Generate encoding tables. (WIP).

Amend build script to generate an encodings-<isa>.rs file for each target ISA.

Emit a function that can evaluate instruction predicates.

Describe the 3-level tables used for representing insrruction encoding tables.
Add Python classes representing the tables.

The generated code is incomplete and not used anywhere yet.
This commit is contained in:
Jakob Stoklund Olesen
2016-08-18 11:47:01 -07:00
parent c166279bb9
commit 0c6e0e9cb7
3 changed files with 224 additions and 1 deletions

View File

@@ -8,6 +8,7 @@ import isa
import gen_instr
import gen_settings
import gen_build_deps
import gen_encoding
parser = argparse.ArgumentParser(description='Generate sources for Cretonne.')
parser.add_argument('--out-dir', help='set output directory')
@@ -19,4 +20,5 @@ isas = isa.all_isas()
gen_instr.generate(isas, out_dir)
gen_settings.generate(isas, out_dir)
gen_encoding.generate(isas, out_dir)
gen_build_deps.generate()

212
meta/gen_encoding.py Normal file
View File

@@ -0,0 +1,212 @@
"""
Generate sources for instruction encoding.
The tables and functions generated here support the `TargetIsa::encode()`
function which determines if a given instruction is legal, and if so, it's
`Encoding` data which consists of a *recipe* and some *encoding* bits.
The `encode` function doesn't actually generate the binary machine bits. Each
recipe has a corresponding hand-written function to do that after registers
are allocated.
This is the information available to us:
- The instruction to be encoded as an `Inst` reference.
- The data-flow graph containing the instruction, giving us access to the
`InstructionData` representation and the types of all values involved.
- A target ISA instance with shared and ISA-specific settings for evaluating
ISA predicates.
- The currently active CPU mode is determined by the ISA.
## Level 1 table lookup
The CPU mode provides the first table. The key is the instruction's controlling
type variable. If the instruction is not polymorphic, use `VOID` for the type
variable. The table values are level 2 tables.
## Level 2 table lookup
The level 2 table is keyed by the instruction's opcode. The table values are
*encoding lists*.
The two-level table lookup allows the level 2 tables to be much smaller with
good locality. Code in any given function usually only uses a few different
types, so many of the level 2 tables will be cold.
## Encoding lists
An encoding list is a non-empty sequence of list entries. Each entry has
one of these forms:
1. Instruction predicate, encoding recipe, and encoding bits. If the
instruction predicate is true, use this recipe and bits.
2. ISA predicate and skip-count. If the ISA predicate is false, skip the next
*skip-count* entries in the list. If the skip count is zero, stop
completely.
3. Stop. End of list marker. If this is reached, the instruction does not have
a legal encoding.
The instruction predicate is also used to distinguish between polymorphic
instructions with different types for secondary type variables.
"""
from __future__ import absolute_import
import srcgen
from collections import OrderedDict
def emit_instp(instp, fmt):
"""
Emit code for matching an instruction predicate against an
`InstructionData` reference called `inst`.
The generated code is a pattern match that falls through if the instruction
has an unexpected format. This should lead to a panic.
"""
iform = instp.predicate_context()
# Which fiels do we need in the InstructionData pattern match?
if iform.boxed_storage:
fields = 'ref data'
else:
# Collect the leaf predicates
leafs = set()
instp.predicate_leafs(leafs)
# All the leafs are FieldPredicate instances. Here we just care about
# the field names.
fields = ', '.join(sorted(set(p.field.name for p in leafs)))
with fmt.indented(
'if let {} {{ {}, .. }} = *inst {{'
.format(iform.name, fields), '}'):
fmt.line('return {};'.format(instp.rust_predicate(0)))
def emit_instps(instps, fmt):
"""
Emit a function for matching instruction predicates.
"""
with fmt.indented(
'fn check_instp(inst: &InstructionData, instp_idx: u16) -> bool {',
'}'):
with fmt.indented('match instp_idx {', '}'):
for (instp, idx) in instps.items():
with fmt.indented('{} => {{'.format(idx), '}'):
emit_instp(instp, fmt)
fmt.line('_ => panic!("Invalid instruction predicate")')
# The match cases will fall through if the instruction format is wrong.
fmt.line('panic!("Bad format {}/{} for instp {}",')
fmt.line(' InstructionFormat::from(inst),')
fmt.line(' inst.opcode(),')
fmt.line(' instp_idx);')
def collect_instps(cpumodes):
# Map instp -> number
instps = OrderedDict()
for cpumode in cpumodes:
for enc in cpumode.encodings:
instp = enc.instp
if instp and instp not in instps:
instps[instp] = 1 + len(instps)
return instps
class EncList(object):
"""
List of instructions for encoding a given type + opcode pair.
An encoding list contains a sequence of predicates and encoding recipes,
all encoded as u16 values.
:param inst: The instruction opcode being encoded.
:param ty: Value of the controlling type variable, or `None`.
"""
def __init__(self, inst, ty):
self.inst = inst
self.ty = ty
# List of applicable Encoding instances.
# These will have different predicates.
self.encodings = []
def name(self):
if self.ty:
return '{}.{}'.format(self.inst.name, self.ty.name)
else:
return self.inst.name
class Level2Table(object):
"""
Level 2 table mapping instruction opcodes to `EncList` objects.
:param ty: Controlling type variable of all entries, or `None`.
"""
def __init__(self, ty):
self.ty = ty
# Maps inst -> EncList
self.lists = OrderedDict()
def __getitem__(self, inst):
ls = self.lists.get(inst)
if not ls:
ls = EncList(inst, self.ty)
self.lists[inst] = ls
return ls
def __iter__(self):
return iter(self.lists.values())
class Level1Table(object):
"""
Level 1 table mapping types to `Level2` objects.
"""
def __init__(self):
self.tables = OrderedDict()
def __getitem__(self, ty):
tbl = self.tables.get(ty)
if not tbl:
tbl = Level2Table(ty)
self.tables[ty] = tbl
return tbl
def __iter__(self):
return iter(self.tables.values())
def make_tables(cpumode):
"""
Generate tables for `cpumode` as described above.
"""
table = Level1Table()
for enc in cpumode.encodings:
ty = enc.ctrl_typevar()
inst = enc.inst
table[ty][inst].encodings.append(enc)
return table
def gen_isa(cpumodes, fmt):
# First assign numbers to relevant instruction predicates and generate the
# check_instp() function..
instps = collect_instps(cpumodes)
emit_instps(instps, fmt)
for cpumode in cpumodes:
level1 = make_tables(cpumode)
for level2 in level1:
for enclist in level2:
fmt.comment(enclist.name())
def generate(isas, out_dir):
for isa in isas:
fmt = srcgen.Formatter()
gen_isa(isa.cpumodes, fmt)
fmt.update_file('encoding-{}.rs'.format(isa.name), out_dir)

View File

@@ -51,12 +51,21 @@ class Formatter(object):
self.indent = self.indent[0:-self.shiftwidth]
def line(self, s=None):
"""And an indented line."""
"""Add an indented line."""
if s:
self.lines.append('{}{}\n'.format(self.indent, s))
else:
self.lines.append('\n')
def outdented_line(self, s):
"""
Emit a line outdented one level.
This is used for '} else {' and similar things inside a single indented
block.
"""
self.lines.append('{}{}\n'.format(self.indent[0:-self.shiftwidth], s))
def writelines(self, f=None):
"""Write all lines to `f`."""
if not f: