Compute a CFG post-order when building the dominator tree.

The DominatorTree has existing DomNodes per EBB that can be used in lieu
of expensive HastSets for the depth-first traversal of the CFG.

Make the computed and cached post-order available for other passes
through the `cfg_postorder()` method which returns a slice.

The post-order algorithm is essentially the same as the one in
ControlFlowGraph::postorder_ebbs(), except it will never push a
successor node that has already been visited once. This is more
efficient, but it generates a different post-order.

Change the cfg_traversal tests to check this new algorithm.
This commit is contained in:
Jakob Stoklund Olesen
2017-06-02 15:08:02 -07:00
parent b02ccea8dc
commit 16df1f1cf5
2 changed files with 111 additions and 41 deletions

View File

@@ -1,30 +1,27 @@
extern crate cretonne; extern crate cretonne;
extern crate cton_reader; extern crate cton_reader;
use self::cretonne::entity_map::EntityMap;
use self::cretonne::flowgraph::ControlFlowGraph; use self::cretonne::flowgraph::ControlFlowGraph;
use self::cretonne::dominator_tree::DominatorTree;
use self::cretonne::ir::Ebb; use self::cretonne::ir::Ebb;
use self::cton_reader::parse_functions; use self::cton_reader::parse_functions;
fn test_reverse_postorder_traversal(function_source: &str, ebb_order: Vec<u32>) { fn test_reverse_postorder_traversal(function_source: &str, ebb_order: Vec<u32>) {
let func = &parse_functions(function_source).unwrap()[0]; let func = &parse_functions(function_source).unwrap()[0];
let cfg = ControlFlowGraph::with_function(&func); let cfg = ControlFlowGraph::with_function(&func);
let ebbs = ebb_order let domtree = DominatorTree::with_function(&func, &cfg);
let got = domtree
.cfg_postorder()
.iter() .iter()
.map(|n| Ebb::with_number(*n).unwrap()) .rev()
.collect::<Vec<Ebb>>(); .cloned()
.collect::<Vec<_>>();
let mut postorder_ebbs = cfg.postorder_ebbs(); let want = ebb_order
let mut postorder_map = EntityMap::with_capacity(postorder_ebbs.len()); .iter()
for (i, ebb) in postorder_ebbs.iter().enumerate() { .map(|&n| Ebb::with_number(n).unwrap())
postorder_map[ebb.clone()] = i + 1; .collect::<Vec<_>>();
} assert_eq!(got, want);
postorder_ebbs.reverse();
assert_eq!(postorder_ebbs.len(), ebbs.len());
for ebb in postorder_ebbs {
assert_eq!(ebb, ebbs[ebbs.len() - postorder_map[ebb]]);
}
} }
#[test] #[test]
@@ -53,7 +50,7 @@ fn simple_traversal() {
trap trap
} }
", ",
vec![0, 2, 1, 3, 4, 5]); vec![0, 1, 3, 2, 4, 5]);
} }
#[test] #[test]
@@ -71,7 +68,7 @@ fn loops_one() {
return return
} }
", ",
vec![0, 1, 2, 3]); vec![0, 1, 3, 2]);
} }
#[test] #[test]
@@ -96,7 +93,7 @@ fn loops_two() {
return return
} }
", ",
vec![0, 1, 2, 5, 4, 3]); vec![0, 1, 2, 4, 3, 5]);
} }
#[test] #[test]
@@ -126,7 +123,7 @@ fn loops_three() {
return return
} }
", ",
vec![0, 1, 2, 5, 4, 3, 6, 7]); vec![0, 1, 2, 4, 3, 6, 7, 5]);
} }
#[test] #[test]

View File

@@ -25,6 +25,12 @@ struct DomNode {
/// The dominator tree for a single function. /// The dominator tree for a single function.
pub struct DominatorTree { pub struct DominatorTree {
nodes: EntityMap<Ebb, DomNode>, nodes: EntityMap<Ebb, DomNode>,
// CFG post-order of all reachable EBBs.
postorder: Vec<Ebb>,
// Scratch memory used by `compute_postorder()`.
stack: Vec<Ebb>,
} }
/// Methods for querying the dominator tree. /// Methods for querying the dominator tree.
@@ -34,6 +40,14 @@ impl DominatorTree {
self.nodes[ebb].rpo_number != 0 self.nodes[ebb].rpo_number != 0
} }
/// Get the CFG post-order of EBBs that was used to compute the dominator tree.
///
/// Note that this post-order is not updated automatically when the CFG is modified. It is
/// computed from scratch and cached by `compute()`.
pub fn cfg_postorder(&self) -> &[Ebb] {
&self.postorder
}
/// Returns the immediate dominator of `ebb`. /// Returns the immediate dominator of `ebb`.
/// ///
/// The immediate dominator of an extended basic block is a basic block which we represent by /// The immediate dominator of an extended basic block is a basic block which we represent by
@@ -134,7 +148,11 @@ impl DominatorTree {
/// Allocate a new blank dominator tree. Use `compute` to compute the dominator tree for a /// Allocate a new blank dominator tree. Use `compute` to compute the dominator tree for a
/// function. /// function.
pub fn new() -> DominatorTree { pub fn new() -> DominatorTree {
DominatorTree { nodes: EntityMap::new() } DominatorTree {
nodes: EntityMap::new(),
postorder: Vec::new(),
stack: Vec::new(),
}
} }
/// Allocate and compute a dominator tree. /// Allocate and compute a dominator tree.
@@ -144,39 +162,91 @@ impl DominatorTree {
domtree domtree
} }
/// Build a dominator tree from a control flow graph using Keith D. Cooper's /// Reset and compute a CFG post-order and dominator tree.
/// "Simple, Fast Dominator Algorithm."
pub fn compute(&mut self, func: &Function, cfg: &ControlFlowGraph) { pub fn compute(&mut self, func: &Function, cfg: &ControlFlowGraph) {
self.compute_postorder(func, cfg);
self.compute_domtree(func, cfg);
}
/// Reset all internal data structures and compute a post-order for `cfg`.
///
/// This leaves `rpo_number == 1` for all reachable EBBs, 0 for unreachable ones.
fn compute_postorder(&mut self, func: &Function, cfg: &ControlFlowGraph) {
self.nodes.clear(); self.nodes.clear();
self.nodes.resize(func.dfg.num_ebbs()); self.nodes.resize(func.dfg.num_ebbs());
self.postorder.clear();
assert!(self.stack.is_empty());
// We'll be iterating over a reverse post-order of the CFG. // During this algorithm only, use `rpo_number` to hold the following state:
// This vector only contains reachable EBBs. //
let mut postorder = cfg.postorder_ebbs(); // 0: EBB never reached.
// 2: EBB has been pushed once, so it shouldn't be pushed again.
// 1: EBB has already been popped once, and should be added to the post-order next time.
const SEEN: u32 = 2;
const DONE: u32 = 1;
// Remove the entry block, and abort if the function is empty. match func.layout.entry_block() {
// The last block visited in a post-order traversal must be the entry block. Some(ebb) => {
let entry_block = match postorder.pop() { self.nodes[ebb].rpo_number = SEEN;
Some(ebb) => ebb, self.stack.push(ebb)
}
None => return,
}
while let Some(ebb) = self.stack.pop() {
match self.nodes[ebb].rpo_number {
// This is the first time we visit `ebb`, forming a pre-order.
SEEN => {
// Mark it as done and re-queue it to be visited after its children.
self.nodes[ebb].rpo_number = DONE;
self.stack.push(ebb);
for &succ in cfg.get_successors(ebb) {
// Only push children that haven't been seen before.
if self.nodes[succ].rpo_number == 0 {
self.nodes[succ].rpo_number = SEEN;
self.stack.push(succ);
}
}
}
// This is the second time we popped `ebb`, so all its children have been visited.
// This is the post-order.
DONE => self.postorder.push(ebb),
_ => panic!("Inconsistent stack rpo_number"),
}
}
}
/// Build a dominator tree from a control flow graph using Keith D. Cooper's
/// "Simple, Fast Dominator Algorithm."
fn compute_domtree(&mut self, func: &Function, cfg: &ControlFlowGraph) {
// During this algorithm, `rpo_number` has the following values:
//
// 0: EBB is not reachable.
// 1: EBB is reachable, but has not yet been visited during the first pass. This is set by
// `compute_postorder`.
// 2+: EBB is reachable and has an assigned RPO number.
// We'll be iterating over a reverse post-order of the CFG, skipping the entry block.
let (entry_block, postorder) = match self.postorder.as_slice().split_last() {
Some((&eb, rest)) => (eb, rest),
None => return, None => return,
}; };
assert_eq!(Some(entry_block), func.layout.entry_block()); debug_assert_eq!(Some(entry_block), func.layout.entry_block());
// Do a first pass where we assign RPO numbers to all reachable nodes. // Do a first pass where we assign RPO numbers to all reachable nodes.
self.nodes[entry_block].rpo_number = 1; self.nodes[entry_block].rpo_number = 2;
for (rpo_idx, &ebb) in postorder.iter().rev().enumerate() { for (rpo_idx, &ebb) in postorder.iter().rev().enumerate() {
// Update the current node and give it an RPO number. // Update the current node and give it an RPO number.
// The entry block got 1, the rest start at 2. // The entry block got 2, the rest start at 3.
// //
// Nodes do not appear as reachable until the have an assigned RPO number, and // Since `compute_idom` will only look at nodes with an assigned RPO number, the
// `compute_idom` will only look at reachable nodes. This means that the function will // function will never see an uninitialized predecessor.
// never see an uninitialized predecessor.
// //
// Due to the nature of the post-order traversal, every node we visit will have at // Due to the nature of the post-order traversal, every node we visit will have at
// least one predecessor that has previously been visited during this RPO. // least one predecessor that has previously been visited during this RPO.
self.nodes[ebb] = DomNode { self.nodes[ebb] = DomNode {
idom: self.compute_idom(ebb, cfg, &func.layout).into(), idom: self.compute_idom(ebb, cfg, &func.layout).into(),
rpo_number: rpo_idx as u32 + 2, rpo_number: rpo_idx as u32 + 3,
} }
} }
@@ -200,13 +270,13 @@ impl DominatorTree {
// Compute the immediate dominator for `ebb` using the current `idom` states for the reachable // Compute the immediate dominator for `ebb` using the current `idom` states for the reachable
// nodes. // nodes.
fn compute_idom(&self, ebb: Ebb, cfg: &ControlFlowGraph, layout: &Layout) -> Inst { fn compute_idom(&self, ebb: Ebb, cfg: &ControlFlowGraph, layout: &Layout) -> Inst {
// Get an iterator with just the reachable predecessors to `ebb`. // Get an iterator with just the reachable, already visited predecessors to `ebb`.
// Note that during the first pass, `is_reachable` returns false for blocks that haven't // Note that during the first pass, `rpo_number` is 1 for reachable blocks that haven't
// been visited yet. // been visited yet, 0 for unreachable blocks.
let mut reachable_preds = cfg.get_predecessors(ebb) let mut reachable_preds = cfg.get_predecessors(ebb)
.iter() .iter()
.cloned() .cloned()
.filter(|&(ebb, _)| self.is_reachable(ebb)); .filter(|&(pred, _)| self.nodes[pred].rpo_number > 1);
// The RPO must visit at least one predecessor before this node. // The RPO must visit at least one predecessor before this node.
let mut idom = reachable_preds let mut idom = reachable_preds
@@ -233,6 +303,7 @@ mod test {
let cfg = ControlFlowGraph::with_function(&func); let cfg = ControlFlowGraph::with_function(&func);
let dtree = DominatorTree::with_function(&func, &cfg); let dtree = DominatorTree::with_function(&func, &cfg);
assert_eq!(0, dtree.nodes.keys().count()); assert_eq!(0, dtree.nodes.keys().count());
assert_eq!(dtree.cfg_postorder(), &[]);
} }
#[test] #[test]
@@ -277,5 +348,7 @@ mod test {
assert!(dt.dominates(br_ebb1_ebb0, br_ebb1_ebb0, &func.layout)); assert!(dt.dominates(br_ebb1_ebb0, br_ebb1_ebb0, &func.layout));
assert!(!dt.dominates(br_ebb1_ebb0, jmp_ebb3_ebb1, &func.layout)); assert!(!dt.dominates(br_ebb1_ebb0, jmp_ebb3_ebb1, &func.layout));
assert!(dt.dominates(jmp_ebb3_ebb1, br_ebb1_ebb0, &func.layout)); assert!(dt.dominates(jmp_ebb3_ebb1, br_ebb1_ebb0, &func.layout));
assert_eq!(dt.cfg_postorder(), &[ebb2, ebb0, ebb1, ebb3]);
} }
} }