Avoid generating value split instructions.

The legalizer often splits values into parts with the vsplit and
isplit_lohi instructions. Avoid doing that for values that are already
defined by the corresponding concatenation instructions.

This reduces the number of instructions created during legalization, and
it simplifies later optimizations. A number of dead concatenation
instructions are left behind. They can be trivially cleaned up by a dead
code elimination pass.
This commit is contained in:
Jakob Stoklund Olesen
2017-03-21 13:25:08 -07:00
parent a44a4d2718
commit 22334bcb54
5 changed files with 181 additions and 35 deletions

View File

@@ -2,47 +2,46 @@
test legalizer test legalizer
isa riscv supports_m=1 isa riscv supports_m=1
; regex: V=v\d+ ; regex: V=vx?\d+
; regex: VX=vx\d+
function bitwise_and(i64, i64) -> i64 { function bitwise_and(i64, i64) -> i64 {
ebb0(v1: i64, v2: i64): ebb0(v1: i64, v2: i64):
v3 = band v1, v2 v3 = band v1, v2
return v3 return v3
} }
; check: $(v1l=$V), $(v1h=$VX) = isplit ; check: $ebb0($(v1l=$V): i32, $(v1h=$V): i32, $(v2l=$V): i32, $(v2h=$V): i32):
; check: $(v2l=$V), $(v2h=$VX) = isplit
; check: [R#ec ; check: [R#ec
; sameln: $(v3l=$V) = band $v1l, $v2l ; sameln: $(v3l=$V) = band $v1l, $v2l
; check: [R#ec ; check: [R#ec
; sameln: $(v3h=$V) = band $v1h, $v2h ; sameln: $(v3h=$V) = band $v1h, $v2h
; check: $v3 = iconcat $v3l, $v3h ; check: $v3 = iconcat $v3l, $v3h
; check: return $v3l, $v3h
function bitwise_or(i64, i64) -> i64 { function bitwise_or(i64, i64) -> i64 {
ebb0(v1: i64, v2: i64): ebb0(v1: i64, v2: i64):
v3 = bor v1, v2 v3 = bor v1, v2
return v3 return v3
} }
; check: $(v1l=$V), $(v1h=$VX) = isplit ; check: $ebb0($(v1l=$V): i32, $(v1h=$V): i32, $(v2l=$V): i32, $(v2h=$V): i32):
; check: $(v2l=$V), $(v2h=$VX) = isplit
; check: [R#cc ; check: [R#cc
; sameln: $(v3l=$V) = bor $v1l, $v2l ; sameln: $(v3l=$V) = bor $v1l, $v2l
; check: [R#cc ; check: [R#cc
; sameln: $(v3h=$V) = bor $v1h, $v2h ; sameln: $(v3h=$V) = bor $v1h, $v2h
; check: $v3 = iconcat $v3l, $v3h ; check: $v3 = iconcat $v3l, $v3h
; check: return $v3l, $v3h
function bitwise_xor(i64, i64) -> i64 { function bitwise_xor(i64, i64) -> i64 {
ebb0(v1: i64, v2: i64): ebb0(v1: i64, v2: i64):
v3 = bxor v1, v2 v3 = bxor v1, v2
return v3 return v3
} }
; check: $(v1l=$V), $(v1h=$VX) = isplit ; check: $ebb0($(v1l=$V): i32, $(v1h=$V): i32, $(v2l=$V): i32, $(v2h=$V): i32):
; check: $(v2l=$V), $(v2h=$VX) = isplit
; check: [R#8c ; check: [R#8c
; sameln: $(v3l=$V) = bxor $v1l, $v2l ; sameln: $(v3l=$V) = bxor $v1l, $v2l
; check: [R#8c ; check: [R#8c
; sameln: $(v3h=$V) = bxor $v1h, $v2h ; sameln: $(v3h=$V) = bxor $v1h, $v2h
; check: $v3 = iconcat $v3l, $v3h ; check: $v3 = iconcat $v3l, $v3h
; check: return $v3l, $v3h
function arith_add(i64, i64) -> i64 { function arith_add(i64, i64) -> i64 {
; Legalizing iadd.i64 requires two steps: ; Legalizing iadd.i64 requires two steps:
@@ -52,8 +51,7 @@ ebb0(v1: i64, v2: i64):
v3 = iadd v1, v2 v3 = iadd v1, v2
return v3 return v3
} }
; check: $(v1l=$V), $(v1h=$VX) = isplit ; check: $ebb0($(v1l=$V): i32, $(v1h=$V): i32, $(v2l=$V): i32, $(v2h=$V): i32):
; check: $(v2l=$V), $(v2h=$VX) = isplit
; check: [R#0c ; check: [R#0c
; sameln: $(v3l=$V) = iadd $v1l, $v2l ; sameln: $(v3l=$V) = iadd $v1l, $v2l
; check: $(c=$V) = icmp ult, $v3l, $v1l ; check: $(c=$V) = icmp ult, $v3l, $v1l
@@ -63,3 +61,4 @@ ebb0(v1: i64, v2: i64):
; check: [R#0c ; check: [R#0c
; sameln: $(v3h=$V) = iadd $v3h1, $c ; sameln: $(v3h=$V) = iadd $v3h1, $c
; check: $v3 = iconcat $v3l, $v3h ; check: $v3 = iconcat $v3l, $v3h
; check: return $v3l, $v3h

View File

@@ -9,7 +9,7 @@ the input instruction.
""" """
from __future__ import absolute_import from __future__ import absolute_import
from srcgen import Formatter from srcgen import Formatter
from base import legalize from base import legalize, instructions
from cdsl.ast import Var from cdsl.ast import Var
try: try:
@@ -117,11 +117,35 @@ def wrap_tup(seq):
return '({})'.format(', '.join(tup)) return '({})'.format(', '.join(tup))
def is_value_split(node):
# type: (Def) -> bool
"""
Determine if `node` represents one of the value splitting instructions:
`isplit` or `vsplit. These instructions are lowered specially by the
`legalize::split` module.
"""
if len(node.defs) != 2:
return False
return node.expr.inst in (instructions.isplit, instructions.vsplit)
def emit_dst_inst(node, fmt): def emit_dst_inst(node, fmt):
# type: (Def, Formatter) -> None # type: (Def, Formatter) -> None
exact_replace = False exact_replace = False
replaced_inst = None # type: str replaced_inst = None # type: str
fixup_first_result = False fixup_first_result = False
if is_value_split(node):
# Split instructions are not emitted with the builder, but by calling
# special functions in the `legalizer::split` module. These functions
# will eliminate concat-split patterns.
fmt.line(
'let {} = split::{}(dfg, pos, {});'
.format(
wrap_tup(node.defs),
node.expr.inst.snake_name(),
node.expr.args[0]))
else:
if len(node.defs) == 0: if len(node.defs) == 0:
# This node doesn't define any values, so just insert the new # This node doesn't define any values, so just insert the new
# instruction. # instruction.
@@ -129,24 +153,25 @@ def emit_dst_inst(node, fmt):
else: else:
src_def0 = node.defs[0].src_def src_def0 = node.defs[0].src_def
if src_def0 and node.defs[0] == src_def0.defs[0]: if src_def0 and node.defs[0] == src_def0.defs[0]:
# The primary result is replacing the primary result of the src # The primary result is replacing the primary result of the
# pattern. # source pattern.
# Replace the whole instruction. # Replace the whole instruction.
builder = 'let {} = dfg.replace(inst)'.format(wrap_tup(node.defs)) builder = 'let {} = dfg.replace(inst)'.format(
wrap_tup(node.defs))
replaced_inst = 'inst' replaced_inst = 'inst'
# Secondary values weren't replaced if this is an exact replacement # Secondary values weren't replaced if this is an exact
# for all the src results. # replacement for all the source results.
exact_replace = (node.defs == src_def0.defs) exact_replace = (node.defs == src_def0.defs)
else: else:
# Insert a new instruction since its primary def doesn't match the # Insert a new instruction since its primary def doesn't match
# src. # the source.
builder = 'let {} = dfg.ins(pos)'.format(wrap_tup(node.defs)) builder = 'let {} = dfg.ins(pos)'.format(wrap_tup(node.defs))
fixup_first_result = node.defs[0].is_output() fixup_first_result = node.defs[0].is_output()
fmt.line('{}.{};'.format(builder, node.expr.rust_builder(node.defs))) fmt.line('{}.{};'.format(builder, node.expr.rust_builder(node.defs)))
# If we just replaced an instruction, we need to bump the cursor so # If we just replaced an instruction, we need to bump the cursor so
# following instructions are inserted *after* the replaced insruction. # following instructions are inserted *after* the replaced instruction.
if replaced_inst: if replaced_inst:
with fmt.indented( with fmt.indented(
'if pos.current_inst() == Some({}) {{' 'if pos.current_inst() == Some({}) {{'

View File

@@ -22,6 +22,7 @@ use ir::{Function, Cursor, DataFlowGraph, Inst, InstBuilder, Ebb, Type, Value, S
ArgumentType}; ArgumentType};
use ir::instructions::CallInfo; use ir::instructions::CallInfo;
use isa::TargetIsa; use isa::TargetIsa;
use legalizer::split::{isplit, vsplit};
/// Legalize all the function signatures in `func`. /// Legalize all the function signatures in `func`.
/// ///
@@ -271,12 +272,12 @@ fn convert_to_abi<PutArg>(dfg: &mut DataFlowGraph,
let ty = dfg.value_type(value); let ty = dfg.value_type(value);
match legalize_abi_value(ty, &arg_type) { match legalize_abi_value(ty, &arg_type) {
ValueConversion::IntSplit => { ValueConversion::IntSplit => {
let (lo, hi) = dfg.ins(pos).isplit(value); let (lo, hi) = isplit(dfg, pos, value);
convert_to_abi(dfg, pos, lo, put_arg); convert_to_abi(dfg, pos, lo, put_arg);
convert_to_abi(dfg, pos, hi, put_arg); convert_to_abi(dfg, pos, hi, put_arg);
} }
ValueConversion::VectorSplit => { ValueConversion::VectorSplit => {
let (lo, hi) = dfg.ins(pos).vsplit(value); let (lo, hi) = vsplit(dfg, pos, value);
convert_to_abi(dfg, pos, lo, put_arg); convert_to_abi(dfg, pos, lo, put_arg);
convert_to_abi(dfg, pos, hi, put_arg); convert_to_abi(dfg, pos, hi, put_arg);
} }

View File

@@ -18,6 +18,7 @@ use ir::condcodes::IntCC;
use isa::{TargetIsa, Legalize}; use isa::{TargetIsa, Legalize};
mod boundary; mod boundary;
mod split;
/// Legalize `func` for `isa`. /// Legalize `func` for `isa`.
/// ///

View File

@@ -0,0 +1,120 @@
//! Value splitting.
//!
//! Some value types are too large to fit in registers, so they need to be split into smaller parts
//! that the ISA can operate on. There's two dimensions of splitting, represented by two
//! complementary instruction pairs:
//!
//! - `isplit` and `iconcat` for splitting integer types into smaller integers.
//! - `vsplit` and `vconcat` for splitting vector types into smaller vector types with the same
//! lane types.
//!
//! There is no floating point splitting. If an ISA doesn't support `f64` values, they probably
//! have to be bit-cast to `i64` and possibly split into two `i32` values that fit in registers.
//! This breakdown is handled by the ABI lowering.
//!
//! When legalizing a single instruction, it is wrapped in splits and concatenations:
//!
//!```cton
//! v1 = bxor.i64 v2, v3
//! ```
//!
//! becomes:
//!
//!```cton
//! v20, v21 = isplit v2
//! v30, v31 = isplit v3
//! v10 = bxor.i32 v20, v30
//! v11 = bxor.i32 v21, v31
//! v1 = iconcat v10, v11
//! ```
//!
//! This local expansion approach still leaves the original `i64` values in the code as operands on
//! the `split` and `concat` instructions. It also creates a lot of redundant code to clean up as
//! values are constantly split and concatenated.
//!
//! # Optimized splitting
//!
//! We can eliminate a lot of the splitting code quite easily. Whenever we need to split a value,
//! first check if the value is defined by the corresponding concatenation. If so, then just use
//! the two concatenation inputs directly:
//!
//! ```cton
//! v4 = iadd_imm.i64 v1, 1
//! ```
//!
//! becomes, using the expanded code from above:
//!
//! ```cton
//! v40, v5 = iadd_imm_cout.i32 v10, 1
//! v6 = bint.i32
//! v41 = iadd.i32 v11, v6
//! v4 = iconcat v40, v41
//! ```
//!
//! This means that the `iconcat` instructions defining `v1` and `v4` end up with no uses, so they
//! can be trivially deleted by a dead code elimination pass.
//!
//! # EBB arguments
//!
//! If all instructions that produce an `i64` value are legalized as above, we will eventually end
//! up with no `i64` values anywhere, except for EBB arguments. We can work around this by
//! iteratively splitting EBB arguments too. That should leave us with no illegal value types
//! anywhere.
//!
//! It is possible to have circular dependencies of EBB arguments that are never used by any real
//! instructions. These loops will remain in the program.
use ir::{DataFlowGraph, Cursor, Value, Opcode, ValueDef, InstructionData, InstBuilder};
/// Split `value` into two values using the `isplit` semantics. Do this by reusing existing values
/// if possible.
pub fn isplit(dfg: &mut DataFlowGraph, pos: &mut Cursor, value: Value) -> (Value, Value) {
split_value(dfg, pos, value, Opcode::Iconcat)
}
/// Split `value` into halves using the `vsplit` semantics. Do this by reusing existing values if
/// possible.
pub fn vsplit(dfg: &mut DataFlowGraph, pos: &mut Cursor, value: Value) -> (Value, Value) {
split_value(dfg, pos, value, Opcode::Vconcat)
}
/// Split a single value using the integer or vector semantics given by the `concat` opcode.
///
/// If the value is defined by a `concat` instruction, just reuse the operand values of that
/// instruction.
///
/// Return the two new values representing the parts of `value`.
fn split_value(dfg: &mut DataFlowGraph,
pos: &mut Cursor,
value: Value,
concat: Opcode)
-> (Value, Value) {
let value = dfg.resolve_copies(value);
let mut reuse = None;
match dfg.value_def(value) {
ValueDef::Res(inst, num) => {
// This is an instruction result. See if the value was created by a `concat`
// instruction.
if let InstructionData::Binary { opcode, args, .. } = dfg[inst] {
assert_eq!(num, 0);
if opcode == concat {
reuse = Some((args[0], args[1]));
}
}
}
ValueDef::Arg(_ebb, _num) => {}
}
// Did the code above succeed in finding values we can reuse?
if let Some(pair) = reuse {
pair
} else {
// No, we'll just have to insert the requested split instruction at `pos`.
match concat {
Opcode::Iconcat => dfg.ins(pos).isplit(value),
Opcode::Vconcat => dfg.ins(pos).vsplit(value),
_ => panic!("Unhandled concat opcode: {}", concat),
}
}
}