: u32,
/// The number of imported functions in the module.
pub num_imported_functions: u32,
/// The number of imported tables in the module.
pub num_imported_tables: u32,
/// The number of imported memories in the module.
pub num_imported_memories: u32,
/// The number of imported globals in the module.
pub num_imported_globals: u32,
/// The number of defined tables in the module.
pub num_defined_tables: u32,
/// The number of defined memories in the module.
pub num_defined_memories: u32,
/// The number of defined globals in the module.
pub num_defined_globals: u32,
}
impl VMOffsets {
/// Return a new `VMOffsets` instance, for a given pointer size.
pub fn new(pointer_size: u8, module: &Module) -> Self {
Self {
pointer_size,
num_signature_ids: cast_to_u32(module.signatures.len()),
num_imported_functions: cast_to_u32(module.imported_funcs.len()),
num_imported_tables: cast_to_u32(module.imported_tables.len()),
num_imported_memories: cast_to_u32(module.imported_memories.len()),
num_imported_globals: cast_to_u32(module.imported_globals.len()),
num_defined_tables: cast_to_u32(module.table_plans.len()),
num_defined_memories: cast_to_u32(module.memory_plans.len()),
num_defined_globals: cast_to_u32(module.globals.len()),
}
}
}
/// Offsets for `VMFunctionImport`.
impl VMOffsets {
/// The offset of the `body` field.
#[allow(clippy::erasing_op)]
pub fn vmfunction_import_body(&self) -> u8 {
0 * self.pointer_size
}
/// The offset of the `vmctx` field.
#[allow(clippy::identity_op)]
pub fn vmfunction_import_vmctx(&self) -> u8 {
1 * self.pointer_size
}
/// Return the size of `VMFunctionImport`.
pub fn size_of_vmfunction_import(&self) -> u8 {
2 * self.pointer_size
}
}
/// Offsets for `*const VMFunctionBody`.
impl VMOffsets {
/// The size of the `current_elements` field.
#[allow(clippy::identity_op)]
pub fn size_of_vmfunction_body_ptr(&self) -> u8 {
1 * self.pointer_size
}
}
/// Offsets for `VMTableImport`.
impl VMOffsets {
/// The offset of the `from` field.
#[allow(clippy::erasing_op)]
pub fn vmtable_import_from(&self) -> u8 {
0 * self.pointer_size
}
/// The offset of the `vmctx` field.
#[allow(clippy::identity_op)]
pub fn vmtable_import_vmctx(&self) -> u8 {
1 * self.pointer_size
}
/// Return the size of `VMTableImport`.
pub fn size_of_vmtable_import(&self) -> u8 {
2 * self.pointer_size
}
}
/// Offsets for `VMTableDefinition`.
impl VMOffsets {
/// The offset of the `base` field.
#[allow(clippy::erasing_op)]
pub fn vmtable_definition_base(&self) -> u8 {
0 * self.pointer_size
}
/// The offset of the `current_elements` field.
#[allow(clippy::identity_op)]
pub fn vmtable_definition_current_elements(&self) -> u8 {
1 * self.pointer_size
}
/// The size of the `current_elements` field.
pub fn size_of_vmtable_definition_current_elements(&self) -> u8 {
4
}
/// Return the size of `VMTableDefinition`.
pub fn size_of_vmtable_definition(&self) -> u8 {
2 * self.pointer_size
}
/// The type of the `current_elements` field.
pub fn type_of_vmtable_definition_current_elements(&self) -> ir::Type {
ir::Type::int(u16::from(self.size_of_vmtable_definition_current_elements()) * 8).unwrap()
}
}
/// Offsets for `VMMemoryImport`.
impl VMOffsets {
/// The offset of the `from` field.
#[allow(clippy::erasing_op)]
pub fn vmmemory_import_from(&self) -> u8 {
0 * self.pointer_size
}
/// The offset of the `vmctx` field.
#[allow(clippy::identity_op)]
pub fn vmmemory_import_vmctx(&self) -> u8 {
1 * self.pointer_size
}
/// Return the size of `VMMemoryImport`.
pub fn size_of_vmmemory_import(&self) -> u8 {
2 * self.pointer_size
}
}
/// Offsets for `VMMemoryDefinition`.
impl VMOffsets {
/// The offset of the `base` field.
#[allow(clippy::erasing_op)]
pub fn vmmemory_definition_base(&self) -> u8 {
0 * self.pointer_size
}
/// The offset of the `current_length` field.
#[allow(clippy::identity_op)]
pub fn vmmemory_definition_current_length(&self) -> u8 {
1 * self.pointer_size
}
/// The size of the `current_length` field.
pub fn size_of_vmmemory_definition_current_length(&self) -> u8 {
4
}
/// Return the size of `VMMemoryDefinition`.
pub fn size_of_vmmemory_definition(&self) -> u8 {
2 * self.pointer_size
}
/// The type of the `current_length` field.
pub fn type_of_vmmemory_definition_current_length(&self) -> ir::Type {
ir::Type::int(u16::from(self.size_of_vmmemory_definition_current_length()) * 8).unwrap()
}
}
/// Offsets for `VMGlobalImport`.
impl VMOffsets {
/// The offset of the `from` field.
#[allow(clippy::erasing_op)]
pub fn vmglobal_import_from(&self) -> u8 {
0 * self.pointer_size
}
/// Return the size of `VMGlobalImport`.
#[allow(clippy::identity_op)]
pub fn size_of_vmglobal_import(&self) -> u8 {
1 * self.pointer_size
}
}
/// Offsets for `VMGlobalDefinition`.
impl VMOffsets {
/// Return the size of `VMGlobalDefinition`; this is the size of the largest value type (i.e. a
/// V128).
pub fn size_of_vmglobal_definition(&self) -> u8 {
16
}
}
/// Offsets for `VMSharedSignatureIndex`.
impl VMOffsets {
/// Return the size of `VMSharedSignatureIndex`.
pub fn size_of_vmshared_signature_index(&self) -> u8 {
4
}
}
/// Offsets for `VMCallerCheckedAnyfunc`.
impl VMOffsets {
/// The offset of the `func_ptr` field.
#[allow(clippy::erasing_op)]
pub fn vmcaller_checked_anyfunc_func_ptr(&self) -> u8 {
0 * self.pointer_size
}
/// The offset of the `type_index` field.
#[allow(clippy::identity_op)]
pub fn vmcaller_checked_anyfunc_type_index(&self) -> u8 {
1 * self.pointer_size
}
/// The offset of the `vmctx` field.
pub fn vmcaller_checked_anyfunc_vmctx(&self) -> u8 {
2 * self.pointer_size
}
/// Return the size of `VMCallerCheckedAnyfunc`.
pub fn size_of_vmcaller_checked_anyfunc(&self) -> u8 {
3 * self.pointer_size
}
}
/// Offsets for `VMContext`.
impl VMOffsets {
/// The offset of the `signature_ids` array.
pub fn vmctx_signature_ids_begin(&self) -> u32 {
0
}
/// The offset of the `tables` array.
#[allow(clippy::erasing_op)]
pub fn vmctx_imported_functions_begin(&self) -> u32 {
self.vmctx_signature_ids_begin()
.checked_add(
self.num_signature_ids
.checked_mul(u32::from(self.size_of_vmshared_signature_index()))
.unwrap(),
)
.unwrap()
}
/// The offset of the `tables` array.
#[allow(clippy::identity_op)]
pub fn vmctx_imported_tables_begin(&self) -> u32 {
self.vmctx_imported_functions_begin()
.checked_add(
self.num_imported_functions
.checked_mul(u32::from(self.size_of_vmfunction_import()))
.unwrap(),
)
.unwrap()
}
/// The offset of the `memories` array.
pub fn vmctx_imported_memories_begin(&self) -> u32 {
self.vmctx_imported_tables_begin()
.checked_add(
self.num_imported_tables
.checked_mul(u32::from(self.size_of_vmtable_import()))
.unwrap(),
)
.unwrap()
}
/// The offset of the `globals` array.
pub fn vmctx_imported_globals_begin(&self) -> u32 {
self.vmctx_imported_memories_begin()
.checked_add(
self.num_imported_memories
.checked_mul(u32::from(self.size_of_vmmemory_import()))
.unwrap(),
)
.unwrap()
}
/// The offset of the `tables` array.
pub fn vmctx_tables_begin(&self) -> u32 {
self.vmctx_imported_globals_begin()
.checked_add(
self.num_imported_globals
.checked_mul(u32::from(self.size_of_vmglobal_import()))
.unwrap(),
)
.unwrap()
}
/// The offset of the `memories` array.
pub fn vmctx_memories_begin(&self) -> u32 {
self.vmctx_tables_begin()
.checked_add(
self.num_defined_tables
.checked_mul(u32::from(self.size_of_vmtable_definition()))
.unwrap(),
)
.unwrap()
}
/// The offset of the `globals` array.
pub fn vmctx_globals_begin(&self) -> u32 {
let offset = self
.vmctx_memories_begin()
.checked_add(
self.num_defined_memories
.checked_mul(u32::from(self.size_of_vmmemory_definition()))
.unwrap(),
)
.unwrap();
align(offset, 16)
}
/// The offset of the builtin functions array.
pub fn vmctx_builtin_functions_begin(&self) -> u32 {
self.vmctx_globals_begin()
.checked_add(
self.num_defined_globals
.checked_mul(u32::from(self.size_of_vmglobal_definition()))
.unwrap(),
)
.unwrap()
}
/// Return the size of the `VMContext` allocation.
pub fn size_of_vmctx(&self) -> u32 {
self.vmctx_builtin_functions_begin()
.checked_add(
BuiltinFunctionIndex::builtin_functions_total_number()
.checked_mul(u32::from(self.pointer_size))
.unwrap(),
)
.unwrap()
}
/// Return the offset to `VMSharedSignatureId` index `index`.
pub fn vmctx_vmshared_signature_id(&self, index: SignatureIndex) -> u32 {
assert!(index.as_u32() < self.num_signature_ids);
self.vmctx_signature_ids_begin()
.checked_add(
index
.as_u32()
.checked_mul(u32::from(self.size_of_vmshared_signature_index()))
.unwrap(),
)
.unwrap()
}
/// Return the offset to `VMFunctionImport` index `index`.
pub fn vmctx_vmfunction_import(&self, index: FuncIndex) -> u32 {
assert!(index.as_u32() < self.num_imported_functions);
self.vmctx_imported_functions_begin()
.checked_add(
index
.as_u32()
.checked_mul(u32::from(self.size_of_vmfunction_import()))
.unwrap(),
)
.unwrap()
}
/// Return the offset to `VMTableImport` index `index`.
pub fn vmctx_vmtable_import(&self, index: TableIndex) -> u32 {
assert!(index.as_u32() < self.num_imported_tables);
self.vmctx_imported_tables_begin()
.checked_add(
index
.as_u32()
.checked_mul(u32::from(self.size_of_vmtable_import()))
.unwrap(),
)
.unwrap()
}
/// Return the offset to `VMMemoryImport` index `index`.
pub fn vmctx_vmmemory_import(&self, index: MemoryIndex) -> u32 {
assert!(index.as_u32() < self.num_imported_memories);
self.vmctx_imported_memories_begin()
.checked_add(
index
.as_u32()
.checked_mul(u32::from(self.size_of_vmmemory_import()))
.unwrap(),
)
.unwrap()
}
/// Return the offset to `VMGlobalImport` index `index`.
pub fn vmctx_vmglobal_import(&self, index: GlobalIndex) -> u32 {
assert!(index.as_u32() < self.num_imported_globals);
self.vmctx_imported_globals_begin()
.checked_add(
index
.as_u32()
.checked_mul(u32::from(self.size_of_vmglobal_import()))
.unwrap(),
)
.unwrap()
}
/// Return the offset to `VMTableDefinition` index `index`.
pub fn vmctx_vmtable_definition(&self, index: DefinedTableIndex) -> u32 {
assert!(index.as_u32() < self.num_defined_tables);
self.vmctx_tables_begin()
.checked_add(
index
.as_u32()
.checked_mul(u32::from(self.size_of_vmtable_definition()))
.unwrap(),
)
.unwrap()
}
/// Return the offset to `VMMemoryDefinition` index `index`.
pub fn vmctx_vmmemory_definition(&self, index: DefinedMemoryIndex) -> u32 {
assert!(index.as_u32() < self.num_defined_memories);
self.vmctx_memories_begin()
.checked_add(
index
.as_u32()
.checked_mul(u32::from(self.size_of_vmmemory_definition()))
.unwrap(),
)
.unwrap()
}
/// Return the offset to the `VMGlobalDefinition` index `index`.
pub fn vmctx_vmglobal_definition(&self, index: DefinedGlobalIndex) -> u32 {
assert!(index.as_u32() < self.num_defined_globals);
self.vmctx_globals_begin()
.checked_add(
index
.as_u32()
.checked_mul(u32::from(self.size_of_vmglobal_definition()))
.unwrap(),
)
.unwrap()
}
/// Return the offset to the `body` field in `*const VMFunctionBody` index `index`.
pub fn vmctx_vmfunction_import_body(&self, index: FuncIndex) -> u32 {
self.vmctx_vmfunction_import(index)
.checked_add(u32::from(self.vmfunction_import_body()))
.unwrap()
}
/// Return the offset to the `vmctx` field in `*const VMFunctionBody` index `index`.
pub fn vmctx_vmfunction_import_vmctx(&self, index: FuncIndex) -> u32 {
self.vmctx_vmfunction_import(index)
.checked_add(u32::from(self.vmfunction_import_vmctx()))
.unwrap()
}
/// Return the offset to the `from` field in `VMTableImport` index `index`.
pub fn vmctx_vmtable_import_from(&self, index: TableIndex) -> u32 {
self.vmctx_vmtable_import(index)
.checked_add(u32::from(self.vmtable_import_from()))
.unwrap()
}
/// Return the offset to the `base` field in `VMTableDefinition` index `index`.
pub fn vmctx_vmtable_definition_base(&self, index: DefinedTableIndex) -> u32 {
self.vmctx_vmtable_definition(index)
.checked_add(u32::from(self.vmtable_definition_base()))
.unwrap()
}
/// Return the offset to the `current_elements` field in `VMTableDefinition` index `index`.
pub fn vmctx_vmtable_definition_current_elements(&self, index: DefinedTableIndex) -> u32 {
self.vmctx_vmtable_definition(index)
.checked_add(u32::from(self.vmtable_definition_current_elements()))
.unwrap()
}
/// Return the offset to the `from` field in `VMMemoryImport` index `index`.
pub fn vmctx_vmmemory_import_from(&self, index: MemoryIndex) -> u32 {
self.vmctx_vmmemory_import(index)
.checked_add(u32::from(self.vmmemory_import_from()))
.unwrap()
}
/// Return the offset to the `vmctx` field in `VMMemoryImport` index `index`.
pub fn vmctx_vmmemory_import_vmctx(&self, index: MemoryIndex) -> u32 {
self.vmctx_vmmemory_import(index)
.checked_add(u32::from(self.vmmemory_import_vmctx()))
.unwrap()
}
/// Return the offset to the `base` field in `VMMemoryDefinition` index `index`.
pub fn vmctx_vmmemory_definition_base(&self, index: DefinedMemoryIndex) -> u32 {
self.vmctx_vmmemory_definition(index)
.checked_add(u32::from(self.vmmemory_definition_base()))
.unwrap()
}
/// Return the offset to the `current_length` field in `VMMemoryDefinition` index `index`.
pub fn vmctx_vmmemory_definition_current_length(&self, index: DefinedMemoryIndex) -> u32 {
self.vmctx_vmmemory_definition(index)
.checked_add(u32::from(self.vmmemory_definition_current_length()))
.unwrap()
}
/// Return the offset to the `from` field in `VMGlobalImport` index `index`.
pub fn vmctx_vmglobal_import_from(&self, index: GlobalIndex) -> u32 {
self.vmctx_vmglobal_import(index)
.checked_add(u32::from(self.vmglobal_import_from()))
.unwrap()
}
/// Return the offset to builtin function in `VMBuiltinFunctionsArray` index `index`.
pub fn vmctx_builtin_function(&self, index: BuiltinFunctionIndex) -> u32 {
self.vmctx_builtin_functions_begin()
.checked_add(
index
.index()
.checked_mul(u32::from(self.pointer_size))
.unwrap(),
)
.unwrap()
}
}
/// Target specific type for shared signature index.
#[derive(Debug, Copy, Clone)]
pub struct TargetSharedSignatureIndex(u32);
impl TargetSharedSignatureIndex {
/// Constructs `TargetSharedSignatureIndex`.
pub fn new(value: u32) -> Self {
Self(value)
}
/// Returns index value.
pub fn index(self) -> u32 {
self.0
}
}
#[cfg(test)]
mod tests {
use crate::vmoffsets::align;
#[test]
fn alignment() {
fn is_aligned(x: u32) -> bool {
x % 16 == 0
}
assert!(is_aligned(align(0, 16)));
assert!(is_aligned(align(32, 16)));
assert!(is_aligned(align(33, 16)));
assert!(is_aligned(align(31, 16)));
}
}

View File

@@ -0,0 +1,10 @@
use wasmtime_environ::cache_init;
#[test]
fn test_cache_default_config_in_memory() {
let errors = cache_init::<&str>(true, None, None);
assert!(
errors.is_empty(),
"This test loads config from the default location, if there's one. Make sure it's correct!"
);
}

View File

@@ -0,0 +1,7 @@
use wasmtime_environ::cache_init;
#[test]
fn test_cache_disabled() {
let errors = cache_init::<&str>(false, None, None);
assert!(errors.is_empty(), "Failed to disable cache system");
}

View File

@@ -0,0 +1,26 @@
use std::fs;
use tempfile;
use wasmtime_environ::cache_init;
#[test]
#[should_panic]
fn test_cache_fail_calling_init_twice() {
let dir = tempfile::tempdir().expect("Can't create temporary directory");
let cache_dir = dir.path().join("cache-dir");
let baseline_compression_level = 5;
let config_path = dir.path().join("cache-config.toml");
let config_content = format!(
"[cache]\n\
enabled = true\n\
directory = {}\n\
baseline-compression-level = {}\n",
toml::to_string_pretty(&format!("{}", cache_dir.display())).unwrap(),
baseline_compression_level,
);
fs::write(&config_path, config_content).expect("Failed to write test config file");
let errors = cache_init(true, Some(&config_path), None);
assert!(errors.is_empty());
let _errors = cache_init(true, Some(&config_path), None);
}

View File

@@ -0,0 +1,23 @@
use std::fs;
use tempfile;
use wasmtime_environ::cache_init;
#[test]
fn test_cache_fail_invalid_config() {
let dir = tempfile::tempdir().expect("Can't create temporary directory");
let baseline_compression_level = -4;
let config_path = dir.path().join("cache-config.toml");
let config_content = format!(
"[cache]\n\
enabled = true\n\
directory = {}\n\
baseline-compression-level = {}\n",
toml::to_string_pretty(&format!("{}", config_path.display())).unwrap(), // directory is a file -- incorrect!
baseline_compression_level,
);
fs::write(&config_path, config_content).expect("Failed to write test config file");
let errors = cache_init(true, Some(&config_path), None);
assert!(!errors.is_empty());
}

View File

@@ -0,0 +1,10 @@
use tempfile;
use wasmtime_environ::cache_init;
#[test]
fn test_cache_fail_invalid_path_to_config() {
let dir = tempfile::tempdir().expect("Can't create temporary directory");
let config_path = dir.path().join("cache-config.toml"); // doesn't exist
let errors = cache_init(true, Some(&config_path), None);
assert!(!errors.is_empty());
}

View File

@@ -0,0 +1,13 @@
use tempfile;
use wasmtime_environ::cache_create_new_config;
#[test]
fn test_cache_write_default_config() {
let dir = tempfile::tempdir().expect("Can't create temporary directory");
let config_path = dir.path().join("cache-config.toml");
let result = cache_create_new_config(Some(&config_path));
assert!(result.is_ok());
assert!(config_path.exists());
assert_eq!(config_path, result.unwrap());
}

View File

@@ -0,0 +1,20 @@
[package]
name = "wasmtime-interface-types"
version = "0.2.0"
authors = ["The Wasmtime Project Developers"]
description = "Support for wasm interface types with wasmtime"
categories = ["wasm"]
keywords = ["webassembly", "wasm"]
repository = "https://github.com/CraneStation/wasmtime"
license = "Apache-2.0 WITH LLVM-exception"
readme = "README.md"
edition = "2018"
[dependencies]
anyhow = "1.0.19"
cranelift-codegen = { version = "0.49", default-features = false }
walrus = "0.13"
wasmparser = { version = "0.39.2", default-features = false }
wasm-webidl-bindings = "0.6"
wasmtime-jit = { path = '../jit', default-features = false }
wasmtime-runtime = { path = '../runtime', default-features = false }

View File

@@ -0,0 +1,469 @@
//! A small crate to handle WebAssembly interface types in wasmtime.
//!
//! Note that this is intended to follow the [official proposal][proposal] and
//! is highly susceptible to change/breakage/etc.
//!
//! [proposal]: https://github.com/webassembly/webidl-bindings
#![deny(missing_docs)]
#[macro_use]
extern crate alloc;
use alloc::boxed::Box;
use alloc::string::ToString;
use alloc::vec::Vec;
use anyhow::{bail, format_err, Result};
use core::convert::TryFrom;
use core::slice;
use core::str;
use cranelift_codegen::ir;
use wasm_webidl_bindings::ast;
use wasmtime_jit::{ActionOutcome, Context, RuntimeValue};
use wasmtime_runtime::{Export, InstanceHandle};
mod value;
pub use value::Value;
/// A data structure intended to hold a parsed representation of the wasm
/// interface types of a module.
///
/// The expected usage pattern is to create this next to wasmtime data
/// structures and then use this to process arguments into wasm arguments as
/// appropriate for bound functions.
pub struct ModuleData {
inner: Option<Inner>,
}
struct Inner {
module: walrus::Module,
}
/// Representation of a binding of an exported function.
///
/// Can be used to learn about binding expressions and/or binding types.
pub struct ExportBinding<'a> {
kind: ExportBindingKind<'a>,
}
enum ExportBindingKind<'a> {
Rich {
section: &'a ast::WebidlBindings,
binding: &'a ast::ExportBinding,
},
Raw(ir::Signature),
}
impl ModuleData {
/// Parses a raw binary wasm file, extracting information about wasm
/// interface types.
///
/// Returns an error if the wasm file is malformed.
pub fn new(wasm: &[u8]) -> Result<ModuleData> {
// Perform a fast search through the module for the right custom
// section. Actually parsing out the interface types data is currently a
// pretty expensive operation so we want to only do that if we actually
// find the right section.
let mut reader = wasmparser::ModuleReader::new(wasm)?;
let mut found = false;
while !reader.eof() {
let section = reader.read()?;
if let wasmparser::SectionCode::Custom { name, .. } = section.code {
if name == "webidl-bindings" {
found = true;
break;
}
}
}
if !found {
return Ok(ModuleData { inner: None });
}
// Ok, perform the more expensive parsing. WebAssembly interface types
// are super experimental and under development. To get something
// quickly up and running we're using the same crate as `wasm-bindgen`,
// a producer of wasm interface types, the `wasm-webidl-bindings` crate.
// This crate relies on `walrus` which has its own IR for a wasm module.
// Ideally we'd do all this during cranelift's own parsing of the wasm
// module and we wouldn't have to reparse here purely for this one use
// case.
//
// For now though this is "fast enough" and good enough for some demos,
// but for full-on production quality engines we'll want to integrate
// this much more tightly with the rest of wasmtime.
let module = walrus::ModuleConfig::new()
.on_parse(wasm_webidl_bindings::binary::on_parse)
.parse(wasm)?;
Ok(ModuleData {
inner: Some(Inner { module }),
})
}
/// Detects if WASI support is needed: returns module name that is requested.
pub fn find_wasi_module_name(&self) -> Option<String> {
self.inner.as_ref().and_then(|Inner { module }| {
module
.imports
.iter()
.find(|walrus::Import { module, .. }| match module.as_str() {
"wasi" | "wasi_unstable" => true,
_ => false,
})
.map(|walrus::Import { module, .. }| module.clone())
})
}
/// Same as `Context::invoke` except that this works with a `&[Value]` list
/// instead of a `&[RuntimeValue]` list. (in this case `Value` is the set of
/// wasm interface types)
pub fn invoke(
&self,
cx: &mut Context,
handle: &mut InstanceHandle,
export: &str,
args: &[Value],
) -> Result<Vec<Value>> {
let binding = self.binding_for_export(handle, export)?;
let incoming = binding.param_bindings()?;
let outgoing = binding.result_bindings()?;
let wasm_args = translate_incoming(cx, handle, &incoming, args)?;
let wasm_results = match cx.invoke(handle, export, &wasm_args)? {
ActionOutcome::Returned { values } => values,
ActionOutcome::Trapped { message } => bail!("trapped: {}", message),
};
translate_outgoing(cx, handle, &outgoing, &wasm_results)
}
/// Returns an appropriate binding for the `name` export in this module
/// which has also been instantiated as `instance` provided here.
///
/// Returns an error if `name` is not present in the module.
pub fn binding_for_export(
&self,
instance: &mut InstanceHandle,
name: &str,
) -> Result<ExportBinding<'_>> {
if let Some(binding) = self.interface_binding_for_export(name) {
return Ok(binding);
}
let signature = match instance.lookup(name) {
Some(Export::Function { signature, .. }) => signature,
Some(_) => bail!("`{}` is not a function", name),
None => bail!("failed to find export `{}`", name),
};
Ok(ExportBinding {
kind: ExportBindingKind::Raw(signature),
})
}
fn interface_binding_for_export(&self, name: &str) -> Option<ExportBinding<'_>> {
let inner = self.inner.as_ref()?;
let bindings = inner.module.customs.get_typed::<ast::WebidlBindings>()?;
let export = inner.module.exports.iter().find(|e| e.name == name)?;
let id = match export.item {
walrus::ExportItem::Function(f) => f,
_ => panic!(),
};
let (_, bind) = bindings.binds.iter().find(|(_, b)| b.func == id)?;
let binding = bindings.bindings.get(bind.binding)?;
let binding = match binding {
ast::FunctionBinding::Export(export) => export,
ast::FunctionBinding::Import(_) => return None,
};
Some(ExportBinding {
kind: ExportBindingKind::Rich {
binding,
section: bindings,
},
})
}
}
impl ExportBinding<'_> {
/// Returns the list of binding expressions used to create the parameters
/// for this binding.
pub fn param_bindings(&self) -> Result<Vec<ast::IncomingBindingExpression>> {
match &self.kind {
ExportBindingKind::Rich { binding, .. } => Ok(binding.params.bindings.clone()),
ExportBindingKind::Raw(sig) => sig
.params
.iter()
.skip(1) // skip the VMContext argument
.enumerate()
.map(|(i, param)| default_incoming(i, param))
.collect(),
}
}
/// Returns the list of scalar types used for this binding
pub fn param_types(&self) -> Result<Vec<ast::WebidlScalarType>> {
match &self.kind {
ExportBindingKind::Rich {
binding, section, ..
} => {
let id = match binding.webidl_ty {
ast::WebidlTypeRef::Id(id) => id,
ast::WebidlTypeRef::Scalar(_) => {
bail!("webidl types for functions cannot be scalar")
}
};
let ty = section
.types
.get::<ast::WebidlCompoundType>(id)
.ok_or_else(|| format_err!("invalid webidl custom section"))?;
let func = match ty {
ast::WebidlCompoundType::Function(f) => f,
_ => bail!("webidl type for function must be of function type"),
};
func.params
.iter()
.map(|param| match param {
ast::WebidlTypeRef::Id(_) => bail!("function arguments cannot be compound"),
ast::WebidlTypeRef::Scalar(s) => Ok(*s),
})
.collect()
}
ExportBindingKind::Raw(sig) => sig.params.iter().skip(1).map(abi2ast).collect(),
}
}
/// Returns the list of binding expressions used to extract the return
/// values of this binding.
pub fn result_bindings(&self) -> Result<Vec<ast::OutgoingBindingExpression>> {
match &self.kind {
ExportBindingKind::Rich { binding, .. } => Ok(binding.result.bindings.clone()),
ExportBindingKind::Raw(sig) => sig
.returns
.iter()
.enumerate()
.map(|(i, param)| default_outgoing(i, param))
.collect(),
}
}
}
fn default_incoming(idx: usize, param: &ir::AbiParam) -> Result<ast::IncomingBindingExpression> {
let get = ast::IncomingBindingExpressionGet { idx: idx as u32 };
let ty = if param.value_type == ir::types::I32 {
walrus::ValType::I32
} else if param.value_type == ir::types::I64 {
walrus::ValType::I64
} else if param.value_type == ir::types::F32 {
walrus::ValType::F32
} else if param.value_type == ir::types::F64 {
walrus::ValType::F64
} else {
bail!("unsupported type {:?}", param.value_type)
};
Ok(ast::IncomingBindingExpressionAs {
ty,
expr: Box::new(get.into()),
}
.into())
}
fn default_outgoing(idx: usize, param: &ir::AbiParam) -> Result<ast::OutgoingBindingExpression> {
let ty = abi2ast(param)?;
Ok(ast::OutgoingBindingExpressionAs {
ty: ty.into(),
idx: idx as u32,
}
.into())
}
fn abi2ast(param: &ir::AbiParam) -> Result<ast::WebidlScalarType> {
Ok(if param.value_type == ir::types::I32 {
ast::WebidlScalarType::Long
} else if param.value_type == ir::types::I64 {
ast::WebidlScalarType::LongLong
} else if param.value_type == ir::types::F32 {
ast::WebidlScalarType::UnrestrictedFloat
} else if param.value_type == ir::types::F64 {
ast::WebidlScalarType::UnrestrictedDouble
} else {
bail!("unsupported type {:?}", param.value_type)
})
}
fn translate_incoming(
cx: &mut Context,
handle: &mut InstanceHandle,
bindings: &[ast::IncomingBindingExpression],
args: &[Value],
) -> Result<Vec<RuntimeValue>> {
let get = |expr: &ast::IncomingBindingExpression| match expr {
ast::IncomingBindingExpression::Get(g) => args
.get(g.idx as usize)
.ok_or_else(|| format_err!("argument index out of bounds: {}", g.idx)),
_ => bail!("unsupported incoming binding expr {:?}", expr),
};
let mut copy = |alloc_func_name: &str, bytes: &[u8]| {
let len = i32::try_from(bytes.len()).map_err(|_| format_err!("length overflow"))?;
let alloc_args = vec![RuntimeValue::I32(len)];
let results = match cx.invoke(handle, alloc_func_name, &alloc_args)? {
ActionOutcome::Returned { values } => values,
ActionOutcome::Trapped { message } => bail!("trapped: {}", message),
};
if results.len() != 1 {
bail!("allocator function wrong number of results");
}
let ptr = match results[0] {
RuntimeValue::I32(i) => i,
_ => bail!("allocator function bad return type"),
};
let memory = handle
.lookup("memory")
.ok_or_else(|| format_err!("no exported `memory`"))?;
let definition = match memory {
wasmtime_runtime::Export::Memory { definition, .. } => definition,
_ => bail!("export `memory` wasn't a `Memory`"),
};
unsafe {
let raw = slice::from_raw_parts_mut((*definition).base, (*definition).current_length);
raw[ptr as usize..][..bytes.len()].copy_from_slice(bytes)
}
Ok((ptr, len))
};
let mut wasm = Vec::new();
for expr in bindings {
match expr {
ast::IncomingBindingExpression::AllocUtf8Str(g) => {
let val = match get(&g.expr)? {
Value::String(s) => s,
_ => bail!("expected a string"),
};
let (ptr, len) = copy(&g.alloc_func_name, val.as_bytes())?;
wasm.push(RuntimeValue::I32(ptr));
wasm.push(RuntimeValue::I32(len));
}
ast::IncomingBindingExpression::As(g) => {
let val = get(&g.expr)?;
match g.ty {
walrus::ValType::I32 => match val {
Value::I32(i) => wasm.push(RuntimeValue::I32(*i)),
Value::U32(i) => wasm.push(RuntimeValue::I32(*i as i32)),
_ => bail!("cannot convert {:?} to `i32`", val),
},
walrus::ValType::I64 => match val {
Value::I32(i) => wasm.push(RuntimeValue::I64((*i).into())),
Value::U32(i) => wasm.push(RuntimeValue::I64((*i).into())),
Value::I64(i) => wasm.push(RuntimeValue::I64(*i)),
Value::U64(i) => wasm.push(RuntimeValue::I64(*i as i64)),
_ => bail!("cannot convert {:?} to `i64`", val),
},
walrus::ValType::F32 => match val {
Value::F32(i) => wasm.push(RuntimeValue::F32(i.to_bits())),
_ => bail!("cannot convert {:?} to `f32`", val),
},
walrus::ValType::F64 => match val {
Value::F32(i) => wasm.push(RuntimeValue::F64((*i as f64).to_bits())),
Value::F64(i) => wasm.push(RuntimeValue::F64(i.to_bits())),
_ => bail!("cannot convert {:?} to `f64`", val),
},
walrus::ValType::V128 | walrus::ValType::Anyref => {
bail!("unsupported `as` type {:?}", g.ty);
}
}
}
_ => bail!("unsupported incoming binding expr {:?}", expr),
}
}
Ok(wasm)
}
fn translate_outgoing(
cx: &mut Context,
handle: &mut InstanceHandle,
bindings: &[ast::OutgoingBindingExpression],
args: &[RuntimeValue],
) -> Result<Vec<Value>> {
let mut values = Vec::new();
let raw_memory = || unsafe {
let memory = handle
.lookup_immutable("memory")
.ok_or_else(|| format_err!("no exported `memory`"))?;
let definition = match memory {
wasmtime_runtime::Export::Memory { definition, .. } => definition,
_ => bail!("export `memory` wasn't a `Memory`"),
};
Ok(slice::from_raw_parts_mut(
(*definition).base,
(*definition).current_length,
))
};
let get = |idx: u32| {
args.get(idx as usize)
.cloned()
.ok_or_else(|| format_err!("argument index out of bounds: {}", idx))
};
for expr in bindings {
match expr {
ast::OutgoingBindingExpression::As(a) => {
let arg = get(a.idx)?;
match a.ty {
ast::WebidlTypeRef::Scalar(ast::WebidlScalarType::UnsignedLong) => match arg {
RuntimeValue::I32(a) => values.push(Value::U32(a as u32)),
_ => bail!("can't convert {:?} to unsigned long", arg),
},
ast::WebidlTypeRef::Scalar(ast::WebidlScalarType::Long) => match arg {
RuntimeValue::I32(a) => values.push(Value::I32(a)),
_ => bail!("can't convert {:?} to long", arg),
},
ast::WebidlTypeRef::Scalar(ast::WebidlScalarType::LongLong) => match arg {
RuntimeValue::I32(a) => values.push(Value::I64(a as i64)),
RuntimeValue::I64(a) => values.push(Value::I64(a)),
_ => bail!("can't convert {:?} to long long", arg),
},
ast::WebidlTypeRef::Scalar(ast::WebidlScalarType::UnsignedLongLong) => {
match arg {
RuntimeValue::I32(a) => values.push(Value::U64(a as u64)),
RuntimeValue::I64(a) => values.push(Value::U64(a as u64)),
_ => bail!("can't convert {:?} to unsigned long long", arg),
}
}
ast::WebidlTypeRef::Scalar(ast::WebidlScalarType::Float) => match arg {
RuntimeValue::F32(a) => values.push(Value::F32(f32::from_bits(a))),
_ => bail!("can't convert {:?} to float", arg),
},
ast::WebidlTypeRef::Scalar(ast::WebidlScalarType::Double) => match arg {
RuntimeValue::F32(a) => values.push(Value::F64(f32::from_bits(a) as f64)),
RuntimeValue::F64(a) => values.push(Value::F64(f64::from_bits(a))),
_ => bail!("can't convert {:?} to double", arg),
},
_ => bail!("unsupported outgoing binding expr {:?}", expr),
}
}
ast::OutgoingBindingExpression::Utf8Str(e) => {
if e.ty != ast::WebidlScalarType::DomString.into() {
bail!("utf-8 strings must go into dom-string")
}
let offset = match get(e.offset)? {
RuntimeValue::I32(a) => a,
_ => bail!("offset must be an i32"),
};
let length = match get(e.length)? {
RuntimeValue::I32(a) => a,
_ => bail!("length must be an i32"),
};
let bytes = &raw_memory()?[offset as usize..][..length as usize];
values.push(Value::String(str::from_utf8(bytes).unwrap().to_string()));
}
_ => {
drop((cx, handle));
bail!("unsupported outgoing binding expr {:?}", expr);
}
}
}
Ok(values)
}

View File

@@ -0,0 +1,67 @@
use alloc::string::{String, ToString};
use core::convert::TryFrom;
use core::fmt;
/// The set of all possible WebAssembly Interface Types
#[derive(Debug, Clone)]
#[allow(missing_docs)]
pub enum Value {
String(String),
I32(i32),
U32(u32),
I64(i64),
U64(u64),
F32(f32),
F64(f64),
}
macro_rules! from {
($($a:ident => $b:ident,)*) => ($(
impl From<$a> for Value {
fn from(val: $a) -> Value {
Value::$b(val)
}
}
impl TryFrom<Value> for $a {
type Error = anyhow::Error;
fn try_from(val: Value) -> Result<$a, Self::Error> {
match val {
Value::$b(v) => Ok(v),
v => anyhow::bail!("cannot convert {:?} to {}", v, stringify!($a)),
}
}
}
)*)
}
from! {
String => String,
i32 => I32,
u32 => U32,
i64 => I64,
u64 => U64,
f32 => F32,
f64 => F64,
}
impl<'a> From<&'a str> for Value {
fn from(x: &'a str) -> Value {
x.to_string().into()
}
}
impl fmt::Display for Value {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Value::String(s) => s.fmt(f),
Value::I32(s) => s.fmt(f),
Value::U32(s) => s.fmt(f),
Value::I64(s) => s.fmt(f),
Value::U64(s) => s.fmt(f),
Value::F32(s) => s.fmt(f),
Value::F64(s) => s.fmt(f),
}
}
}

39
crates/jit/Cargo.toml Normal file
View File

@@ -0,0 +1,39 @@
[package]
name = "wasmtime-jit"
version = "0.2.0"
authors = ["The Wasmtime Project Developers"]
description = "JIT-style execution for WebAsssembly code in Cranelift"
categories = ["wasm"]
keywords = ["webassembly", "wasm"]
repository = "https://github.com/CraneStation/wasmtime"
license = "Apache-2.0 WITH LLVM-exception"
readme = "README.md"
edition = "2018"
[dependencies]
cranelift-codegen = { version = "0.49", features = ["enable-serde"] }
cranelift-entity = { version = "0.49", features = ["enable-serde"] }
cranelift-wasm = { version = "0.49", features = ["enable-serde"] }
cranelift-frontend = { version = "0.49" }
wasmtime-environ = { path = "../environ", default-features = false }
wasmtime-runtime = { path = "../runtime", default-features = false }
wasmtime-debug = { path = "../debug", default-features = false }
region = "2.0.0"
failure = { version = "0.1.3", default-features = false }
thiserror = "1.0.4"
target-lexicon = { version = "0.9.0", default-features = false }
hashbrown = { version = "0.6.0", optional = true }
wasmparser = { version = "0.39.2", default-features = false }
[target.'cfg(target_os = "windows")'.dependencies]
winapi = { version = "0.3.7", features = ["winnt", "impl-default"] }
[features]
default = ["std"]
std = ["cranelift-codegen/std", "cranelift-wasm/std", "wasmtime-environ/std", "wasmtime-debug/std", "wasmtime-runtime/std", "wasmparser/std"]
core = ["hashbrown/nightly", "cranelift-codegen/core", "cranelift-wasm/core", "wasmtime-environ/core", "wasmtime-debug/core", "wasmparser/core"]
lightbeam = ["wasmtime-environ/lightbeam"]
[badges]
maintenance = { status = "experimental" }
travis-ci = { repository = "CraneStation/wasmtime" }

220
crates/jit/LICENSE Normal file
View File

@@ -0,0 +1,220 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
--- LLVM Exceptions to the Apache 2.0 License ----
As an exception, if, as a result of your compiling your source code, portions
of this Software are embedded into an Object form of such source code, you
may redistribute such embedded portions in such Object form without complying
with the conditions of Sections 4(a), 4(b) and 4(d) of the License.
In addition, if you combine or link compiled forms of this Software with
software that is licensed under the GPLv2 ("Combined Software") and if a
court of competent jurisdiction determines that the patent provision (Section
3), the indemnity provision (Section 9) or other Section of the License
conflicts with the conditions of the GPLv2, you may retroactively and
prospectively choose to deem waived or otherwise exclude such Section(s) of
the License, but only in their entirety and only with respect to the Combined
Software.

6
crates/jit/README.md Normal file
View File

@@ -0,0 +1,6 @@
This is the `wasmtime-jit` crate, which contains JIT-based execution
for wasm, using the wasm ABI defined by [`wasmtime-environ`] and the
runtime support provided by [`wasmtime-runtime`].
[`wasmtime-environ`]: https://crates.io/crates/wasmtime-environ
[`wasmtime-runtime`]: https://crates.io/crates/wasmtime-runtime

298
crates/jit/src/action.rs Normal file
View File

@@ -0,0 +1,298 @@
//! Support for performing actions with a wasm module from the outside.
use crate::compiler::Compiler;
use crate::instantiate::SetupError;
use alloc::string::String;
use alloc::vec::Vec;
use core::cmp::max;
use core::{fmt, mem, ptr, slice};
use cranelift_codegen::ir;
use thiserror::Error;
use wasmtime_runtime::{wasmtime_call_trampoline, Export, InstanceHandle, VMInvokeArgument};
/// A runtime value.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum RuntimeValue {
/// A runtime value with type i32.
I32(i32),
/// A runtime value with type i64.
I64(i64),
/// A runtime value with type f32.
F32(u32),
/// A runtime value with type f64.
F64(u64),
/// A runtime value with type v128
V128([u8; 16]),
}
impl RuntimeValue {
/// Return the type of this `RuntimeValue`.
pub fn value_type(self) -> ir::Type {
match self {
Self::I32(_) => ir::types::I32,
Self::I64(_) => ir::types::I64,
Self::F32(_) => ir::types::F32,
Self::F64(_) => ir::types::F64,
Self::V128(_) => ir::types::I8X16,
}
}
/// Assuming this `RuntimeValue` holds an `i32`, return that value.
pub fn unwrap_i32(self) -> i32 {
match self {
Self::I32(x) => x,
_ => panic!("unwrapping value of type {} as i32", self.value_type()),
}
}
/// Assuming this `RuntimeValue` holds an `i64`, return that value.
pub fn unwrap_i64(self) -> i64 {
match self {
Self::I64(x) => x,
_ => panic!("unwrapping value of type {} as i64", self.value_type()),
}
}
/// Assuming this `RuntimeValue` holds an `f32`, return that value.
pub fn unwrap_f32(self) -> f32 {
f32::from_bits(self.unwrap_f32_bits())
}
/// Assuming this `RuntimeValue` holds an `f32`, return the bits of that value as a `u32`.
pub fn unwrap_f32_bits(self) -> u32 {
match self {
Self::F32(x) => x,
_ => panic!("unwrapping value of type {} as f32", self.value_type()),
}
}
/// Assuming this `RuntimeValue` holds an `f64`, return that value.
pub fn unwrap_f64(self) -> f64 {
f64::from_bits(self.unwrap_f64_bits())
}
/// Assuming this `RuntimeValue` holds an `f64`, return the bits of that value as a `u64`.
pub fn unwrap_f64_bits(self) -> u64 {
match self {
Self::F64(x) => x,
_ => panic!("unwrapping value of type {} as f64", self.value_type()),
}
}
}
impl fmt::Display for RuntimeValue {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::I32(x) => write!(f, "{}: i32", x),
Self::I64(x) => write!(f, "{}: i64", x),
Self::F32(x) => write!(f, "{}: f32", x),
Self::F64(x) => write!(f, "{}: f64", x),
Self::V128(x) => write!(f, "{:?}: v128", x.to_vec()),
}
}
}
/// The result of invoking a wasm function or reading a wasm global.
#[derive(Debug)]
pub enum ActionOutcome {
/// The action returned normally. Its return values are provided.
Returned {
/// The return values.
values: Vec<RuntimeValue>,
},
/// A trap occurred while the action was executing.
Trapped {
/// The trap message.
message: String,
},
}
/// An error detected while invoking a wasm function or reading a wasm global.
/// Note that at this level, traps are not reported errors, but are rather
/// returned through `ActionOutcome`.
#[derive(Error, Debug)]
pub enum ActionError {
/// An internal implementation error occurred.
#[error("{0}")]
Setup(#[from] SetupError),
/// No field with the specified name was present.
#[error("Unknown field: {0}")]
Field(String),
/// The field was present but was the wrong kind (eg. function, table, global, or memory).
#[error("Kind error: {0}")]
Kind(String),
/// The field was present but was the wrong type (eg. i32, i64, f32, or f64).
#[error("Type error: {0}")]
Type(String),
}
/// Invoke a function through an `InstanceHandle` identified by an export name.
pub fn invoke(
compiler: &mut Compiler,
instance: &mut InstanceHandle,
function_name: &str,
args: &[RuntimeValue],
) -> Result<ActionOutcome, ActionError> {
let (address, signature, callee_vmctx) = match instance.lookup(function_name) {
Some(Export::Function {
address,
signature,
vmctx,
}) => (address, signature, vmctx),
Some(_) => {
return Err(ActionError::Kind(format!(
"exported item \"{}\" is not a function",
function_name
)));
}
None => {
return Err(ActionError::Field(format!(
"no export named \"{}\"",
function_name
)));
}
};
for (index, value) in args.iter().enumerate() {
// Add one to account for the leading vmctx argument.
assert_eq!(value.value_type(), signature.params[index + 1].value_type);
}
// TODO: Support values larger than v128. And pack the values into memory
// instead of just using fixed-sized slots.
// Subtract one becase we don't pass the vmctx argument in `values_vec`.
let value_size = mem::size_of::<VMInvokeArgument>();
let mut values_vec: Vec<VMInvokeArgument> =
vec![VMInvokeArgument::new(); max(signature.params.len() - 1, signature.returns.len())];
// Store the argument values into `values_vec`.
for (index, arg) in args.iter().enumerate() {
unsafe {
let ptr = values_vec.as_mut_ptr().add(index);
match arg {
RuntimeValue::I32(x) => ptr::write(ptr as *mut i32, *x),
RuntimeValue::I64(x) => ptr::write(ptr as *mut i64, *x),
RuntimeValue::F32(x) => ptr::write(ptr as *mut u32, *x),
RuntimeValue::F64(x) => ptr::write(ptr as *mut u64, *x),
RuntimeValue::V128(x) => ptr::write(ptr as *mut [u8; 16], *x),
}
}
}
// Get the trampoline to call for this function.
let exec_code_buf = compiler
.get_trampoline(address, &signature, value_size)
.map_err(ActionError::Setup)?;
// Make all JIT code produced thus far executable.
compiler.publish_compiled_code();
// Call the trampoline.
if let Err(message) = unsafe {
wasmtime_call_trampoline(
callee_vmctx,
exec_code_buf,
values_vec.as_mut_ptr() as *mut u8,
)
} {
return Ok(ActionOutcome::Trapped { message });
}
// Load the return values out of `values_vec`.
let values = signature
.returns
.iter()
.enumerate()
.map(|(index, abi_param)| unsafe {
let ptr = values_vec.as_ptr().add(index);
match abi_param.value_type {
ir::types::I32 => RuntimeValue::I32(ptr::read(ptr as *const i32)),
ir::types::I64 => RuntimeValue::I64(ptr::read(ptr as *const i64)),
ir::types::F32 => RuntimeValue::F32(ptr::read(ptr as *const u32)),
ir::types::F64 => RuntimeValue::F64(ptr::read(ptr as *const u64)),
ir::types::I8X16 => RuntimeValue::V128(ptr::read(ptr as *const [u8; 16])),
other => panic!("unsupported value type {:?}", other),
}
})
.collect();
Ok(ActionOutcome::Returned { values })
}
/// Returns a slice of the contents of allocated linear memory.
pub fn inspect_memory<'instance>(
instance: &'instance InstanceHandle,
memory_name: &str,
start: usize,
len: usize,
) -> Result<&'instance [u8], ActionError> {
let definition = match unsafe { instance.lookup_immutable(memory_name) } {
Some(Export::Memory {
definition,
memory: _memory,
vmctx: _vmctx,
}) => definition,
Some(_) => {
return Err(ActionError::Kind(format!(
"exported item \"{}\" is not a linear memory",
memory_name
)));
}
None => {
return Err(ActionError::Field(format!(
"no export named \"{}\"",
memory_name
)));
}
};
Ok(unsafe {
let memory_def = &*definition;
&slice::from_raw_parts(memory_def.base, memory_def.current_length)[start..start + len]
})
}
/// Read a global in the given instance identified by an export name.
pub fn get(instance: &InstanceHandle, global_name: &str) -> Result<RuntimeValue, ActionError> {
let (definition, global) = match unsafe { instance.lookup_immutable(global_name) } {
Some(Export::Global {
definition,
vmctx: _,
global,
}) => (definition, global),
Some(_) => {
return Err(ActionError::Kind(format!(
"exported item \"{}\" is not a global variable",
global_name
)));
}
None => {
return Err(ActionError::Field(format!(
"no export named \"{}\"",
global_name
)));
}
};
unsafe {
let global_def = &*definition;
Ok(match global.ty {
ir::types::I32 => RuntimeValue::I32(*global_def.as_i32()),
ir::types::I64 => RuntimeValue::I64(*global_def.as_i64()),
ir::types::F32 => RuntimeValue::F32(*global_def.as_f32_bits()),
ir::types::F64 => RuntimeValue::F64(*global_def.as_f64_bits()),
other => {
return Err(ActionError::Type(format!(
"global with type {} not supported",
other
)));
}
})
}
}

View File

@@ -0,0 +1,195 @@
//! Memory management for executable code.
use crate::function_table::FunctionTable;
use alloc::boxed::Box;
use alloc::string::String;
use alloc::vec::Vec;
use core::{cmp, mem};
use region;
use wasmtime_environ::{Compilation, CompiledFunction};
use wasmtime_runtime::{Mmap, VMFunctionBody};
/// Memory manager for executable code.
pub struct CodeMemory {
current: (Mmap, FunctionTable),
mmaps: Vec<(Mmap, FunctionTable)>,
position: usize,
published: usize,
}
impl CodeMemory {
/// Create a new `CodeMemory` instance.
pub fn new() -> Self {
Self {
current: (Mmap::new(), FunctionTable::new()),
mmaps: Vec::new(),
position: 0,
published: 0,
}
}
/// Allocate a continuous memory block for a single compiled function.
/// TODO: Reorganize the code that calls this to emit code directly into the
/// mmap region rather than into a Vec that we need to copy in.
pub fn allocate_for_function(
&mut self,
func: &CompiledFunction,
) -> Result<&mut [VMFunctionBody], String> {
let size = Self::function_allocation_size(func);
let start = self.position as u32;
let (buf, table) = self.allocate(size)?;
let (_, _, _, vmfunc) = Self::copy_function(func, start, buf, table);
Ok(vmfunc)
}
/// Allocate a continuous memory block for a compilation.
///
/// Allocates memory for both the function bodies as well as function unwind data.
pub fn allocate_for_compilation(
&mut self,
compilation: &Compilation,
) -> Result<Box<[&mut [VMFunctionBody]]>, String> {
let total_len = compilation
.into_iter()
.fold(0, |acc, func| acc + Self::function_allocation_size(func));
let mut start = self.position as u32;
let (mut buf, mut table) = self.allocate(total_len)?;
let mut result = Vec::with_capacity(compilation.len());
for func in compilation.into_iter() {
let (next_start, next_buf, next_table, vmfunc) =
Self::copy_function(func, start, buf, table);
result.push(vmfunc);
start = next_start;
buf = next_buf;
table = next_table;
}
Ok(result.into_boxed_slice())
}
/// Make all allocated memory executable.
pub fn publish(&mut self) {
self.push_current(0)
.expect("failed to push current memory map");
for (m, t) in &mut self.mmaps[self.published..] {
if m.len() != 0 {
unsafe {
region::protect(m.as_mut_ptr(), m.len(), region::Protection::ReadExecute)
}
.expect("unable to make memory readonly and executable");
}
t.publish(m.as_ptr() as u64)
.expect("failed to publish function table");
}
self.published = self.mmaps.len();
}
/// Allocate `size` bytes of memory which can be made executable later by
/// calling `publish()`. Note that we allocate the memory as writeable so
/// that it can be written to and patched, though we make it readonly before
/// actually executing from it.
///
/// TODO: Add an alignment flag.
fn allocate(&mut self, size: usize) -> Result<(&mut [u8], &mut FunctionTable), String> {
if self.current.0.len() - self.position < size {
self.push_current(cmp::max(0x10000, size))?;
}
let old_position = self.position;
self.position += size;
Ok((
&mut self.current.0.as_mut_slice()[old_position..self.position],
&mut self.current.1,
))
}
/// Calculates the allocation size of the given compiled function.
fn function_allocation_size(func: &CompiledFunction) -> usize {
if func.unwind_info.is_empty() {
func.body.len()
} else {
// Account for necessary unwind information alignment padding (32-bit)
((func.body.len() + 3) & !3) + func.unwind_info.len()
}
}
/// Copies the data of the compiled function to the given buffer.
///
/// This will also add the function to the current function table.
fn copy_function<'a>(
func: &CompiledFunction,
func_start: u32,
buf: &'a mut [u8],
table: &'a mut FunctionTable,
) -> (
u32,
&'a mut [u8],
&'a mut FunctionTable,
&'a mut [VMFunctionBody],
) {
let func_end = func_start + (func.body.len() as u32);
let (body, remainder) = buf.split_at_mut(func.body.len());
body.copy_from_slice(&func.body);
let vmfunc = Self::view_as_mut_vmfunc_slice(body);
if func.unwind_info.is_empty() {
return (func_end, remainder, table, vmfunc);
}
// Keep unwind information 32-bit aligned (round up to the nearest 4 byte boundary)
let padding = ((func.body.len() + 3) & !3) - func.body.len();
let (unwind, remainder) = remainder.split_at_mut(padding + func.unwind_info.len());
unwind[padding..].copy_from_slice(&func.unwind_info);
let unwind_start = func_end + (padding as u32);
let unwind_end = unwind_start + (func.unwind_info.len() as u32);
table.add_function(func_start, func_end, unwind_start);
(unwind_end, remainder, table, vmfunc)
}
/// Convert mut a slice from u8 to VMFunctionBody.
fn view_as_mut_vmfunc_slice(slice: &mut [u8]) -> &mut [VMFunctionBody] {
let byte_ptr: *mut [u8] = slice;
let body_ptr = byte_ptr as *mut [VMFunctionBody];
unsafe { &mut *body_ptr }
}
/// Pushes the current Mmap (and function table) and allocates a new Mmap of the given size.
fn push_current(&mut self, new_size: usize) -> Result<(), String> {
let previous = mem::replace(
&mut self.current,
(
if new_size == 0 {
Mmap::new()
} else {
Mmap::with_at_least(cmp::max(0x10000, new_size))?
},
FunctionTable::new(),
),
);
if previous.0.len() > 0 {
self.mmaps.push(previous);
} else {
assert!(previous.1.len() == 0);
}
self.position = 0;
Ok(())
}
}

424
crates/jit/src/compiler.rs Normal file
View File

@@ -0,0 +1,424 @@
//! JIT compilation.
use super::HashMap;
use crate::code_memory::CodeMemory;
use crate::instantiate::SetupError;
use crate::target_tunables::target_tunables;
use alloc::boxed::Box;
use alloc::string::String;
use alloc::vec::Vec;
use core::convert::TryFrom;
use cranelift_codegen::ir::InstBuilder;
use cranelift_codegen::isa::{TargetFrontendConfig, TargetIsa};
use cranelift_codegen::Context;
use cranelift_codegen::{binemit, ir};
use cranelift_entity::{EntityRef, PrimaryMap};
use cranelift_frontend::{FunctionBuilder, FunctionBuilderContext};
use cranelift_wasm::{DefinedFuncIndex, DefinedMemoryIndex, ModuleTranslationState};
use wasmtime_debug::{emit_debugsections_image, DebugInfoData};
use wasmtime_environ::{
Compilation, CompileError, CompiledFunction, Compiler as _C, FunctionBodyData, Module,
ModuleVmctxInfo, Relocations, Traps, Tunables, VMOffsets,
};
use wasmtime_runtime::{
get_mut_trap_registry, InstantiationError, SignatureRegistry, TrapRegistrationGuard,
VMFunctionBody,
};
/// Select which kind of compilation to use.
#[derive(Copy, Clone, Debug)]
pub enum CompilationStrategy {
/// Let Wasmtime pick the strategy.
Auto,
/// Compile all functions with Cranelift.
Cranelift,
/// Compile all functions with Lightbeam.
#[cfg(feature = "lightbeam")]
Lightbeam,
}
/// A WebAssembly code JIT compiler.
///
/// A `Compiler` instance owns the executable memory that it allocates.
///
/// TODO: Evolve this to support streaming rather than requiring a `&[u8]`
/// containing a whole wasm module at once.
///
/// TODO: Consider using cranelift-module.
pub struct Compiler {
isa: Box<dyn TargetIsa>,
code_memory: CodeMemory,
trap_registration_guards: Vec<TrapRegistrationGuard>,
trampoline_park: HashMap<*const VMFunctionBody, *const VMFunctionBody>,
signatures: SignatureRegistry,
strategy: CompilationStrategy,
/// The `FunctionBuilderContext`, shared between trampline function compilations.
fn_builder_ctx: FunctionBuilderContext,
}
impl Compiler {
/// Construct a new `Compiler`.
pub fn new(isa: Box<dyn TargetIsa>, strategy: CompilationStrategy) -> Self {
Self {
isa,
code_memory: CodeMemory::new(),
trap_registration_guards: Vec::new(),
trampoline_park: HashMap::new(),
signatures: SignatureRegistry::new(),
fn_builder_ctx: FunctionBuilderContext::new(),
strategy,
}
}
}
impl Drop for Compiler {
fn drop(&mut self) {
// We must deregister traps before freeing the code memory.
// Otherwise, we have a race:
// - Compiler #1 dropped code memory, but hasn't deregistered the trap yet
// - Compiler #2 allocated code memory and tries to register a trap,
// but the trap at certain address happens to be already registered,
// since Compiler #1 hasn't deregistered it yet => assertion in trap registry fails.
// Having a custom drop implementation we are independent from the field order
// in the struct what reduces potential human error.
self.trap_registration_guards.clear();
}
}
impl Compiler {
/// Return the target's frontend configuration settings.
pub fn frontend_config(&self) -> TargetFrontendConfig {
self.isa.frontend_config()
}
/// Return the tunables in use by this engine.
pub fn tunables(&self) -> Tunables {
target_tunables(self.isa.triple())
}
/// Compile the given function bodies.
pub(crate) fn compile<'data>(
&mut self,
module: &Module,
module_translation: &ModuleTranslationState,
function_body_inputs: PrimaryMap<DefinedFuncIndex, FunctionBodyData<'data>>,
debug_data: Option<DebugInfoData>,
) -> Result<
(
PrimaryMap<DefinedFuncIndex, *mut [VMFunctionBody]>,
PrimaryMap<DefinedFuncIndex, ir::JumpTableOffsets>,
Relocations,
Option<Vec<u8>>,
),
SetupError,
> {
let (compilation, relocations, address_transform, value_ranges, stack_slots, traps) =
match self.strategy {
// For now, interpret `Auto` as `Cranelift` since that's the most stable
// implementation.
CompilationStrategy::Auto | CompilationStrategy::Cranelift => {
wasmtime_environ::cranelift::Cranelift::compile_module(
module,
module_translation,
function_body_inputs,
&*self.isa,
debug_data.is_some(),
)
}
#[cfg(feature = "lightbeam")]
CompilationStrategy::Lightbeam => {
wasmtime_environ::lightbeam::Lightbeam::compile_module(
module,
module_translation,
function_body_inputs,
&*self.isa,
debug_data.is_some(),
)
}
}
.map_err(SetupError::Compile)?;
let allocated_functions =
allocate_functions(&mut self.code_memory, &compilation).map_err(|message| {
SetupError::Instantiate(InstantiationError::Resource(format!(
"failed to allocate memory for functions: {}",
message
)))
})?;
register_traps(
&allocated_functions,
&traps,
&mut self.trap_registration_guards,
);
let dbg = if let Some(debug_data) = debug_data {
let target_config = self.isa.frontend_config();
let triple = self.isa.triple().clone();
let mut funcs = Vec::new();
for (i, allocated) in allocated_functions.into_iter() {
let ptr = (*allocated) as *const u8;
let body_len = compilation.get(i).body.len();
funcs.push((ptr, body_len));
}
let module_vmctx_info = {
let ofs = VMOffsets::new(target_config.pointer_bytes(), &module);
let memory_offset =
ofs.vmctx_vmmemory_definition_base(DefinedMemoryIndex::new(0)) as i64;
ModuleVmctxInfo {
memory_offset,
stack_slots,
}
};
let bytes = emit_debugsections_image(
triple,
&target_config,
&debug_data,
&module_vmctx_info,
&address_transform,
&value_ranges,
&funcs,
)
.map_err(|e| SetupError::DebugInfo(e))?;
Some(bytes)
} else {
None
};
let jt_offsets = compilation.get_jt_offsets();
Ok((allocated_functions, jt_offsets, relocations, dbg))
}
/// Create a trampoline for invoking a function.
pub(crate) fn get_trampoline(
&mut self,
callee_address: *const VMFunctionBody,
signature: &ir::Signature,
value_size: usize,
) -> Result<*const VMFunctionBody, SetupError> {
use super::hash_map::Entry::{Occupied, Vacant};
Ok(match self.trampoline_park.entry(callee_address) {
Occupied(entry) => *entry.get(),
Vacant(entry) => {
let body = make_trampoline(
&*self.isa,
&mut self.code_memory,
&mut self.fn_builder_ctx,
callee_address,
signature,
value_size,
)?;
entry.insert(body);
body
}
})
}
/// Create and publish a trampoline for invoking a function.
pub fn get_published_trampoline(
&mut self,
callee_address: *const VMFunctionBody,
signature: &ir::Signature,
value_size: usize,
) -> Result<*const VMFunctionBody, SetupError> {
let result = self.get_trampoline(callee_address, signature, value_size)?;
self.publish_compiled_code();
Ok(result)
}
/// Make memory containing compiled code executable.
pub(crate) fn publish_compiled_code(&mut self) {
self.code_memory.publish();
}
/// Shared signature registry.
pub fn signatures(&mut self) -> &mut SignatureRegistry {
&mut self.signatures
}
}
/// Create a trampoline for invoking a function.
fn make_trampoline(
isa: &dyn TargetIsa,
code_memory: &mut CodeMemory,
fn_builder_ctx: &mut FunctionBuilderContext,
callee_address: *const VMFunctionBody,
signature: &ir::Signature,
value_size: usize,
) -> Result<*const VMFunctionBody, SetupError> {
let pointer_type = isa.pointer_type();
let mut wrapper_sig = ir::Signature::new(isa.frontend_config().default_call_conv);
// Add the `vmctx` parameter.
wrapper_sig.params.push(ir::AbiParam::special(
pointer_type,
ir::ArgumentPurpose::VMContext,
));
// Add the `values_vec` parameter.
wrapper_sig.params.push(ir::AbiParam::new(pointer_type));
let mut context = Context::new();
context.func = ir::Function::with_name_signature(ir::ExternalName::user(0, 0), wrapper_sig);
{
let mut builder = FunctionBuilder::new(&mut context.func, fn_builder_ctx);
let block0 = builder.create_ebb();
builder.append_ebb_params_for_function_params(block0);
builder.switch_to_block(block0);
builder.seal_block(block0);
let (vmctx_ptr_val, values_vec_ptr_val) = {
let params = builder.func.dfg.ebb_params(block0);
(params[0], params[1])
};
// Load the argument values out of `values_vec`.
let mflags = ir::MemFlags::trusted();
let callee_args = signature
.params
.iter()
.enumerate()
.map(|(i, r)| {
match r.purpose {
// i - 1 because vmctx isn't passed through `values_vec`.
ir::ArgumentPurpose::Normal => builder.ins().load(
r.value_type,
mflags,
values_vec_ptr_val,
((i - 1) * value_size) as i32,
),
ir::ArgumentPurpose::VMContext => vmctx_ptr_val,
other => panic!("unsupported argument purpose {}", other),
}
})
.collect::<Vec<_>>();
let new_sig = builder.import_signature(signature.clone());
// TODO: It's possible to make this a direct call. We just need Cranelift
// to support functions declared with an immediate integer address.
// ExternalName::Absolute(u64). Let's do it.
let callee_value = builder.ins().iconst(pointer_type, callee_address as i64);
let call = builder
.ins()
.call_indirect(new_sig, callee_value, &callee_args);
let results = builder.func.dfg.inst_results(call).to_vec();
// Store the return values into `values_vec`.
let mflags = ir::MemFlags::trusted();
for (i, r) in results.iter().enumerate() {
builder
.ins()
.store(mflags, *r, values_vec_ptr_val, (i * value_size) as i32);
}
builder.ins().return_(&[]);
builder.finalize()
}
let mut code_buf = Vec::new();
let mut unwind_info = Vec::new();
let mut reloc_sink = RelocSink {};
let mut trap_sink = binemit::NullTrapSink {};
let mut stackmap_sink = binemit::NullStackmapSink {};
context
.compile_and_emit(
isa,
&mut code_buf,
&mut reloc_sink,
&mut trap_sink,
&mut stackmap_sink,
)
.map_err(|error| SetupError::Compile(CompileError::Codegen(error)))?;
context.emit_unwind_info(isa, &mut unwind_info);
Ok(code_memory
.allocate_for_function(&CompiledFunction {
body: code_buf,
jt_offsets: context.func.jt_offsets,
unwind_info,
})
.map_err(|message| SetupError::Instantiate(InstantiationError::Resource(message)))?
.as_ptr())
}
fn allocate_functions(
code_memory: &mut CodeMemory,
compilation: &Compilation,
) -> Result<PrimaryMap<DefinedFuncIndex, *mut [VMFunctionBody]>, String> {
let fat_ptrs = code_memory.allocate_for_compilation(compilation)?;
// Second, create a PrimaryMap from result vector of pointers.
let mut result = PrimaryMap::with_capacity(compilation.len());
for i in 0..fat_ptrs.len() {
let fat_ptr: *mut [VMFunctionBody] = fat_ptrs[i];
result.push(fat_ptr);
}
Ok(result)
}
fn register_traps(
allocated_functions: &PrimaryMap<DefinedFuncIndex, *mut [VMFunctionBody]>,
traps: &Traps,
trap_registration_guards: &mut Vec<TrapRegistrationGuard>,
) {
let mut trap_registry = get_mut_trap_registry();
for (func_addr, func_traps) in allocated_functions.values().zip(traps.values()) {
for trap_desc in func_traps.iter() {
let func_addr = *func_addr as *const u8 as usize;
let offset = usize::try_from(trap_desc.code_offset).unwrap();
let trap_addr = func_addr + offset;
let guard =
trap_registry.register_trap(trap_addr, trap_desc.source_loc, trap_desc.trap_code);
trap_registration_guards.push(guard);
}
}
}
/// We don't expect trampoline compilation to produce any relocations, so
/// this `RelocSink` just asserts that it doesn't recieve any.
struct RelocSink {}
impl binemit::RelocSink for RelocSink {
fn reloc_ebb(
&mut self,
_offset: binemit::CodeOffset,
_reloc: binemit::Reloc,
_ebb_offset: binemit::CodeOffset,
) {
panic!("trampoline compilation should not produce ebb relocs");
}
fn reloc_external(
&mut self,
_offset: binemit::CodeOffset,
_reloc: binemit::Reloc,
_name: &ir::ExternalName,
_addend: binemit::Addend,
) {
panic!("trampoline compilation should not produce external symbol relocs");
}
fn reloc_constant(
&mut self,
_code_offset: binemit::CodeOffset,
_reloc: binemit::Reloc,
_constant_offset: ir::ConstantOffset,
) {
panic!("trampoline compilation should not produce constant relocs");
}
fn reloc_jt(
&mut self,
_offset: binemit::CodeOffset,
_reloc: binemit::Reloc,
_jt: ir::JumpTable,
) {
panic!("trampoline compilation should not produce jump table relocs");
}
}

251
crates/jit/src/context.rs Normal file
View File

@@ -0,0 +1,251 @@
use crate::action::{get, inspect_memory, invoke};
use crate::HashMap;
use crate::{
instantiate, ActionError, ActionOutcome, CompilationStrategy, CompiledModule, Compiler,
InstanceHandle, Namespace, RuntimeValue, SetupError,
};
use alloc::boxed::Box;
use alloc::rc::Rc;
use alloc::string::{String, ToString};
use core::cell::RefCell;
use cranelift_codegen::isa::TargetIsa;
use thiserror::Error;
use wasmparser::{validate, OperatorValidatorConfig, ValidatingParserConfig};
/// Indicates an unknown instance was specified.
#[derive(Error, Debug)]
#[error("no instance {instance_name} present")]
pub struct UnknownInstance {
instance_name: String,
}
/// Error message used by `WastContext`.
#[derive(Error, Debug)]
pub enum ContextError {
/// An unknown instance name was used.
#[error("{0}")]
Instance(#[from] UnknownInstance),
/// An error occured while performing an action.
#[error("{0}")]
Action(#[from] ActionError),
}
/// The collection of features configurable during compilation
#[derive(Clone, Default)]
pub struct Features {
/// marks whether the proposed thread feature is enabled or disabled
pub threads: bool,
/// marks whether the proposed reference type feature is enabled or disabled
pub reference_types: bool,
/// marks whether the proposed SIMD feature is enabled or disabled
pub simd: bool,
/// marks whether the proposed bulk memory feature is enabled or disabled
pub bulk_memory: bool,
/// marks whether the proposed multi-value feature is enabled or disabled
pub multi_value: bool,
}
impl Into<ValidatingParserConfig> for Features {
fn into(self) -> ValidatingParserConfig {
ValidatingParserConfig {
operator_config: OperatorValidatorConfig {
enable_threads: self.threads,
enable_reference_types: self.reference_types,
enable_bulk_memory: self.bulk_memory,
enable_simd: self.simd,
enable_multi_value: self.multi_value,
},
}
}
}
/// A convenient context for compiling and executing WebAssembly instances.
pub struct Context {
namespace: Namespace,
compiler: Box<Compiler>,
global_exports: Rc<RefCell<HashMap<String, Option<wasmtime_runtime::Export>>>>,
debug_info: bool,
features: Features,
}
impl Context {
/// Construct a new instance of `Context`.
pub fn new(compiler: Box<Compiler>) -> Self {
Self {
namespace: Namespace::new(),
compiler,
global_exports: Rc::new(RefCell::new(HashMap::new())),
debug_info: false,
features: Default::default(),
}
}
/// Get debug_info settings.
pub fn debug_info(&self) -> bool {
self.debug_info
}
/// Set debug_info settings.
pub fn set_debug_info(&mut self, value: bool) {
self.debug_info = value;
}
/// Construct a new instance of `Context` with the given target.
pub fn with_isa(isa: Box<dyn TargetIsa>, strategy: CompilationStrategy) -> Self {
Self::new(Box::new(Compiler::new(isa, strategy)))
}
/// Retrieve the context features
pub fn features(&self) -> &Features {
&self.features
}
/// Construct a new instance with the given features from the current `Context`
pub fn with_features(self, features: Features) -> Self {
Self { features, ..self }
}
fn validate(&mut self, data: &[u8]) -> Result<(), String> {
// TODO: Fix Cranelift to be able to perform validation itself, rather
// than calling into wasmparser ourselves here.
validate(data, Some(self.features.clone().into()))
.map_err(|e| format!("module did not validate: {}", e.to_string()))
}
fn instantiate(&mut self, data: &[u8]) -> Result<InstanceHandle, SetupError> {
self.validate(&data).map_err(SetupError::Validate)?;
let debug_info = self.debug_info();
instantiate(
&mut *self.compiler,
&data,
&mut self.namespace,
Rc::clone(&self.global_exports),
debug_info,
)
}
/// Return the instance associated with the given name.
pub fn get_instance(
&mut self,
instance_name: &str,
) -> Result<&mut InstanceHandle, UnknownInstance> {
self.namespace
.get_instance(instance_name)
.ok_or_else(|| UnknownInstance {
instance_name: instance_name.to_string(),
})
}
/// Instantiate a module instance and register the instance.
pub fn instantiate_module(
&mut self,
instance_name: Option<String>,
data: &[u8],
) -> Result<InstanceHandle, ActionError> {
let instance = self.instantiate(data).map_err(ActionError::Setup)?;
self.optionally_name_instance(instance_name, instance.clone());
Ok(instance)
}
/// Compile a module.
pub fn compile_module(&mut self, data: &[u8]) -> Result<CompiledModule, SetupError> {
self.validate(&data).map_err(SetupError::Validate)?;
let debug_info = self.debug_info();
CompiledModule::new(
&mut *self.compiler,
data,
&mut self.namespace,
Rc::clone(&self.global_exports),
debug_info,
)
}
/// If `name` isn't None, register it for the given instance.
pub fn optionally_name_instance(&mut self, name: Option<String>, instance: InstanceHandle) {
if let Some(name) = name {
self.namespace.name_instance(name, instance);
}
}
/// Register a name for the given instance.
pub fn name_instance(&mut self, name: String, instance: InstanceHandle) {
self.namespace.name_instance(name, instance);
}
/// Register an additional name for an existing registered instance.
pub fn alias(&mut self, name: &str, as_name: String) -> Result<(), UnknownInstance> {
let instance = self.get_instance(&name)?.clone();
self.name_instance(as_name, instance);
Ok(())
}
/// Invoke an exported function from a named instance.
pub fn invoke_named(
&mut self,
instance_name: &str,
field: &str,
args: &[RuntimeValue],
) -> Result<ActionOutcome, ContextError> {
let mut instance = self
.get_instance(&instance_name)
.map_err(ContextError::Instance)?
.clone();
self.invoke(&mut instance, field, args)
.map_err(ContextError::Action)
}
/// Invoke an exported function from an instance.
pub fn invoke(
&mut self,
instance: &mut InstanceHandle,
field: &str,
args: &[RuntimeValue],
) -> Result<ActionOutcome, ActionError> {
invoke(&mut *self.compiler, instance, field, &args)
}
/// Get the value of an exported global variable from an instance.
pub fn get_named(
&mut self,
instance_name: &str,
field: &str,
) -> Result<ActionOutcome, ContextError> {
let instance = self
.get_instance(&instance_name)
.map_err(ContextError::Instance)?
.clone();
self.get(&instance, field).map_err(ContextError::Action)
}
/// Get the value of an exported global variable from an instance.
pub fn get(
&mut self,
instance: &InstanceHandle,
field: &str,
) -> Result<ActionOutcome, ActionError> {
get(instance, field).map(|value| ActionOutcome::Returned {
values: vec![value],
})
}
/// Get a slice of memory from an instance.
pub fn inspect_memory<'instance>(
&self,
instance: &'instance InstanceHandle,
field_name: &str,
start: usize,
len: usize,
) -> Result<&'instance [u8], ActionError> {
inspect_memory(instance, field_name, start, len)
}
/// Return a handle to the global_exports mapping, needed by some modules
/// for instantiation.
pub fn get_global_exports(
&mut self,
) -> Rc<RefCell<HashMap<String, Option<wasmtime_runtime::Export>>>> {
Rc::clone(&mut self.global_exports)
}
}

View File

@@ -0,0 +1,134 @@
//! Runtime function table.
//!
//! This module is primarily used to track JIT functions on Windows for stack walking and unwind.
/// Represents a runtime function table.
///
/// The runtime function table is not implemented for non-Windows target platforms.
#[cfg(not(target_os = "windows"))]
pub(crate) struct FunctionTable;
#[cfg(not(target_os = "windows"))]
impl FunctionTable {
/// Creates a new function table.
pub fn new() -> Self {
Self
}
/// Returns the number of functions in the table, also referred to as its 'length'.
///
/// For non-Windows platforms, the table will always be empty.
pub fn len(&self) -> usize {
0
}
/// Adds a function to the table based off of the start offset, end offset, and unwind offset.
///
/// The offsets are from the "module base", which is provided when the table is published.
///
/// For non-Windows platforms, this is a no-op.
pub fn add_function(&mut self, _start: u32, _end: u32, _unwind: u32) {}
/// Publishes the function table using the given base address.
///
/// A published function table will automatically be deleted when it is dropped.
///
/// For non-Windows platforms, this is a no-op.
pub fn publish(&mut self, _base_address: u64) -> Result<(), String> {
Ok(())
}
}
/// Represents a runtime function table.
///
/// This is used to register JIT code with the operating system to enable stack walking and unwinding.
#[cfg(all(target_os = "windows", target_arch = "x86_64"))]
pub(crate) struct FunctionTable {
functions: Vec<winapi::um::winnt::RUNTIME_FUNCTION>,
published: bool,
}
#[cfg(all(target_os = "windows", target_arch = "x86_64"))]
impl FunctionTable {
/// Creates a new function table.
pub fn new() -> Self {
Self {
functions: Vec::new(),
published: false,
}
}
/// Returns the number of functions in the table, also referred to as its 'length'.
pub fn len(&self) -> usize {
self.functions.len()
}
/// Adds a function to the table based off of the start offset, end offset, and unwind offset.
///
/// The offsets are from the "module base", which is provided when the table is published.
pub fn add_function(&mut self, start: u32, end: u32, unwind: u32) {
use winapi::um::winnt;
assert!(!self.published, "table has already been published");
let mut entry = winnt::RUNTIME_FUNCTION::default();
entry.BeginAddress = start;
entry.EndAddress = end;
unsafe {
*entry.u.UnwindInfoAddress_mut() = unwind;
}
self.functions.push(entry);
}
/// Publishes the function table using the given base address.
///
/// A published function table will automatically be deleted when it is dropped.
pub fn publish(&mut self, base_address: u64) -> Result<(), String> {
use winapi::um::winnt;
if self.published {
return Err("function table was already published".into());
}
self.published = true;
if self.functions.is_empty() {
return Ok(());
}
unsafe {
// Windows heap allocations are 32-bit aligned, but assert just in case
assert!(
(self.functions.as_mut_ptr() as u64) % 4 == 0,
"function table allocation was not aligned"
);
if winnt::RtlAddFunctionTable(
self.functions.as_mut_ptr(),
self.functions.len() as u32,
base_address,
) == 0
{
return Err("failed to add function table".into());
}
}
Ok(())
}
}
#[cfg(target_os = "windows")]
impl Drop for FunctionTable {
fn drop(&mut self) {
use winapi::um::winnt;
if self.published {
unsafe {
winnt::RtlDeleteFunctionTable(self.functions.as_mut_ptr());
}
}
}
}

View File

@@ -0,0 +1,282 @@
//! Define the `instantiate` function, which takes a byte array containing an
//! encoded wasm module and returns a live wasm instance. Also, define
//! `CompiledModule` to allow compiling and instantiating to be done as separate
//! steps.
use super::HashMap;
use crate::compiler::Compiler;
use crate::link::link_module;
use crate::resolver::Resolver;
use alloc::boxed::Box;
use alloc::rc::Rc;
use alloc::string::String;
use alloc::vec::Vec;
use core::cell::RefCell;
use cranelift_entity::{BoxedSlice, PrimaryMap};
use cranelift_wasm::{DefinedFuncIndex, SignatureIndex};
#[cfg(feature = "std")]
use std::io::Write;
use thiserror::Error;
use wasmtime_debug::read_debuginfo;
use wasmtime_environ::{
CompileError, DataInitializer, DataInitializerLocation, Module, ModuleEnvironment,
};
use wasmtime_runtime::{
Export, GdbJitImageRegistration, Imports, InstanceHandle, InstantiationError, VMFunctionBody,
VMSharedSignatureIndex,
};
/// An error condition while setting up a wasm instance, be it validation,
/// compilation, or instantiation.
#[derive(Error, Debug)]
pub enum SetupError {
/// The module did not pass validation.
#[error("Validation error: {0}")]
Validate(String),
/// A wasm translation error occured.
#[error("WebAssembly compilation error: {0}")]
Compile(#[from] CompileError),
/// Some runtime resource was unavailable or insufficient, or the start function
/// trapped.
#[error("Instantiation error: {0}")]
Instantiate(#[from] InstantiationError),
/// Debug information generation error occured.
#[error("Debug information error: {0}")]
DebugInfo(failure::Error),
}
/// This is similar to `CompiledModule`, but references the data initializers
/// from the wasm buffer rather than holding its own copy.
struct RawCompiledModule<'data> {
module: Module,
finished_functions: BoxedSlice<DefinedFuncIndex, *const VMFunctionBody>,
imports: Imports,
data_initializers: Box<[DataInitializer<'data>]>,
signatures: BoxedSlice<SignatureIndex, VMSharedSignatureIndex>,
dbg_jit_registration: Option<GdbJitImageRegistration>,
}
impl<'data> RawCompiledModule<'data> {
/// Create a new `RawCompiledModule` by compiling the wasm module in `data` and instatiating it.
fn new(
compiler: &mut Compiler,
data: &'data [u8],
resolver: &mut dyn Resolver,
debug_info: bool,
) -> Result<Self, SetupError> {
let environ = ModuleEnvironment::new(compiler.frontend_config(), compiler.tunables());
let translation = environ
.translate(data)
.map_err(|error| SetupError::Compile(CompileError::Wasm(error)))?;
let debug_data = if debug_info {
Some(read_debuginfo(&data))
} else {
None
};
let (allocated_functions, jt_offsets, relocations, dbg_image) = compiler.compile(
&translation.module,
translation.module_translation.as_ref().unwrap(),
translation.function_body_inputs,
debug_data,
)?;
let imports = link_module(
&translation.module,
&allocated_functions,
&jt_offsets,
relocations,
resolver,
)
.map_err(|err| SetupError::Instantiate(InstantiationError::Link(err)))?;
// Gather up the pointers to the compiled functions.
let finished_functions: BoxedSlice<DefinedFuncIndex, *const VMFunctionBody> =
allocated_functions
.into_iter()
.map(|(_index, allocated)| {
let fatptr: *const [VMFunctionBody] = *allocated;
fatptr as *const VMFunctionBody
})
.collect::<PrimaryMap<_, _>>()
.into_boxed_slice();
// Compute indices into the shared signature table.
let signatures = {
let signature_registry = compiler.signatures();
translation
.module
.signatures
.values()
.map(|sig| signature_registry.register(sig))
.collect::<PrimaryMap<_, _>>()
};
// Make all code compiled thus far executable.
compiler.publish_compiled_code();
#[cfg(feature = "std")]
let dbg_jit_registration = if let Some(img) = dbg_image {
let mut bytes = Vec::new();
bytes.write_all(&img).expect("all written");
let reg = GdbJitImageRegistration::register(bytes);
Some(reg)
} else {
None
};
Ok(Self {
module: translation.module,
finished_functions,
imports,
data_initializers: translation.data_initializers.into_boxed_slice(),
signatures: signatures.into_boxed_slice(),
dbg_jit_registration,
})
}
}
/// A compiled wasm module, ready to be instantiated.
pub struct CompiledModule {
module: Rc<Module>,
finished_functions: BoxedSlice<DefinedFuncIndex, *const VMFunctionBody>,
imports: Imports,
data_initializers: Box<[OwnedDataInitializer]>,
signatures: BoxedSlice<SignatureIndex, VMSharedSignatureIndex>,
global_exports: Rc<RefCell<HashMap<String, Option<Export>>>>,
dbg_jit_registration: Option<Rc<GdbJitImageRegistration>>,
}
impl CompiledModule {
/// Compile a data buffer into a `CompiledModule`, which may then be instantiated.
pub fn new<'data>(
compiler: &mut Compiler,
data: &'data [u8],
resolver: &mut dyn Resolver,
global_exports: Rc<RefCell<HashMap<String, Option<Export>>>>,
debug_info: bool,
) -> Result<Self, SetupError> {
let raw = RawCompiledModule::<'data>::new(compiler, data, resolver, debug_info)?;
Ok(Self::from_parts(
raw.module,
global_exports,
raw.finished_functions,
raw.imports,
raw.data_initializers
.iter()
.map(OwnedDataInitializer::new)
.collect::<Vec<_>>()
.into_boxed_slice(),
raw.signatures.clone(),
raw.dbg_jit_registration,
))
}
/// Construct a `CompiledModule` from component parts.
pub fn from_parts(
module: Module,
global_exports: Rc<RefCell<HashMap<String, Option<Export>>>>,
finished_functions: BoxedSlice<DefinedFuncIndex, *const VMFunctionBody>,
imports: Imports,
data_initializers: Box<[OwnedDataInitializer]>,
signatures: BoxedSlice<SignatureIndex, VMSharedSignatureIndex>,
dbg_jit_registration: Option<GdbJitImageRegistration>,
) -> Self {
Self {
module: Rc::new(module),
global_exports: Rc::clone(&global_exports),
finished_functions,
imports,
data_initializers,
signatures,
dbg_jit_registration: dbg_jit_registration.map(|r| Rc::new(r)),
}
}
/// Crate an `Instance` from this `CompiledModule`.
///
/// Note that if only one instance of this module is needed, it may be more
/// efficient to call the top-level `instantiate`, since that avoids copying
/// the data initializers.
pub fn instantiate(&mut self) -> Result<InstanceHandle, InstantiationError> {
let data_initializers = self
.data_initializers
.iter()
.map(|init| DataInitializer {
location: init.location.clone(),
data: &*init.data,
})
.collect::<Vec<_>>();
InstanceHandle::new(
Rc::clone(&self.module),
Rc::clone(&self.global_exports),
self.finished_functions.clone(),
self.imports.clone(),
&data_initializers,
self.signatures.clone(),
self.dbg_jit_registration.as_ref().map(|r| Rc::clone(&r)),
Box::new(()),
)
}
/// Return a reference-counting pointer to a module.
pub fn module(&self) -> Rc<Module> {
self.module.clone()
}
/// Return a reference to a module.
pub fn module_ref(&self) -> &Module {
&self.module
}
}
/// Similar to `DataInitializer`, but owns its own copy of the data rather
/// than holding a slice of the original module.
pub struct OwnedDataInitializer {
/// The location where the initialization is to be performed.
location: DataInitializerLocation,
/// The initialization data.
data: Box<[u8]>,
}
impl OwnedDataInitializer {
fn new(borrowed: &DataInitializer<'_>) -> Self {
Self {
location: borrowed.location.clone(),
data: borrowed.data.to_vec().into_boxed_slice(),
}
}
}
/// Create a new wasm instance by compiling the wasm module in `data` and instatiating it.
///
/// This is equivalent to createing a `CompiledModule` and calling `instantiate()` on it,
/// but avoids creating an intermediate copy of the data initializers.
pub fn instantiate(
compiler: &mut Compiler,
data: &[u8],
resolver: &mut dyn Resolver,
global_exports: Rc<RefCell<HashMap<String, Option<Export>>>>,
debug_info: bool,
) -> Result<InstanceHandle, SetupError> {
let raw = RawCompiledModule::new(compiler, data, resolver, debug_info)?;
InstanceHandle::new(
Rc::new(raw.module),
global_exports,
raw.finished_functions,
raw.imports,
&*raw.data_initializers,
raw.signatures,
raw.dbg_jit_registration.map(|r| Rc::new(r)),
Box::new(()),
)
.map_err(SetupError::Instantiate)
}

59
crates/jit/src/lib.rs Normal file
View File

@@ -0,0 +1,59 @@
//! JIT-style runtime for WebAssembly using Cranelift.
#![deny(missing_docs, trivial_numeric_casts, unused_extern_crates)]
#![warn(unused_import_braces)]
#![cfg_attr(feature = "std", deny(unstable_features))]
#![cfg_attr(feature = "clippy", plugin(clippy(conf_file = "../../clippy.toml")))]
#![cfg_attr(
feature = "cargo-clippy",
allow(clippy::new_without_default, clippy::new_without_default_derive)
)]
#![cfg_attr(
feature = "cargo-clippy",
warn(
clippy::float_arithmetic,
clippy::mut_mut,
clippy::nonminimal_bool,
clippy::option_map_unwrap_or,
clippy::option_map_unwrap_or_else,
clippy::print_stdout,
clippy::unicode_not_nfc,
clippy::use_self
)
)]
#[macro_use]
extern crate alloc;
#[cfg(not(feature = "std"))]
use hashbrown::{hash_map, HashMap, HashSet};
#[cfg(feature = "std")]
use std::collections::{hash_map, HashMap, HashSet};
mod action;
mod code_memory;
mod compiler;
mod context;
mod function_table;
mod instantiate;
mod link;
mod namespace;
mod resolver;
mod target_tunables;
pub use crate::action::{ActionError, ActionOutcome, RuntimeValue};
pub use crate::code_memory::CodeMemory;
pub use crate::compiler::{CompilationStrategy, Compiler};
pub use crate::context::{Context, ContextError, Features, UnknownInstance};
pub use crate::instantiate::{instantiate, CompiledModule, SetupError};
pub use crate::link::link_module;
pub use crate::namespace::Namespace;
pub use crate::resolver::{NullResolver, Resolver};
pub use crate::target_tunables::target_tunables;
// Re-export `InstanceHandle` so that users won't need to separately depend on
// wasmtime-runtime in common cases.
pub use wasmtime_runtime::{InstanceHandle, InstantiationError};
/// Version number of this crate.
pub const VERSION: &str = env!("CARGO_PKG_VERSION");

412
crates/jit/src/link.rs Normal file
View File

@@ -0,0 +1,412 @@
//! Linking for JIT-compiled code.
use crate::resolver::Resolver;
use crate::HashSet;
use alloc::vec::Vec;
use core::ptr::write_unaligned;
use cranelift_codegen::binemit::Reloc;
use cranelift_codegen::ir::JumpTableOffsets;
use cranelift_entity::PrimaryMap;
use cranelift_wasm::{DefinedFuncIndex, Global, GlobalInit, Memory, Table, TableElementType};
use wasmtime_environ::{
MemoryPlan, MemoryStyle, Module, Relocation, RelocationTarget, Relocations, TablePlan,
};
use wasmtime_runtime::libcalls;
use wasmtime_runtime::{
Export, Imports, InstanceHandle, LinkError, VMFunctionBody, VMFunctionImport, VMGlobalImport,
VMMemoryImport, VMTableImport,
};
/// Links a module that has been compiled with `compiled_module` in `wasmtime-environ`.
pub fn link_module(
module: &Module,
allocated_functions: &PrimaryMap<DefinedFuncIndex, *mut [VMFunctionBody]>,
jt_offsets: &PrimaryMap<DefinedFuncIndex, JumpTableOffsets>,
relocations: Relocations,
resolver: &mut dyn Resolver,
) -> Result<Imports, LinkError> {
let mut dependencies = HashSet::new();
let mut function_imports = PrimaryMap::with_capacity(module.imported_funcs.len());
for (index, (ref module_name, ref field)) in module.imported_funcs.iter() {
match resolver.resolve(module_name, field) {
Some(export_value) => match export_value {
Export::Function {
address,
signature,
vmctx,
} => {
let import_signature = &module.signatures[module.functions[index]];
if signature != *import_signature {
// TODO: If the difference is in the calling convention,
// we could emit a wrapper function to fix it up.
return Err(LinkError(
format!("{}/{}: incompatible import type: exported function with signature {} incompatible with function import with signature {}",
module_name, field,
signature, import_signature)
));
}
dependencies.insert(unsafe { InstanceHandle::from_vmctx(vmctx) });
function_imports.push(VMFunctionImport {
body: address,
vmctx,
});
}
Export::Table { .. } | Export::Memory { .. } | Export::Global { .. } => {
return Err(LinkError(format!(
"{}/{}: incompatible import type: export incompatible with function import",
module_name, field
)));
}
},
None => {
return Err(LinkError(format!(
"{}/{}: unknown import function: function not provided",
module_name, field
)));
}
}
}
let mut table_imports = PrimaryMap::with_capacity(module.imported_tables.len());
for (index, (ref module_name, ref field)) in module.imported_tables.iter() {
match resolver.resolve(module_name, field) {
Some(export_value) => match export_value {
Export::Table {
definition,
vmctx,
table,
} => {
let import_table = &module.table_plans[index];
if !is_table_compatible(&table, import_table) {
return Err(LinkError(format!(
"{}/{}: incompatible import type: exported table incompatible with table import",
module_name, field,
)));
}
dependencies.insert(unsafe { InstanceHandle::from_vmctx(vmctx) });
table_imports.push(VMTableImport {
from: definition,
vmctx,
});
}
Export::Global { .. } | Export::Memory { .. } | Export::Function { .. } => {
return Err(LinkError(format!(
"{}/{}: incompatible import type: export incompatible with table import",
module_name, field
)));
}
},
None => {
return Err(LinkError(format!(
"unknown import: no provided import table for {}/{}",
module_name, field
)));
}
}
}
let mut memory_imports = PrimaryMap::with_capacity(module.imported_memories.len());
for (index, (ref module_name, ref field)) in module.imported_memories.iter() {
match resolver.resolve(module_name, field) {
Some(export_value) => match export_value {
Export::Memory {
definition,
vmctx,
memory,
} => {
let import_memory = &module.memory_plans[index];
if !is_memory_compatible(&memory, import_memory) {
return Err(LinkError(format!(
"{}/{}: incompatible import type: exported memory incompatible with memory import",
module_name, field
)));
}
// Sanity-check: Ensure that the imported memory has at least
// guard-page protections the importing module expects it to have.
match (memory.style, &import_memory.style) {
(
MemoryStyle::Static { bound },
MemoryStyle::Static {
bound: import_bound,
},
) => {
assert!(bound >= *import_bound);
}
_ => (),
}
assert!(memory.offset_guard_size >= import_memory.offset_guard_size);
dependencies.insert(unsafe { InstanceHandle::from_vmctx(vmctx) });
memory_imports.push(VMMemoryImport {
from: definition,
vmctx,
});
}
Export::Table { .. } | Export::Global { .. } | Export::Function { .. } => {
return Err(LinkError(format!(
"{}/{}: incompatible import type: export incompatible with memory import",
module_name, field
)));
}
},
None => {
return Err(LinkError(format!(
"unknown import: no provided import memory for {}/{}",
module_name, field
)));
}
}
}
let mut global_imports = PrimaryMap::with_capacity(module.imported_globals.len());
for (index, (ref module_name, ref field)) in module.imported_globals.iter() {
match resolver.resolve(module_name, field) {
Some(export_value) => match export_value {
Export::Table { .. } | Export::Memory { .. } | Export::Function { .. } => {
return Err(LinkError(format!(
"{}/{}: incompatible import type: exported global incompatible with global import",
module_name, field
)));
}
Export::Global {
definition,
vmctx,
global,
} => {
let imported_global = module.globals[index];
if !is_global_compatible(&global, &imported_global) {
return Err(LinkError(format!(
"{}/{}: incompatible import type: exported global incompatible with global import",
module_name, field
)));
}
dependencies.insert(unsafe { InstanceHandle::from_vmctx(vmctx) });
global_imports.push(VMGlobalImport { from: definition });
}
},
None => {
return Err(LinkError(format!(
"unknown import: no provided import global for {}/{}",
module_name, field
)));
}
}
}
// Apply relocations, now that we have virtual addresses for everything.
relocate(allocated_functions, jt_offsets, relocations, module);
Ok(Imports::new(
dependencies,
function_imports,
table_imports,
memory_imports,
global_imports,
))
}
fn is_global_compatible(exported: &Global, imported: &Global) -> bool {
match imported.initializer {
GlobalInit::Import => (),
_ => panic!("imported Global should have an Imported initializer"),
}
let Global {
ty: exported_ty,
mutability: exported_mutability,
initializer: _exported_initializer,
} = exported;
let Global {
ty: imported_ty,
mutability: imported_mutability,
initializer: _imported_initializer,
} = imported;
exported_ty == imported_ty && imported_mutability == exported_mutability
}
fn is_table_element_type_compatible(
exported_type: TableElementType,
imported_type: TableElementType,
) -> bool {
match exported_type {
TableElementType::Func => match imported_type {
TableElementType::Func => true,
_ => false,
},
TableElementType::Val(exported_val_ty) => match imported_type {
TableElementType::Val(imported_val_ty) => exported_val_ty == imported_val_ty,
_ => false,
},
}
}
fn is_table_compatible(exported: &TablePlan, imported: &TablePlan) -> bool {
let TablePlan {
table:
Table {
ty: exported_ty,
minimum: exported_minimum,
maximum: exported_maximum,
},
style: _exported_style,
} = exported;
let TablePlan {
table:
Table {
ty: imported_ty,
minimum: imported_minimum,
maximum: imported_maximum,
},
style: _imported_style,
} = imported;
is_table_element_type_compatible(*exported_ty, *imported_ty)
&& imported_minimum <= exported_minimum
&& (imported_maximum.is_none()
|| (!exported_maximum.is_none()
&& imported_maximum.unwrap() >= exported_maximum.unwrap()))
}
fn is_memory_compatible(exported: &MemoryPlan, imported: &MemoryPlan) -> bool {
let MemoryPlan {
memory:
Memory {
minimum: exported_minimum,
maximum: exported_maximum,
shared: exported_shared,
},
style: _exported_style,
offset_guard_size: _exported_offset_guard_size,
} = exported;
let MemoryPlan {
memory:
Memory {
minimum: imported_minimum,
maximum: imported_maximum,
shared: imported_shared,
},
style: _imported_style,
offset_guard_size: _imported_offset_guard_size,
} = imported;
imported_minimum <= exported_minimum
&& (imported_maximum.is_none()
|| (!exported_maximum.is_none()
&& imported_maximum.unwrap() >= exported_maximum.unwrap()))
&& exported_shared == imported_shared
}
/// Performs the relocations inside the function bytecode, provided the necessary metadata.
fn relocate(
allocated_functions: &PrimaryMap<DefinedFuncIndex, *mut [VMFunctionBody]>,
jt_offsets: &PrimaryMap<DefinedFuncIndex, JumpTableOffsets>,
relocations: PrimaryMap<DefinedFuncIndex, Vec<Relocation>>,
module: &Module,
) {
for (i, function_relocs) in relocations.into_iter() {
for r in function_relocs {
use self::libcalls::*;
let target_func_address: usize = match r.reloc_target {
RelocationTarget::UserFunc(index) => match module.defined_func_index(index) {
Some(f) => {
let fatptr: *const [VMFunctionBody] = allocated_functions[f];
fatptr as *const VMFunctionBody as usize
}
None => panic!("direct call to import"),
},
RelocationTarget::Memory32Grow => wasmtime_memory32_grow as usize,
RelocationTarget::Memory32Size => wasmtime_memory32_size as usize,
RelocationTarget::ImportedMemory32Grow => wasmtime_imported_memory32_grow as usize,
RelocationTarget::ImportedMemory32Size => wasmtime_imported_memory32_size as usize,
RelocationTarget::LibCall(libcall) => {
use cranelift_codegen::ir::LibCall::*;
match libcall {
CeilF32 => wasmtime_f32_ceil as usize,
FloorF32 => wasmtime_f32_floor as usize,
TruncF32 => wasmtime_f32_trunc as usize,
NearestF32 => wasmtime_f32_nearest as usize,
CeilF64 => wasmtime_f64_ceil as usize,
FloorF64 => wasmtime_f64_floor as usize,
TruncF64 => wasmtime_f64_trunc as usize,
NearestF64 => wasmtime_f64_nearest as usize,
#[cfg(not(target_os = "windows"))]
Probestack => __rust_probestack as usize,
#[cfg(all(target_os = "windows", target_env = "gnu"))]
Probestack => ___chkstk as usize,
#[cfg(all(
target_os = "windows",
target_env = "msvc",
target_pointer_width = "64"
))]
Probestack => __chkstk as usize,
other => panic!("unexpected libcall: {}", other),
}
}
RelocationTarget::JumpTable(func_index, jt) => {
match module.defined_func_index(func_index) {
Some(f) => {
let offset = *jt_offsets
.get(f)
.and_then(|ofs| ofs.get(jt))
.expect("func jump table");
let fatptr: *const [VMFunctionBody] = allocated_functions[f];
fatptr as *const VMFunctionBody as usize + offset as usize
}
None => panic!("func index of jump table"),
}
}
};
let fatptr: *const [VMFunctionBody] = allocated_functions[i];
let body = fatptr as *const VMFunctionBody;
match r.reloc {
#[cfg(target_pointer_width = "64")]
Reloc::Abs8 => unsafe {
let reloc_address = body.add(r.offset as usize) as usize;
let reloc_addend = r.addend as isize;
let reloc_abs = (target_func_address as u64)
.checked_add(reloc_addend as u64)
.unwrap();
write_unaligned(reloc_address as *mut u64, reloc_abs);
},
#[cfg(target_pointer_width = "32")]
Reloc::X86PCRel4 => unsafe {
let reloc_address = body.add(r.offset as usize) as usize;
let reloc_addend = r.addend as isize;
let reloc_delta_u32 = (target_func_address as u32)
.wrapping_sub(reloc_address as u32)
.checked_add(reloc_addend as u32)
.unwrap();
write_unaligned(reloc_address as *mut u32, reloc_delta_u32);
},
#[cfg(target_pointer_width = "32")]
Reloc::X86CallPCRel4 => {
// ignore
}
Reloc::X86PCRelRodata4 => {
// ignore
}
_ => panic!("unsupported reloc kind"),
}
}
}
}
/// A declaration for the stack probe function in Rust's standard library, for
/// catching callstack overflow.
extern "C" {
#[cfg(not(target_os = "windows"))]
pub fn __rust_probestack();
#[cfg(all(
target_os = "windows",
target_env = "msvc",
target_pointer_width = "64"
))]
pub fn __chkstk();
// ___chkstk (note the triple underscore) is implemented in compiler-builtins/src/x86_64.rs
// by the Rust compiler for the MinGW target
#[cfg(all(target_os = "windows", target_env = "gnu",))]
pub fn ___chkstk();
}

View File

@@ -0,0 +1,47 @@
//! The core WebAssembly spec does not specify how imports are to be resolved
//! to exports. This file provides one possible way to manage multiple instances
//! and resolve imports to exports among them.
use super::HashMap;
use crate::resolver::Resolver;
use alloc::string::String;
use wasmtime_runtime::{Export, InstanceHandle};
/// A namespace containing instances keyed by name.
///
/// Note that `Namespace` implements the `Resolver` trait, so it can resolve
/// imports using defined exports.
pub struct Namespace {
/// Mapping from identifiers to indices in `self.instances`.
names: HashMap<String, InstanceHandle>,
}
impl Namespace {
/// Construct a new `Namespace`.
pub fn new() -> Self {
Self {
names: HashMap::new(),
}
}
/// Install a new `InstanceHandle` in this `Namespace`, optionally with the
/// given name.
pub fn name_instance(&mut self, name: String, instance: InstanceHandle) {
self.names.insert(name, instance);
}
/// Get the instance registered with the given `instance_name`.
pub fn get_instance(&mut self, name: &str) -> Option<&mut InstanceHandle> {
self.names.get_mut(name)
}
}
impl Resolver for Namespace {
fn resolve(&mut self, name: &str, field: &str) -> Option<Export> {
if let Some(instance) = self.names.get_mut(name) {
instance.lookup(field)
} else {
None
}
}
}

View File

@@ -0,0 +1,19 @@
//! Define the `Resolver` trait, allowing custom resolution for external
//! references.
use wasmtime_runtime::Export;
/// Import resolver connects imports with available exported values.
pub trait Resolver {
/// Resolve the given module/field combo.
fn resolve(&mut self, module: &str, field: &str) -> Option<Export>;
}
/// `Resolver` implementation that always resolves to `None`.
pub struct NullResolver {}
impl Resolver for NullResolver {
fn resolve(&mut self, _module: &str, _field: &str) -> Option<Export> {
None
}
}

View File

@@ -0,0 +1,22 @@
use core::cmp::min;
use target_lexicon::{OperatingSystem, Triple};
use wasmtime_environ::Tunables;
/// Return a `Tunables` instance tuned for the given target platform.
pub fn target_tunables(triple: &Triple) -> Tunables {
let mut result = Tunables::default();
match triple.operating_system {
OperatingSystem::Windows => {
// For now, use a smaller footprint on Windows so that we don't
// don't outstrip the paging file.
// TODO: Make this configurable.
result.static_memory_bound = min(result.static_memory_bound, 0x100);
result.static_memory_offset_guard_size =
min(result.static_memory_offset_guard_size, 0x10000);
}
_ => {}
}
result
}

Some files were not shown because too many files have changed in this diff Show More