Don't make the Comparator a type argument for bforest

This commit is contained in:
Amanieu d'Antras
2018-08-12 15:31:38 +02:00
parent ae3a3c368b
commit 0b548c720c
8 changed files with 134 additions and 136 deletions

View File

@@ -114,9 +114,6 @@ trait Forest {
/// An array of values for the leaf nodes.
type LeafValues: Copy + BorrowMut<[Self::Value]>;
/// Type used for key comparisons.
type Comparator: Comparator<Self::Key>;
/// Splat a single key into a whole array.
fn splat_key(key: Self::Key) -> Self::LeafKeys;

View File

@@ -9,19 +9,17 @@ use std::marker::PhantomData;
use std::string::String;
/// Tag type defining forest types for a map.
struct MapTypes<K, V, C>(PhantomData<(K, V, C)>);
struct MapTypes<K, V>(PhantomData<(K, V)>);
impl<K, V, C> Forest for MapTypes<K, V, C>
impl<K, V> Forest for MapTypes<K, V>
where
K: Copy,
V: Copy,
C: Comparator<K>,
{
type Key = K;
type Value = V;
type LeafKeys = [K; INNER_SIZE - 1];
type LeafValues = [V; INNER_SIZE - 1];
type Comparator = C;
fn splat_key(key: Self::Key) -> Self::LeafKeys {
[key; INNER_SIZE - 1]
@@ -33,20 +31,18 @@ where
}
/// Memory pool for a forest of `Map` instances.
pub struct MapForest<K, V, C>
pub struct MapForest<K, V>
where
K: Copy,
V: Copy,
C: Comparator<K>,
{
nodes: NodePool<MapTypes<K, V, C>>,
nodes: NodePool<MapTypes<K, V>>,
}
impl<K, V, C> MapForest<K, V, C>
impl<K, V> MapForest<K, V>
where
K: Copy,
V: Copy,
C: Comparator<K>,
{
/// Create a new empty forest.
pub fn new() -> Self {
@@ -63,7 +59,7 @@ where
}
}
/// B-tree mapping from `K` to `V` using `C` for comparing keys.
/// B-tree mapping from `K` to `V`.
///
/// This is not a general-purpose replacement for `BTreeMap`. See the [module
/// documentation](index.html) for more information about design tradeoffs.
@@ -72,21 +68,19 @@ where
/// they belong to. *Cloning a map does not allocate new memory for the clone*. It creates an alias
/// of the same memory.
#[derive(Clone)]
pub struct Map<K, V, C>
pub struct Map<K, V>
where
K: Copy,
V: Copy,
C: Comparator<K>,
{
root: PackedOption<Node>,
unused: PhantomData<(K, V, C)>,
unused: PhantomData<(K, V)>,
}
impl<K, V, C> Map<K, V, C>
impl<K, V> Map<K, V>
where
K: Copy,
V: Copy,
C: Comparator<K>,
{
/// Make an empty map.
pub fn new() -> Self {
@@ -102,7 +96,7 @@ where
}
/// Get the value stored for `key`.
pub fn get(&self, key: K, forest: &MapForest<K, V, C>, comp: &C) -> Option<V> {
pub fn get<C: Comparator<K>>(&self, key: K, forest: &MapForest<K, V>, comp: &C) -> Option<V> {
self.root
.expand()
.and_then(|root| Path::default().find(key, root, &forest.nodes, comp))
@@ -115,7 +109,12 @@ where
/// Otherwise, return the last key-value pair with a key that is less than or equal to `key`.
///
/// If no stored keys are less than or equal to `key`, return `None`.
pub fn get_or_less(&self, key: K, forest: &MapForest<K, V, C>, comp: &C) -> Option<(K, V)> {
pub fn get_or_less<C: Comparator<K>>(
&self,
key: K,
forest: &MapForest<K, V>,
comp: &C,
) -> Option<(K, V)> {
self.root.expand().and_then(|root| {
let mut path = Path::default();
match path.find(key, root, &forest.nodes, comp) {
@@ -126,18 +125,23 @@ where
}
/// Insert `key, value` into the map and return the old value stored for `key`, if any.
pub fn insert(
pub fn insert<C: Comparator<K>>(
&mut self,
key: K,
value: V,
forest: &mut MapForest<K, V, C>,
forest: &mut MapForest<K, V>,
comp: &C,
) -> Option<V> {
self.cursor(forest, comp).insert(key, value)
}
/// Remove `key` from the map and return the removed value for `key`, if any.
pub fn remove(&mut self, key: K, forest: &mut MapForest<K, V, C>, comp: &C) -> Option<V> {
pub fn remove<C: Comparator<K>>(
&mut self,
key: K,
forest: &mut MapForest<K, V>,
comp: &C,
) -> Option<V> {
let mut c = self.cursor(forest, comp);
if c.goto(key).is_some() {
c.remove()
@@ -147,7 +151,7 @@ where
}
/// Remove all entries.
pub fn clear(&mut self, forest: &mut MapForest<K, V, C>) {
pub fn clear(&mut self, forest: &mut MapForest<K, V>) {
if let Some(root) = self.root.take() {
forest.nodes.free_tree(root);
}
@@ -158,7 +162,7 @@ where
/// Remove all key-value pairs where the predicate returns false.
///
/// The predicate is allowed to update the values stored in the map.
pub fn retain<F>(&mut self, forest: &mut MapForest<K, V, C>, mut predicate: F)
pub fn retain<F>(&mut self, forest: &mut MapForest<K, V>, mut predicate: F)
where
F: FnMut(K, &mut V) -> bool,
{
@@ -181,16 +185,16 @@ where
/// Create a cursor for navigating this map. The cursor is initially positioned off the end of
/// the map.
pub fn cursor<'a>(
pub fn cursor<'a, C: Comparator<K>>(
&'a mut self,
forest: &'a mut MapForest<K, V, C>,
forest: &'a mut MapForest<K, V>,
comp: &'a C,
) -> MapCursor<'a, K, V, C> {
MapCursor::new(self, forest, comp)
}
/// Create an iterator traversing this map. The iterator type is `(K, V)`.
pub fn iter<'a>(&'a self, forest: &'a MapForest<K, V, C>) -> MapIter<'a, K, V, C> {
pub fn iter<'a>(&'a self, forest: &'a MapForest<K, V>) -> MapIter<'a, K, V> {
MapIter {
root: self.root,
pool: &forest.nodes,
@@ -199,11 +203,10 @@ where
}
}
impl<K, V, C> Default for Map<K, V, C>
impl<K, V> Default for Map<K, V>
where
K: Copy,
V: Copy,
C: Comparator<K>,
{
fn default() -> Self {
Self::new()
@@ -211,16 +214,15 @@ where
}
#[cfg(test)]
impl<K, V, C> Map<K, V, C>
impl<K, V> Map<K, V>
where
K: Copy + fmt::Display,
V: Copy,
C: Comparator<K>,
{
/// Verify consistency.
fn verify(&self, forest: &MapForest<K, V, C>, comp: &C)
fn verify<C: Comparator<K>>(&self, forest: &MapForest<K, V>, comp: &C)
where
NodeData<MapTypes<K, V, C>>: fmt::Display,
NodeData<MapTypes<K, V>>: fmt::Display,
{
if let Some(root) = self.root.expand() {
forest.nodes.verify_tree(root, comp);
@@ -228,7 +230,7 @@ where
}
/// Get a text version of the path to `key`.
fn tpath(&self, key: K, forest: &MapForest<K, V, C>, comp: &C) -> String {
fn tpath<C: Comparator<K>>(&self, key: K, forest: &MapForest<K, V>, comp: &C) -> String {
use std::string::ToString;
match self.root.expand() {
None => "map(empty)".to_string(),
@@ -252,9 +254,9 @@ where
C: 'a + Comparator<K>,
{
root: &'a mut PackedOption<Node>,
pool: &'a mut NodePool<MapTypes<K, V, C>>,
pool: &'a mut NodePool<MapTypes<K, V>>,
comp: &'a C,
path: Path<MapTypes<K, V, C>>,
path: Path<MapTypes<K, V>>,
}
impl<'a, K, V, C> MapCursor<'a, K, V, C>
@@ -265,8 +267,8 @@ where
{
/// Create a cursor with a default (off-the-end) location.
fn new(
container: &'a mut Map<K, V, C>,
forest: &'a mut MapForest<K, V, C>,
container: &'a mut Map<K, V>,
forest: &'a mut MapForest<K, V>,
comp: &'a C,
) -> MapCursor<'a, K, V, C> {
MapCursor {
@@ -379,22 +381,20 @@ where
}
/// An iterator visiting the key-value pairs of a `Map`.
pub struct MapIter<'a, K, V, C>
pub struct MapIter<'a, K, V>
where
K: 'a + Copy,
V: 'a + Copy,
C: 'a + Comparator<K>,
{
root: PackedOption<Node>,
pool: &'a NodePool<MapTypes<K, V, C>>,
path: Path<MapTypes<K, V, C>>,
pool: &'a NodePool<MapTypes<K, V>>,
path: Path<MapTypes<K, V>>,
}
impl<'a, K, V, C> Iterator for MapIter<'a, K, V, C>
impl<'a, K, V> Iterator for MapIter<'a, K, V>
where
K: 'a + Copy,
V: 'a + Copy,
C: 'a + Comparator<K>,
{
type Item = (K, V);
@@ -438,16 +438,16 @@ mod test {
#[test]
fn node_size() {
// check that nodes are cache line sized when keys and values are 32 bits.
type F = MapTypes<u32, u32, ()>;
type F = MapTypes<u32, u32>;
assert_eq!(mem::size_of::<NodeData<F>>(), 64);
}
#[test]
fn empty() {
let mut f = MapForest::<u32, f32, ()>::new();
let mut f = MapForest::<u32, f32>::new();
f.clear();
let mut m = Map::<u32, f32, ()>::new();
let mut m = Map::<u32, f32>::new();
assert!(m.is_empty());
m.clear(&mut f);
@@ -470,8 +470,8 @@ mod test {
#[test]
fn inserting() {
let f = &mut MapForest::<u32, f32, ()>::new();
let mut m = Map::<u32, f32, ()>::new();
let f = &mut MapForest::<u32, f32>::new();
let mut m = Map::<u32, f32>::new();
// The first seven values stay in a single leaf node.
assert_eq!(m.insert(50, 5.0, f, &()), None);
@@ -577,9 +577,9 @@ mod test {
#[test]
fn split_level0_leaf() {
// Various ways of splitting a full leaf node at level 0.
let f = &mut MapForest::<u32, f32, ()>::new();
let f = &mut MapForest::<u32, f32>::new();
fn full_leaf(f: &mut MapForest<u32, f32, ()>) -> Map<u32, f32, ()> {
fn full_leaf(f: &mut MapForest<u32, f32>) -> Map<u32, f32> {
let mut m = Map::new();
for n in 1..8 {
m.insert(n * 10, n as f32 * 1.1, f, &());
@@ -628,7 +628,7 @@ mod test {
#[test]
fn split_level1_leaf() {
// Various ways of splitting a full leaf node at level 1.
let f = &mut MapForest::<u32, f32, ()>::new();
let f = &mut MapForest::<u32, f32>::new();
// Return a map whose root node is a full inner node, and the leaf nodes are all full
// containing:
@@ -637,7 +637,7 @@ mod test {
// 210, 220, ..., 270
// ...
// 810, 820, ..., 870
fn full(f: &mut MapForest<u32, f32, ()>) -> Map<u32, f32, ()> {
fn full(f: &mut MapForest<u32, f32>) -> Map<u32, f32> {
let mut m = Map::new();
// Start by inserting elements in order.
@@ -756,7 +756,7 @@ mod test {
// Make a tree with two barely healthy leaf nodes:
// [ 10 20 30 40 ] [ 50 60 70 80 ]
fn two_leaf(f: &mut MapForest<u32, f32, ()>) -> Map<u32, f32, ()> {
fn two_leaf(f: &mut MapForest<u32, f32>) -> Map<u32, f32> {
f.clear();
let mut m = Map::new();
for n in 1..9 {
@@ -767,7 +767,7 @@ mod test {
#[test]
fn remove_level1() {
let f = &mut MapForest::<u32, f32, ()>::new();
let f = &mut MapForest::<u32, f32>::new();
let mut m = two_leaf(f);
// Verify geometry.
@@ -830,7 +830,7 @@ mod test {
#[test]
fn remove_level1_rightmost() {
let f = &mut MapForest::<u32, f32, ()>::new();
let f = &mut MapForest::<u32, f32>::new();
let mut m = two_leaf(f);
// [ 10 20 30 40 ] [ 50 60 70 80 ]
@@ -852,7 +852,7 @@ mod test {
// Make a 3-level tree with barely healthy nodes.
// 1 root, 8 inner nodes, 7*4+5=33 leaf nodes, 4 entries each.
fn level3_sparse(f: &mut MapForest<u32, f32, ()>) -> Map<u32, f32, ()> {
fn level3_sparse(f: &mut MapForest<u32, f32>) -> Map<u32, f32> {
f.clear();
let mut m = Map::new();
for n in 1..133 {
@@ -863,7 +863,7 @@ mod test {
#[test]
fn level3_removes() {
let f = &mut MapForest::<u32, f32, ()>::new();
let f = &mut MapForest::<u32, f32>::new();
let mut m = level3_sparse(f);
m.verify(f, &());
@@ -894,8 +894,8 @@ mod test {
#[test]
fn insert_many() {
let f = &mut MapForest::<u32, f32, ()>::new();
let mut m = Map::<u32, f32, ()>::new();
let f = &mut MapForest::<u32, f32>::new();
let mut m = Map::<u32, f32>::new();
let mm = 4096;
let mut x = 0;

View File

@@ -595,7 +595,6 @@ mod test {
type Value = SetValue;
type LeafKeys = [char; 15];
type LeafValues = [SetValue; 15];
type Comparator = ();
fn splat_key(key: Self::Key) -> Self::LeafKeys {
[key; 15]

View File

@@ -49,7 +49,7 @@ impl<F: Forest> Path<F> {
key: F::Key,
root: Node,
pool: &NodePool<F>,
comp: &F::Comparator,
comp: &Comparator<F::Key>,
) -> Option<F::Value> {
let mut node = root;
for level in 0.. {
@@ -723,7 +723,6 @@ mod test {
type Value = char;
type LeafKeys = [i32; 7];
type LeafValues = [char; 7];
type Comparator = TC;
fn splat_key(key: Self::Key) -> Self::LeafKeys {
[key; 7]

View File

@@ -1,5 +1,7 @@
//! B+-tree node pool.
#[cfg(test)]
use super::Comparator;
use super::{Forest, Node, NodeData};
use entity::PrimaryMap;
#[cfg(test)]
@@ -76,12 +78,11 @@ impl<F: Forest> NodePool<F> {
#[cfg(test)]
impl<F: Forest> NodePool<F> {
/// Verify the consistency of the tree rooted at `node`.
pub fn verify_tree(&self, node: Node, comp: &F::Comparator)
pub fn verify_tree<C: Comparator<F::Key>>(&self, node: Node, comp: &C)
where
NodeData<F>: fmt::Display,
F::Key: fmt::Display,
{
use super::Comparator;
use entity::SparseSet;
use std::borrow::Borrow;
use std::cmp::Ordering;

View File

@@ -9,18 +9,16 @@ use std::marker::PhantomData;
use std::string::String;
/// Tag type defining forest types for a set.
struct SetTypes<K, C>(PhantomData<(K, C)>);
struct SetTypes<K>(PhantomData<K>);
impl<K, C> Forest for SetTypes<K, C>
impl<K> Forest for SetTypes<K>
where
K: Copy,
C: Comparator<K>,
{
type Key = K;
type Value = SetValue;
type LeafKeys = [K; 2 * INNER_SIZE - 1];
type LeafValues = [SetValue; 2 * INNER_SIZE - 1];
type Comparator = C;
fn splat_key(key: Self::Key) -> Self::LeafKeys {
[key; 2 * INNER_SIZE - 1]
@@ -32,18 +30,16 @@ where
}
/// Memory pool for a forest of `Set` instances.
pub struct SetForest<K, C>
pub struct SetForest<K>
where
K: Copy,
C: Comparator<K>,
{
nodes: NodePool<SetTypes<K, C>>,
nodes: NodePool<SetTypes<K>>,
}
impl<K, C> SetForest<K, C>
impl<K> SetForest<K>
where
K: Copy,
C: Comparator<K>,
{
/// Create a new empty forest.
pub fn new() -> Self {
@@ -69,19 +65,17 @@ where
/// they belong to. *Cloning a set does not allocate new memory for the clone*. It creates an alias
/// of the same memory.
#[derive(Clone)]
pub struct Set<K, C>
pub struct Set<K>
where
K: Copy,
C: Comparator<K>,
{
root: PackedOption<Node>,
unused: PhantomData<(K, C)>,
unused: PhantomData<K>,
}
impl<K, C> Set<K, C>
impl<K> Set<K>
where
K: Copy,
C: Comparator<K>,
{
/// Make an empty set.
pub fn new() -> Self {
@@ -97,7 +91,7 @@ where
}
/// Does the set contain `key`?.
pub fn contains(&self, key: K, forest: &SetForest<K, C>, comp: &C) -> bool {
pub fn contains<C: Comparator<K>>(&self, key: K, forest: &SetForest<K>, comp: &C) -> bool {
self.root
.expand()
.and_then(|root| Path::default().find(key, root, &forest.nodes, comp))
@@ -109,14 +103,24 @@ where
/// If the set did not contain `key`, insert it and return true.
///
/// If `key` is already present, don't change the set and return false.
pub fn insert(&mut self, key: K, forest: &mut SetForest<K, C>, comp: &C) -> bool {
pub fn insert<C: Comparator<K>>(
&mut self,
key: K,
forest: &mut SetForest<K>,
comp: &C,
) -> bool {
self.cursor(forest, comp).insert(key)
}
/// Remove `key` from the set and return true.
///
/// If `key` was not present in the set, return false.
pub fn remove(&mut self, key: K, forest: &mut SetForest<K, C>, comp: &C) -> bool {
pub fn remove<C: Comparator<K>>(
&mut self,
key: K,
forest: &mut SetForest<K>,
comp: &C,
) -> bool {
let mut c = self.cursor(forest, comp);
if c.goto(key) {
c.remove();
@@ -127,7 +131,7 @@ where
}
/// Remove all entries.
pub fn clear(&mut self, forest: &mut SetForest<K, C>) {
pub fn clear(&mut self, forest: &mut SetForest<K>) {
if let Some(root) = self.root.take() {
forest.nodes.free_tree(root);
}
@@ -136,7 +140,7 @@ where
/// Retains only the elements specified by the predicate.
///
/// Remove all elements where the predicate returns false.
pub fn retain<F>(&mut self, forest: &mut SetForest<K, C>, mut predicate: F)
pub fn retain<F>(&mut self, forest: &mut SetForest<K>, mut predicate: F)
where
F: FnMut(K) -> bool,
{
@@ -155,16 +159,16 @@ where
/// Create a cursor for navigating this set. The cursor is initially positioned off the end of
/// the set.
pub fn cursor<'a>(
pub fn cursor<'a, C: Comparator<K>>(
&'a mut self,
forest: &'a mut SetForest<K, C>,
forest: &'a mut SetForest<K>,
comp: &'a C,
) -> SetCursor<'a, K, C> {
SetCursor::new(self, forest, comp)
}
/// Create an iterator traversing this set. The iterator type is `K`.
pub fn iter<'a>(&'a self, forest: &'a SetForest<K, C>) -> SetIter<'a, K, C> {
pub fn iter<'a>(&'a self, forest: &'a SetForest<K>) -> SetIter<'a, K> {
SetIter {
root: self.root,
pool: &forest.nodes,
@@ -173,10 +177,9 @@ where
}
}
impl<K, C> Default for Set<K, C>
impl<K> Default for Set<K>
where
K: Copy,
C: Comparator<K>,
{
fn default() -> Self {
Self::new()
@@ -193,9 +196,9 @@ where
C: 'a + Comparator<K>,
{
root: &'a mut PackedOption<Node>,
pool: &'a mut NodePool<SetTypes<K, C>>,
pool: &'a mut NodePool<SetTypes<K>>,
comp: &'a C,
path: Path<SetTypes<K, C>>,
path: Path<SetTypes<K>>,
}
impl<'a, K, C> SetCursor<'a, K, C>
@@ -205,8 +208,8 @@ where
{
/// Create a cursor with a default (invalid) location.
fn new(
container: &'a mut Set<K, C>,
forest: &'a mut SetForest<K, C>,
container: &'a mut Set<K>,
forest: &'a mut SetForest<K>,
comp: &'a C,
) -> SetCursor<'a, K, C> {
SetCursor {
@@ -327,20 +330,18 @@ where
}
/// An iterator visiting the elements of a `Set`.
pub struct SetIter<'a, K, C>
pub struct SetIter<'a, K>
where
K: 'a + Copy,
C: 'a + Comparator<K>,
{
root: PackedOption<Node>,
pool: &'a NodePool<SetTypes<K, C>>,
path: Path<SetTypes<K, C>>,
pool: &'a NodePool<SetTypes<K>>,
path: Path<SetTypes<K>>,
}
impl<'a, K, C> Iterator for SetIter<'a, K, C>
impl<'a, K> Iterator for SetIter<'a, K>
where
K: 'a + Copy,
C: 'a + Comparator<K>,
{
type Item = K;
@@ -365,16 +366,16 @@ mod test {
#[test]
fn node_size() {
// check that nodes are cache line sized when keys are 32 bits.
type F = SetTypes<u32, ()>;
type F = SetTypes<u32>;
assert_eq!(mem::size_of::<NodeData<F>>(), 64);
}
#[test]
fn empty() {
let mut f = SetForest::<u32, ()>::new();
let mut f = SetForest::<u32>::new();
f.clear();
let mut s = Set::<u32, ()>::new();
let mut s = Set::<u32>::new();
assert!(s.is_empty());
s.clear(&mut f);
assert!(!s.contains(7, &f, &()));
@@ -394,8 +395,8 @@ mod test {
#[test]
fn simple_cursor() {
let mut f = SetForest::<u32, ()>::new();
let mut s = Set::<u32, ()>::new();
let mut f = SetForest::<u32>::new();
let mut s = Set::<u32>::new();
let mut c = SetCursor::new(&mut s, &mut f, &());
assert!(c.insert(50));
@@ -436,8 +437,8 @@ mod test {
#[test]
fn two_level_sparse_tree() {
let mut f = SetForest::<u32, ()>::new();
let mut s = Set::<u32, ()>::new();
let mut f = SetForest::<u32>::new();
let mut s = Set::<u32>::new();
let mut c = SetCursor::new(&mut s, &mut f, &());
// Insert enough elements that we get a two-level tree.
@@ -482,8 +483,8 @@ mod test {
#[test]
fn three_level_sparse_tree() {
let mut f = SetForest::<u32, ()>::new();
let mut s = Set::<u32, ()>::new();
let mut f = SetForest::<u32>::new();
let mut s = Set::<u32>::new();
let mut c = SetCursor::new(&mut s, &mut f, &());
// Insert enough elements that we get a 3-level tree.
@@ -535,7 +536,7 @@ mod test {
// Level 4: 512 leafs, up to 7680 elements
//
// A 3-level tree can hold at most 960 elements.
fn dense4l(f: &mut SetForest<i32, ()>) -> Set<i32, ()> {
fn dense4l(f: &mut SetForest<i32>) -> Set<i32> {
f.clear();
let mut s = Set::new();
@@ -549,7 +550,7 @@ mod test {
#[test]
fn four_level() {
let mut f = SetForest::<i32, ()>::new();
let mut f = SetForest::<i32>::new();
let mut s = dense4l(&mut f);
assert_eq!(
@@ -593,7 +594,7 @@ mod test {
#[test]
fn four_level_clear() {
let mut f = SetForest::<i32, ()>::new();
let mut f = SetForest::<i32>::new();
let mut s = dense4l(&mut f);
s.clear(&mut f);
}

View File

@@ -61,11 +61,11 @@ struct CFGNode {
///
/// The redundant EBB stored here is always consistent with the CFG successor lists, even after
/// the IR has been edited.
pub predecessors: bforest::Map<Inst, Ebb, ()>,
pub predecessors: bforest::Map<Inst, Ebb>,
/// Set of EBBs that are the targets of branches and jumps in this EBB.
/// The set is ordered by EBB number, indicated by the `()` comparator type.
pub successors: bforest::Set<Ebb, ()>,
pub successors: bforest::Set<Ebb>,
}
/// The Control Flow Graph maintains a mapping of ebbs to their predecessors
@@ -73,8 +73,8 @@ struct CFGNode {
/// extended basic blocks.
pub struct ControlFlowGraph {
data: EntityMap<Ebb, CFGNode>,
pred_forest: bforest::MapForest<Inst, Ebb, ()>,
succ_forest: bforest::SetForest<Ebb, ()>,
pred_forest: bforest::MapForest<Inst, Ebb>,
succ_forest: bforest::SetForest<Ebb>,
valid: bool,
}
@@ -193,7 +193,7 @@ impl ControlFlowGraph {
/// An iterator over EBB predecessors. The iterator type is `BasicBlock`.
///
/// Each predecessor is an instruction that branches to the EBB.
pub struct PredIter<'a>(bforest::MapIter<'a, Inst, Ebb, ()>);
pub struct PredIter<'a>(bforest::MapIter<'a, Inst, Ebb>);
impl<'a> Iterator for PredIter<'a> {
type Item = BasicBlock;
@@ -204,7 +204,7 @@ impl<'a> Iterator for PredIter<'a> {
}
/// An iterator over EBB successors. The iterator type is `Ebb`.
pub type SuccIter<'a> = bforest::SetIter<'a, Ebb, ()>;
pub type SuccIter<'a> = bforest::SetIter<'a, Ebb>;
#[cfg(test)]
mod tests {

View File

@@ -112,6 +112,7 @@ use entity::SparseMapValue;
use ir::{Ebb, ExpandedProgramPoint, Inst, Layout, ProgramOrder, ProgramPoint, Value};
use regalloc::affinity::Affinity;
use std::cmp::Ordering;
use std::marker::PhantomData;
/// Global live range of a single SSA value.
///
@@ -172,7 +173,9 @@ pub struct GenLiveRange<PO: ProgramOrder> {
///
/// The entries are non-overlapping, and none of them overlap the EBB where the value is
/// defined.
liveins: bforest::Map<Ebb, Inst, PO>,
liveins: bforest::Map<Ebb, Inst>,
po: PhantomData<*const PO>,
}
/// Context information needed to query a `LiveRange`.
@@ -180,14 +183,14 @@ pub struct LiveRangeContext<'a, PO: 'a + ProgramOrder> {
/// Ordering of EBBs.
pub order: &'a PO,
/// Memory pool.
pub forest: &'a bforest::MapForest<Ebb, Inst, PO>,
pub forest: &'a bforest::MapForest<Ebb, Inst>,
}
impl<'a, PO: ProgramOrder> LiveRangeContext<'a, PO> {
/// Make a new context.
pub fn new(
order: &'a PO,
forest: &'a bforest::MapForest<Ebb, Inst, PO>,
forest: &'a bforest::MapForest<Ebb, Inst>,
) -> LiveRangeContext<'a, PO> {
LiveRangeContext { order, forest }
}
@@ -205,11 +208,13 @@ impl<'a, PO: ProgramOrder> Clone for LiveRangeContext<'a, PO> {
impl<'a, PO: ProgramOrder> Copy for LiveRangeContext<'a, PO> {}
/// Forest of B-trees used for storing live ranges.
pub type LiveRangeForest = bforest::MapForest<Ebb, Inst, Layout>;
pub type LiveRangeForest = bforest::MapForest<Ebb, Inst>;
impl<PO: ProgramOrder> bforest::Comparator<Ebb> for PO {
struct Cmp<'a, PO: ProgramOrder + 'a>(&'a PO);
impl<'a, PO: ProgramOrder> bforest::Comparator<Ebb> for Cmp<'a, PO> {
fn cmp(&self, a: Ebb, b: Ebb) -> Ordering {
self.cmp(a, b)
self.0.cmp(a, b)
}
}
@@ -224,6 +229,7 @@ impl<PO: ProgramOrder> GenLiveRange<PO> {
def_begin: def,
def_end: def,
liveins: bforest::Map::new(),
po: PhantomData,
}
}
@@ -243,7 +249,7 @@ impl<PO: ProgramOrder> GenLiveRange<PO> {
ebb: Ebb,
to: Inst,
order: &PO,
forest: &mut bforest::MapForest<Ebb, Inst, PO>,
forest: &mut bforest::MapForest<Ebb, Inst>,
) -> bool {
// First check if we're extending the def interval.
//
@@ -264,7 +270,8 @@ impl<PO: ProgramOrder> GenLiveRange<PO> {
}
// Now check if we're extending any of the existing live-in intervals.
let mut c = self.liveins.cursor(forest, order);
let cmp = Cmp(order);
let mut c = self.liveins.cursor(forest, &cmp);
let first_time_livein;
if let Some(end) = c.goto(ebb) {
@@ -367,8 +374,9 @@ impl<PO: ProgramOrder> GenLiveRange<PO> {
/// answer, but it is also possible that an even later program point is returned. So don't
/// depend on the returned `Inst` to belong to `ebb`.
pub fn livein_local_end(&self, ebb: Ebb, ctx: LiveRangeContext<PO>) -> Option<Inst> {
let cmp = Cmp(ctx.order);
self.liveins
.get_or_less(ebb, ctx.forest, ctx.order)
.get_or_less(ebb, ctx.forest, &cmp)
.and_then(|(_, inst)| {
// We have an entry that ends at `inst`.
if ctx.order.cmp(inst, ebb) == Ordering::Greater {
@@ -390,10 +398,7 @@ impl<PO: ProgramOrder> GenLiveRange<PO> {
///
/// Note that the intervals are stored in a compressed form so each entry may span multiple
/// EBBs where the value is live in.
pub fn liveins<'a>(
&'a self,
ctx: LiveRangeContext<'a, PO>,
) -> bforest::MapIter<'a, Ebb, Inst, PO> {
pub fn liveins<'a>(&'a self, ctx: LiveRangeContext<'a, PO>) -> bforest::MapIter<'a, Ebb, Inst> {
self.liveins.iter(ctx.forest)
}
@@ -507,11 +512,7 @@ mod tests {
}
// Validate the live range invariants.
fn validate(
&self,
lr: &GenLiveRange<ProgOrder>,
forest: &bforest::MapForest<Ebb, Inst, ProgOrder>,
) {
fn validate(&self, lr: &GenLiveRange<ProgOrder>, forest: &bforest::MapForest<Ebb, Inst>) {
// The def interval must cover a single EBB.
let def_ebb = self.pp_ebb(lr.def_begin);
assert_eq!(def_ebb, self.pp_ebb(lr.def_end));