cranelift: Port most of simple_preopt.rs over to the peepmatic DSL

This ports all of the identity, no-op, simplification, and canonicalization
related optimizations over from being hand-coded to the `peepmatic` DSL. This
does not handle the branch-to-branch optimizations or most of the
divide-by-constant optimizations.
This commit is contained in:
Nick Fitzgerald
2020-04-28 16:43:32 -07:00
parent 18663fede9
commit 090d1c2d32
20 changed files with 1289 additions and 488 deletions

View File

@@ -234,11 +234,7 @@ impl DataFlowGraph {
/// Get the type of a value.
pub fn value_type(&self, v: Value) -> Type {
match self.values[v] {
ValueData::Inst { ty, .. }
| ValueData::Param { ty, .. }
| ValueData::Alias { ty, .. } => ty,
}
self.values[v].ty()
}
/// Get the definition of a value.
@@ -383,9 +379,14 @@ pub enum ValueDef {
impl ValueDef {
/// Unwrap the instruction where the value was defined, or panic.
pub fn unwrap_inst(&self) -> Inst {
self.inst().expect("Value is not an instruction result")
}
/// Get the instruction where the value was defined, if any.
pub fn inst(&self) -> Option<Inst> {
match *self {
Self::Result(inst, _) => inst,
_ => panic!("Value is not an instruction result"),
Self::Result(inst, _) => Some(inst),
_ => None,
}
}
@@ -428,6 +429,16 @@ enum ValueData {
Alias { ty: Type, original: Value },
}
impl ValueData {
fn ty(&self) -> Type {
match *self {
ValueData::Inst { ty, .. }
| ValueData::Param { ty, .. }
| ValueData::Alias { ty, .. } => ty,
}
}
}
/// Instructions.
///
impl DataFlowGraph {

View File

@@ -308,6 +308,30 @@ impl Function {
// function, assume it is not a leaf.
self.dfg.signatures.is_empty()
}
/// Replace the `dst` instruction's data with the `src` instruction's data
/// and then remove `src`.
///
/// `src` and its result values should not be used at all, as any uses would
/// be left dangling after calling this method.
///
/// `src` and `dst` must have the same number of resulting values, and
/// `src`'s i^th value must have the same type as `dst`'s i^th value.
pub fn transplant_inst(&mut self, dst: Inst, src: Inst) {
debug_assert_eq!(
self.dfg.inst_results(dst).len(),
self.dfg.inst_results(src).len()
);
debug_assert!(self
.dfg
.inst_results(dst)
.iter()
.zip(self.dfg.inst_results(src))
.all(|(a, b)| self.dfg.value_type(*a) == self.dfg.value_type(*b)));
self.dfg[dst] = self.dfg[src].clone();
self.layout.remove_inst(src);
}
}
/// Additional annotations for function display.

View File

@@ -11,9 +11,7 @@ use core::fmt::{self, Display, Formatter};
use core::ops::{Deref, DerefMut};
use core::str::FromStr;
use crate::ir;
use crate::ir::types;
use crate::ir::{Block, FuncRef, JumpTable, SigRef, Type, Value};
use crate::ir::{self, trapcode::TrapCode, types, Block, FuncRef, JumpTable, SigRef, Type, Value};
use crate::isa;
use crate::bitset::BitSet;
@@ -257,6 +255,30 @@ impl InstructionData {
}
}
/// If this is a trapping instruction, get its trap code. Otherwise, return
/// `None`.
pub fn trap_code(&self) -> Option<TrapCode> {
match *self {
Self::CondTrap { code, .. }
| Self::FloatCondTrap { code, .. }
| Self::IntCondTrap { code, .. }
| Self::Trap { code, .. } => Some(code),
_ => None,
}
}
/// If this is a trapping instruction, get an exclusive reference to its
/// trap code. Otherwise, return `None`.
pub fn trap_code_mut(&mut self) -> Option<&mut TrapCode> {
match self {
Self::CondTrap { code, .. }
| Self::FloatCondTrap { code, .. }
| Self::IntCondTrap { code, .. }
| Self::Trap { code, .. } => Some(code),
_ => None,
}
}
/// Return information about a call instruction.
///
/// Any instruction that can call another function reveals its call signature here.

View File

@@ -101,6 +101,7 @@ mod licm;
mod nan_canonicalization;
mod num_uses;
mod partition_slice;
mod peepmatic;
mod postopt;
mod predicates;
mod redundant_reload_remover;

View File

@@ -0,0 +1,847 @@
//! Glue for working with `peepmatic`-generated peephole optimizers.
use crate::cursor::{Cursor, FuncCursor};
use crate::ir::{
dfg::DataFlowGraph,
entities::{Inst, Value},
immediates::{Imm64, Uimm64},
instructions::{InstructionData, Opcode},
types, InstBuilder,
};
use crate::isa::TargetIsa;
use cranelift_codegen_shared::condcodes::IntCC;
use peepmatic_runtime::{
cc::ConditionCode,
instruction_set::InstructionSet,
operator::Operator,
part::{Constant, Part},
paths::Path,
r#type::{BitWidth, Kind, Type},
PeepholeOptimizations, PeepholeOptimizer,
};
use std::boxed::Box;
use std::convert::{TryFrom, TryInto};
use std::ptr;
use std::sync::atomic::{AtomicPtr, Ordering};
/// Get the `preopt.peepmatic` peephole optimizer.
pub(crate) fn preopt<'a, 'b>(
isa: &'b dyn TargetIsa,
) -> PeepholeOptimizer<'static, 'a, &'b dyn TargetIsa> {
static SERIALIZED: &[u8] = include_bytes!("preopt.serialized");
// Once initialized, this must never be re-assigned. The initialized value
// is semantically "static data" and is intentionally leaked for the whole
// program's lifetime.
static DESERIALIZED: AtomicPtr<PeepholeOptimizations> = AtomicPtr::new(ptr::null_mut());
// If `DESERIALIZED` has already been initialized, then just use it.
let ptr = DESERIALIZED.load(Ordering::SeqCst);
if let Some(peep_opts) = unsafe { ptr.as_ref() } {
return peep_opts.optimizer(isa);
}
// Otherwise, if `DESERIALIZED` hasn't been initialized, then we need to
// deserialize the peephole optimizations and initialize it. However,
// another thread could be doing the same thing concurrently, so there is a
// race to see who initializes `DESERIALIZED` first, and we need to be
// prepared to both win or lose that race.
let peep_opts = PeepholeOptimizations::deserialize(SERIALIZED)
.expect("should always be able to deserialize `preopt.serialized`");
let peep_opts = Box::into_raw(Box::new(peep_opts));
// Only update `DESERIALIZE` if it is still null, attempting to perform the
// one-time transition from null -> non-null.
if DESERIALIZED
.compare_and_swap(ptr::null_mut(), peep_opts, Ordering::SeqCst)
.is_null()
{
// We won the race to initialize `DESERIALIZED`.
debug_assert_eq!(DESERIALIZED.load(Ordering::SeqCst), peep_opts);
let peep_opts = unsafe { &*peep_opts };
return peep_opts.optimizer(isa);
}
// We lost the race to initialize `DESERIALIZED`. Drop our no-longer-needed
// instance of `peep_opts` and get the pointer to the instance that won the
// race.
let _ = unsafe { Box::from_raw(peep_opts) };
let peep_opts = DESERIALIZED.load(Ordering::SeqCst);
let peep_opts = unsafe { peep_opts.as_ref().unwrap() };
peep_opts.optimizer(isa)
}
/// Either a `Value` or an `Inst`.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum ValueOrInst {
Value(Value),
Inst(Inst),
}
impl ValueOrInst {
/// Get the underlying `Value` if any.
pub fn value(&self) -> Option<Value> {
match *self {
Self::Value(v) => Some(v),
Self::Inst(_) => None,
}
}
/// Get the underlying `Inst` if any.
pub fn inst(&self) -> Option<Inst> {
match *self {
Self::Inst(i) => Some(i),
Self::Value(_) => None,
}
}
/// Unwrap the underlying `Value`, panicking if it is not a `Value.
pub fn unwrap_value(&self) -> Value {
self.value().unwrap()
}
/// Unwrap the underlying `Inst`, panicking if it is not a `Inst.
pub fn unwrap_inst(&self) -> Inst {
self.inst().unwrap()
}
/// Is this a `Value`?
pub fn is_value(&self) -> bool {
self.value().is_some()
}
/// Is this an `Inst`?
pub fn is_inst(&self) -> bool {
self.inst().is_some()
}
fn resolve_inst(&self, dfg: &DataFlowGraph) -> Option<Inst> {
match *self {
ValueOrInst::Inst(i) => Some(i),
ValueOrInst::Value(v) => dfg.value_def(v).inst(),
}
}
fn result_bit_width(&self, dfg: &DataFlowGraph) -> u8 {
match *self {
ValueOrInst::Value(v) => dfg.value_type(v).bits().try_into().unwrap(),
ValueOrInst::Inst(inst) => {
let result = dfg.first_result(inst);
dfg.value_type(result).bits().try_into().unwrap()
}
}
}
fn to_constant(&self, pos: &mut FuncCursor) -> Option<Constant> {
let inst = self.resolve_inst(&pos.func.dfg)?;
match pos.func.dfg[inst] {
InstructionData::UnaryImm {
opcode: Opcode::Iconst,
imm,
} => {
let width = self.result_bit_width(&pos.func.dfg).try_into().unwrap();
let x: i64 = imm.into();
Some(Constant::Int(x as u64, width))
}
InstructionData::UnaryBool {
opcode: Opcode::Bconst,
imm,
} => {
let width = self.result_bit_width(&pos.func.dfg).try_into().unwrap();
Some(Constant::Bool(imm, width))
}
_ => None,
}
}
}
impl From<Value> for ValueOrInst {
fn from(v: Value) -> ValueOrInst {
ValueOrInst::Value(v)
}
}
impl From<Inst> for ValueOrInst {
fn from(i: Inst) -> ValueOrInst {
ValueOrInst::Inst(i)
}
}
/// Get the fixed bit width of `bit_width`, or if it is polymorphic, the bit
/// width of `root`.
fn bit_width(dfg: &DataFlowGraph, bit_width: BitWidth, root: Inst) -> u8 {
bit_width.fixed_width().unwrap_or_else(|| {
let tyvar = dfg.ctrl_typevar(root);
let ty = dfg.compute_result_type(root, 0, tyvar).unwrap();
u8::try_from(ty.bits()).unwrap()
})
}
/// Convert the constant `c` into an instruction.
fn const_to_value<'a>(builder: impl InstBuilder<'a>, c: Constant, root: Inst) -> Value {
match c {
Constant::Bool(b, width) => {
let width = bit_width(builder.data_flow_graph(), width, root);
let ty = match width {
1 => types::B1,
8 => types::B8,
16 => types::B16,
32 => types::B32,
64 => types::B64,
128 => types::B128,
_ => unreachable!(),
};
builder.bconst(ty, b)
}
Constant::Int(x, width) => {
let width = bit_width(builder.data_flow_graph(), width, root);
let ty = match width {
1 | 8 => types::I8,
16 => types::I16,
32 => types::I32,
64 => types::I64,
128 => types::I128,
_ => unreachable!(),
};
builder.iconst(ty, x as i64)
}
}
}
fn part_to_inst(pos: &mut FuncCursor, root: Inst, part: Part<ValueOrInst>) -> Option<Inst> {
match part {
Part::Instruction(ValueOrInst::Inst(inst)) => Some(inst),
Part::Instruction(ValueOrInst::Value(v)) => {
let inst = pos.func.dfg.value_def(v).inst()?;
if pos.func.dfg.inst_results(inst).len() == 1 {
Some(inst)
} else {
None
}
}
Part::Constant(c) => {
let v = const_to_value(pos.ins(), c, root);
let inst = pos.func.dfg.value_def(v).unwrap_inst();
Some(inst)
}
Part::ConditionCode(_) => None,
}
}
fn part_to_value(pos: &mut FuncCursor, root: Inst, part: Part<ValueOrInst>) -> Option<Value> {
match part {
Part::Instruction(ValueOrInst::Inst(inst)) => {
pos.func.dfg.inst_results(inst).first().copied()
}
Part::Instruction(ValueOrInst::Value(v)) => Some(v),
Part::Constant(c) => Some(const_to_value(pos.ins(), c, root)),
Part::ConditionCode(_) => None,
}
}
impl Opcode {
fn to_peepmatic_operator(&self) -> Option<Operator> {
macro_rules! convert {
( $( $op:ident $(,)* )* ) => {
match self {
$( Self::$op => Some(Operator::$op), )*
_ => None,
}
}
}
convert!(
AdjustSpDown,
AdjustSpDownImm,
Band,
BandImm,
Bconst,
Bint,
Bor,
BorImm,
Brnz,
Brz,
Bxor,
BxorImm,
Iadd,
IaddImm,
Icmp,
IcmpImm,
Iconst,
Ifcmp,
IfcmpImm,
Imul,
ImulImm,
Ireduce,
IrsubImm,
Ishl,
IshlImm,
Isub,
Rotl,
RotlImm,
Rotr,
RotrImm,
Sdiv,
SdivImm,
Select,
Sextend,
Srem,
SremImm,
Sshr,
SshrImm,
Trapnz,
Trapz,
Udiv,
UdivImm,
Uextend,
Urem,
UremImm,
Ushr,
UshrImm,
)
}
}
impl TryFrom<Constant> for Imm64 {
type Error = &'static str;
fn try_from(c: Constant) -> Result<Self, Self::Error> {
match c {
Constant::Int(x, _) => Ok(Imm64::from(x as i64)),
Constant::Bool(..) => Err("cannot create Imm64 from Constant::Bool"),
}
}
}
impl Into<Constant> for Imm64 {
#[inline]
fn into(self) -> Constant {
let x: i64 = self.into();
Constant::Int(x as _, BitWidth::SixtyFour)
}
}
impl Into<Part<ValueOrInst>> for Imm64 {
#[inline]
fn into(self) -> Part<ValueOrInst> {
let c: Constant = self.into();
c.into()
}
}
fn part_to_imm64(pos: &mut FuncCursor, part: Part<ValueOrInst>) -> Imm64 {
return match part {
Part::Instruction(x) => match x.to_constant(pos).unwrap_or_else(|| cannot_convert()) {
Constant::Int(x, _) => (x as i64).into(),
Constant::Bool(..) => cannot_convert(),
},
Part::Constant(Constant::Int(x, _)) => (x as i64).into(),
Part::ConditionCode(_) | Part::Constant(Constant::Bool(..)) => cannot_convert(),
};
#[inline(never)]
#[cold]
fn cannot_convert() -> ! {
panic!("cannot convert part into `Imm64`")
}
}
impl Into<Constant> for Uimm64 {
#[inline]
fn into(self) -> Constant {
let x: u64 = self.into();
Constant::Int(x, BitWidth::SixtyFour)
}
}
impl Into<Part<ValueOrInst>> for Uimm64 {
#[inline]
fn into(self) -> Part<ValueOrInst> {
let c: Constant = self.into();
c.into()
}
}
fn peepmatic_to_intcc(cc: ConditionCode) -> IntCC {
match cc {
ConditionCode::Eq => IntCC::Equal,
ConditionCode::Ne => IntCC::NotEqual,
ConditionCode::Slt => IntCC::SignedLessThan,
ConditionCode::Sle => IntCC::SignedGreaterThanOrEqual,
ConditionCode::Sgt => IntCC::SignedGreaterThan,
ConditionCode::Sge => IntCC::SignedLessThanOrEqual,
ConditionCode::Ult => IntCC::UnsignedLessThan,
ConditionCode::Uge => IntCC::UnsignedGreaterThanOrEqual,
ConditionCode::Ugt => IntCC::UnsignedGreaterThan,
ConditionCode::Ule => IntCC::UnsignedLessThanOrEqual,
ConditionCode::Of => IntCC::Overflow,
ConditionCode::Nof => IntCC::NotOverflow,
}
}
fn intcc_to_peepmatic(cc: IntCC) -> ConditionCode {
match cc {
IntCC::Equal => ConditionCode::Eq,
IntCC::NotEqual => ConditionCode::Ne,
IntCC::SignedLessThan => ConditionCode::Slt,
IntCC::SignedGreaterThanOrEqual => ConditionCode::Sle,
IntCC::SignedGreaterThan => ConditionCode::Sgt,
IntCC::SignedLessThanOrEqual => ConditionCode::Sge,
IntCC::UnsignedLessThan => ConditionCode::Ult,
IntCC::UnsignedGreaterThanOrEqual => ConditionCode::Uge,
IntCC::UnsignedGreaterThan => ConditionCode::Ugt,
IntCC::UnsignedLessThanOrEqual => ConditionCode::Ule,
IntCC::Overflow => ConditionCode::Of,
IntCC::NotOverflow => ConditionCode::Nof,
}
}
fn get_immediate(dfg: &DataFlowGraph, inst: Inst, i: usize) -> Part<ValueOrInst> {
return match dfg[inst] {
InstructionData::BinaryImm { imm, .. } if i == 0 => imm.into(),
InstructionData::BranchIcmp { cond, .. } if i == 0 => intcc_to_peepmatic(cond).into(),
InstructionData::BranchInt { cond, .. } if i == 0 => intcc_to_peepmatic(cond).into(),
InstructionData::IntCompare { cond, .. } if i == 0 => intcc_to_peepmatic(cond).into(),
InstructionData::IntCompareImm { cond, .. } if i == 0 => intcc_to_peepmatic(cond).into(),
InstructionData::IntCompareImm { imm, .. } if i == 1 => imm.into(),
InstructionData::IntCond { cond, .. } if i == 0 => intcc_to_peepmatic(cond).into(),
InstructionData::IntCondTrap { cond, .. } if i == 0 => intcc_to_peepmatic(cond).into(),
InstructionData::IntSelect { cond, .. } if i == 0 => intcc_to_peepmatic(cond).into(),
InstructionData::UnaryBool { imm, .. } if i == 0 => {
Constant::Bool(imm, BitWidth::Polymorphic).into()
}
InstructionData::UnaryImm { imm, .. } if i == 0 => imm.into(),
ref otherwise => unsupported(otherwise),
};
#[inline(never)]
#[cold]
fn unsupported(data: &InstructionData) -> ! {
panic!("unsupported instruction data: {:?}", data)
}
}
fn get_argument(dfg: &DataFlowGraph, inst: Inst, i: usize) -> Option<Value> {
dfg.inst_args(inst).get(i).copied()
}
fn peepmatic_ty_to_ir_ty(ty: Type, dfg: &DataFlowGraph, root: Inst) -> types::Type {
match (ty.kind, bit_width(dfg, ty.bit_width, root)) {
(Kind::Int, 1) | (Kind::Int, 8) => types::I8,
(Kind::Int, 16) => types::I16,
(Kind::Int, 32) => types::I32,
(Kind::Int, 64) => types::I64,
(Kind::Int, 128) => types::I128,
(Kind::Bool, 1) => types::B1,
(Kind::Bool, 8) => types::I8,
(Kind::Bool, 16) => types::I16,
(Kind::Bool, 32) => types::I32,
(Kind::Bool, 64) => types::I64,
(Kind::Bool, 128) => types::I128,
_ => unreachable!(),
}
}
impl<'a, 'b> InstructionSet<'b> for &'a dyn TargetIsa {
type Context = FuncCursor<'b>;
type Instruction = ValueOrInst;
fn replace_instruction(
&self,
pos: &mut FuncCursor<'b>,
old: ValueOrInst,
new: Part<ValueOrInst>,
) -> ValueOrInst {
log::trace!("replace {:?} with {:?}", old, new);
let old_inst = old.unwrap_inst();
// Try to convert `new` to an instruction, because we prefer replacing
// an old instruction with a new one wholesale. However, if the
// replacement cannot be converted to an instruction (e.g. the
// right-hand side is a block/function parameter value) then we change
// the old instruction's result to an alias of the new value.
match part_to_inst(pos, old_inst, new) {
Some(new_inst) => {
pos.func.transplant_inst(old_inst, new_inst);
debug_assert_eq!(pos.current_inst(), Some(old_inst));
old_inst.into()
}
None => {
let new_value = part_to_value(pos, old_inst, new).unwrap();
let old_results = pos.func.dfg.detach_results(old_inst);
let old_results = old_results.as_slice(&pos.func.dfg.value_lists);
assert_eq!(old_results.len(), 1);
let old_value = old_results[0];
pos.func.dfg.change_to_alias(old_value, new_value);
pos.func.dfg.replace(old_inst).nop();
new_value.into()
}
}
}
fn get_part_at_path(
&self,
pos: &mut FuncCursor<'b>,
root: ValueOrInst,
path: Path,
) -> Option<Part<ValueOrInst>> {
// The root is path [0].
debug_assert!(!path.0.is_empty());
debug_assert_eq!(path.0[0], 0);
let mut part = Part::Instruction(root);
for p in path.0[1..].iter().copied() {
let inst = part.as_instruction()?.resolve_inst(&pos.func.dfg)?;
let operator = pos.func.dfg[inst].opcode().to_peepmatic_operator()?;
if p < operator.immediates_arity() {
part = get_immediate(&pos.func.dfg, inst, p as usize);
continue;
}
let arg = p - operator.immediates_arity();
let arg = arg as usize;
let value = get_argument(&pos.func.dfg, inst, arg)?;
part = Part::Instruction(value.into());
}
log::trace!("get_part_at_path({:?}) = {:?}", path, part);
Some(part)
}
fn operator(&self, pos: &mut FuncCursor<'b>, value_or_inst: ValueOrInst) -> Option<Operator> {
let inst = value_or_inst.resolve_inst(&pos.func.dfg)?;
pos.func.dfg[inst].opcode().to_peepmatic_operator()
}
fn make_inst_1(
&self,
pos: &mut FuncCursor<'b>,
root: ValueOrInst,
operator: Operator,
r#type: Type,
a: Part<ValueOrInst>,
) -> ValueOrInst {
log::trace!("make_inst_1: {:?}({:?})", operator, a);
let root = root.unwrap_inst();
match operator {
Operator::AdjustSpDown => {
let a = part_to_value(pos, root, a).unwrap();
pos.ins().adjust_sp_down(a).into()
}
Operator::AdjustSpDownImm => {
let c = a.unwrap_constant();
let imm = Imm64::try_from(c).unwrap();
pos.ins().adjust_sp_down_imm(imm).into()
}
Operator::Bconst => {
let c = a.unwrap_constant();
const_to_value(pos.ins(), c, root).into()
}
Operator::Bint => {
let a = part_to_value(pos, root, a).unwrap();
let ty = peepmatic_ty_to_ir_ty(r#type, &pos.func.dfg, root);
pos.ins().bint(ty, a).into()
}
Operator::Brnz => {
let a = part_to_value(pos, root, a).unwrap();
// NB: branching instructions must be the root of an
// optimization's right-hand side, so we get the destination
// block and arguments from the left-hand side's root. Peepmatic
// doesn't currently represent labels or varargs.
let block = pos.func.dfg[root].branch_destination().unwrap();
let args = pos.func.dfg.inst_args(root)[1..].to_vec();
pos.ins().brnz(a, block, &args).into()
}
Operator::Brz => {
let a = part_to_value(pos, root, a).unwrap();
// See the comment in the `Operator::Brnz` match argm.
let block = pos.func.dfg[root].branch_destination().unwrap();
let args = pos.func.dfg.inst_args(root)[1..].to_vec();
pos.ins().brz(a, block, &args).into()
}
Operator::Iconst => {
let a = a.unwrap_constant();
const_to_value(pos.ins(), a, root).into()
}
Operator::Ireduce => {
let a = part_to_value(pos, root, a).unwrap();
let ty = peepmatic_ty_to_ir_ty(r#type, &pos.func.dfg, root);
pos.ins().ireduce(ty, a).into()
}
Operator::Sextend => {
let a = part_to_value(pos, root, a).unwrap();
let ty = peepmatic_ty_to_ir_ty(r#type, &pos.func.dfg, root);
pos.ins().sextend(ty, a).into()
}
Operator::Trapnz => {
let a = part_to_value(pos, root, a).unwrap();
// NB: similar to branching instructions (see comment in the
// `Operator::Brnz` match arm) trapping instructions must be the
// root of an optimization's right-hand side, and we get the
// trap code from the root of the left-hand side. Peepmatic
// doesn't currently represent trap codes.
let code = pos.func.dfg[root].trap_code().unwrap();
pos.ins().trapnz(a, code).into()
}
Operator::Trapz => {
let a = part_to_value(pos, root, a).unwrap();
// See comment in the `Operator::Trapnz` match arm.
let code = pos.func.dfg[root].trap_code().unwrap();
pos.ins().trapz(a, code).into()
}
Operator::Uextend => {
let a = part_to_value(pos, root, a).unwrap();
let ty = peepmatic_ty_to_ir_ty(r#type, &pos.func.dfg, root);
pos.ins().uextend(ty, a).into()
}
_ => unreachable!(),
}
}
fn make_inst_2(
&self,
pos: &mut FuncCursor<'b>,
root: ValueOrInst,
operator: Operator,
_: Type,
a: Part<ValueOrInst>,
b: Part<ValueOrInst>,
) -> ValueOrInst {
log::trace!("make_inst_2: {:?}({:?}, {:?})", operator, a, b);
let root = root.unwrap_inst();
match operator {
Operator::Band => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
pos.ins().band(a, b).into()
}
Operator::BandImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
pos.ins().band_imm(b, a).into()
}
Operator::Bor => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
pos.ins().bor(a, b).into()
}
Operator::BorImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
pos.ins().bor_imm(b, a).into()
}
Operator::Bxor => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
pos.ins().bxor(a, b).into()
}
Operator::BxorImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
pos.ins().bxor_imm(b, a).into()
}
Operator::Iadd => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
pos.ins().iadd(a, b).into()
}
Operator::IaddImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
pos.ins().iadd_imm(b, a).into()
}
Operator::Ifcmp => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
pos.ins().ifcmp(a, b).into()
}
Operator::IfcmpImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
pos.ins().ifcmp_imm(b, a).into()
}
Operator::Imul => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
pos.ins().imul(a, b).into()
}
Operator::ImulImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
pos.ins().imul_imm(b, a).into()
}
Operator::IrsubImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
pos.ins().irsub_imm(b, a).into()
}
Operator::Ishl => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
pos.ins().ishl(a, b).into()
}
Operator::IshlImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
pos.ins().ishl_imm(b, a).into()
}
Operator::Isub => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
pos.ins().isub(a, b).into()
}
Operator::Rotl => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
pos.ins().rotl(a, b).into()
}
Operator::RotlImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
pos.ins().rotl_imm(b, a).into()
}
Operator::Rotr => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
pos.ins().rotr(a, b).into()
}
Operator::RotrImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
pos.ins().rotr_imm(b, a).into()
}
Operator::Sdiv => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
pos.ins().sdiv(a, b).into()
}
Operator::SdivImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
pos.ins().sdiv_imm(b, a).into()
}
Operator::Srem => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
pos.ins().srem(a, b).into()
}
Operator::SremImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
pos.ins().srem_imm(b, a).into()
}
Operator::Sshr => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
pos.ins().sshr(a, b).into()
}
Operator::SshrImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
pos.ins().sshr_imm(b, a).into()
}
Operator::Udiv => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
pos.ins().udiv(a, b).into()
}
Operator::UdivImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
pos.ins().udiv_imm(b, a).into()
}
Operator::Urem => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
pos.ins().urem(a, b).into()
}
Operator::UremImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
pos.ins().urem_imm(b, a).into()
}
Operator::Ushr => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
pos.ins().ushr(a, b).into()
}
Operator::UshrImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
pos.ins().ushr_imm(b, a).into()
}
_ => unreachable!(),
}
}
fn make_inst_3(
&self,
pos: &mut FuncCursor<'b>,
root: ValueOrInst,
operator: Operator,
_: Type,
a: Part<ValueOrInst>,
b: Part<ValueOrInst>,
c: Part<ValueOrInst>,
) -> ValueOrInst {
log::trace!("make_inst_3: {:?}({:?}, {:?}, {:?})", operator, a, b, c);
let root = root.unwrap_inst();
match operator {
Operator::Icmp => {
let cond = a.unwrap_condition_code();
let cond = peepmatic_to_intcc(cond);
let b = part_to_value(pos, root, b).unwrap();
let c = part_to_value(pos, root, c).unwrap();
pos.ins().icmp(cond, b, c).into()
}
Operator::IcmpImm => {
let cond = a.unwrap_condition_code();
let cond = peepmatic_to_intcc(cond);
let imm = part_to_imm64(pos, b);
let c = part_to_value(pos, root, c).unwrap();
pos.ins().icmp_imm(cond, c, imm).into()
}
Operator::Select => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
let c = part_to_value(pos, root, c).unwrap();
pos.ins().select(a, b, c).into()
}
_ => unreachable!(),
}
}
fn instruction_to_constant(
&self,
pos: &mut FuncCursor<'b>,
value_or_inst: ValueOrInst,
) -> Option<Constant> {
value_or_inst.to_constant(pos)
}
fn instruction_result_bit_width(
&self,
pos: &mut FuncCursor<'b>,
value_or_inst: ValueOrInst,
) -> u8 {
value_or_inst.result_bit_width(&pos.func.dfg)
}
fn native_word_size_in_bits(&self, _pos: &mut FuncCursor<'b>) -> u8 {
self.pointer_bits()
}
}

View File

@@ -0,0 +1,193 @@
;; Apply basic simplifications.
;;
;; This folds constants with arithmetic to form `_imm` instructions, and other
;; minor simplifications.
;;
;; Doesn't apply some simplifications if the native word width (in bytes) is
;; smaller than the controlling type's width of the instruction. This would
;; result in an illegal instruction that would likely be expanded back into an
;; instruction on smaller types with the same initial opcode, creating
;; unnecessary churn.
;; Binary instructions whose second argument is constant.
(=> (when (iadd $x $C)
(fits-in-native-word $C))
(iadd_imm $C $x))
(=> (when (imul $x $C)
(fits-in-native-word $C))
(imul_imm $C $x))
(=> (when (sdiv $x $C)
(fits-in-native-word $C))
(sdiv_imm $C $x))
(=> (when (udiv $x $C)
(fits-in-native-word $C))
(udiv_imm $C $x))
(=> (when (srem $x $C)
(fits-in-native-word $C))
(srem_imm $C $x))
(=> (when (urem $x $C)
(fits-in-native-word $C))
(urem_imm $C $x))
(=> (when (band $x $C)
(fits-in-native-word $C))
(band_imm $C $x))
(=> (when (bor $x $C)
(fits-in-native-word $C))
(bor_imm $C $x))
(=> (when (bxor $x $C)
(fits-in-native-word $C))
(bxor_imm $C $x))
(=> (when (rotl $x $C)
(fits-in-native-word $C))
(rotl_imm $C $x))
(=> (when (rotr $x $C)
(fits-in-native-word $C))
(rotr_imm $C $x))
(=> (when (ishl $x $C)
(fits-in-native-word $C))
(ishl_imm $C $x))
(=> (when (ushr $x $C)
(fits-in-native-word $C))
(ushr_imm $C $x))
(=> (when (sshr $x $C)
(fits-in-native-word $C))
(sshr_imm $C $x))
(=> (when (isub $x $C)
(fits-in-native-word $C))
(iadd_imm $(neg $C) $x))
(=> (when (ifcmp $x $C)
(fits-in-native-word $C))
(ifcmp_imm $C $x))
(=> (when (icmp $cond $x $C)
(fits-in-native-word $C))
(icmp_imm $cond $C $x))
;; Binary instructions whose first operand is constant.
(=> (when (iadd $C $x)
(fits-in-native-word $C))
(iadd_imm $C $x))
(=> (when (imul $C $x)
(fits-in-native-word $C))
(imul_imm $C $x))
(=> (when (band $C $x)
(fits-in-native-word $C))
(band_imm $C $x))
(=> (when (bor $C $x)
(fits-in-native-word $C))
(bor_imm $C $x))
(=> (when (bxor $C $x)
(fits-in-native-word $C))
(bxor_imm $C $x))
(=> (when (isub $C $x)
(fits-in-native-word $C))
(irsub_imm $C $x))
;; Unary instructions whose operand is constant.
(=> (adjust_sp_down $C) (adjust_sp_down_imm $C))
;; Fold `(binop_imm $C1 (binop_imm $C2 $x))` into `(binop_imm $(binop $C2 $C1) $x)`.
(=> (iadd_imm $C1 (iadd_imm $C2 $x)) (iadd_imm $(iadd $C1 $C2) $x))
(=> (imul_imm $C1 (imul_imm $C2 $x)) (imul_imm $(imul $C1 $C2) $x))
(=> (bor_imm $C1 (bor_imm $C2 $x)) (bor_imm $(bor $C1 $C2) $x))
(=> (band_imm $C1 (band_imm $C2 $x)) (band_imm $(band $C1 $C2) $x))
(=> (bxor_imm $C1 (bxor_imm $C2 $x)) (bxor_imm $(bxor $C1 $C2) $x))
;; Remove operations that are no-ops.
(=> (iadd_imm 0 $x) $x)
(=> (imul_imm 1 $x) $x)
(=> (sdiv_imm 1 $x) $x)
(=> (udiv_imm 1 $x) $x)
(=> (bor_imm 0 $x) $x)
(=> (band_imm -1 $x) $x)
(=> (bxor_imm 0 $x) $x)
(=> (rotl_imm 0 $x) $x)
(=> (rotr_imm 0 $x) $x)
(=> (ishl_imm 0 $x) $x)
(=> (ushr_imm 0 $x) $x)
(=> (sshr_imm 0 $x) $x)
;; Replace with zero.
(=> (imul_imm 0 $x) 0)
(=> (band_imm 0 $x) 0)
;; Replace with negative 1.
(=> (bor_imm -1 $x) -1)
;; Transform `[(x << N) >> N]` into a (un)signed-extending move.
;;
;; i16 -> i8 -> i16
(=> (when (ushr_imm 8 (ishl_imm 8 $x))
(bit-width $x 16))
(uextend{i16} (ireduce{i8} $x)))
(=> (when (sshr_imm 8 (ishl_imm 8 $x))
(bit-width $x 16))
(sextend{i16} (ireduce{i8} $x)))
;; i32 -> i8 -> i32
(=> (when (ushr_imm 24 (ishl_imm 24 $x))
(bit-width $x 32))
(uextend{i32} (ireduce{i8} $x)))
(=> (when (sshr_imm 24 (ishl_imm 24 $x))
(bit-width $x 32))
(sextend{i32} (ireduce{i8} $x)))
;; i32 -> i16 -> i32
(=> (when (ushr_imm 16 (ishl_imm 16 $x))
(bit-width $x 32))
(uextend{i32} (ireduce{i16} $x)))
(=> (when (sshr_imm 16 (ishl_imm 16 $x))
(bit-width $x 32))
(sextend{i32} (ireduce{i16} $x)))
;; i64 -> i8 -> i64
(=> (when (ushr_imm 56 (ishl_imm 56 $x))
(bit-width $x 64))
(uextend{i64} (ireduce{i8} $x)))
(=> (when (sshr_imm 56 (ishl_imm 56 $x))
(bit-width $x 64))
(sextend{i64} (ireduce{i8} $x)))
;; i64 -> i16 -> i64
(=> (when (ushr_imm 48 (ishl_imm 48 $x))
(bit-width $x 64))
(uextend{i64} (ireduce{i16} $x)))
(=> (when (sshr_imm 48 (ishl_imm 48 $x))
(bit-width $x 64))
(sextend{i64} (ireduce{i16} $x)))
;; i64 -> i32 -> i64
(=> (when (ushr_imm 32 (ishl_imm 32 $x))
(bit-width $x 64))
(uextend{i64} (ireduce{i32} $x)))
(=> (when (sshr_imm 32 (ishl_imm 32 $x))
(bit-width $x 64))
(sextend{i64} (ireduce{i32} $x)))
;; Fold away redundant `bint` instructions that accept both integer and boolean
;; arguments.
(=> (select (bint $x) $y $z) (select $x $y $z))
(=> (brz (bint $x)) (brz $x))
(=> (brnz (bint $x)) (brnz $x))
(=> (trapz (bint $x)) (trapz $x))
(=> (trapnz (bint $x)) (trapnz $x))
;; Fold comparisons into branch operations when possible.
;;
;; This matches against operations which compare against zero, then use the
;; result in a `brz` or `brnz` branch. It folds those two operations into a
;; single `brz` or `brnz`.
(=> (brnz (icmp_imm ne 0 $x)) (brnz $x))
(=> (brz (icmp_imm ne 0 $x)) (brz $x))
(=> (brnz (icmp_imm eq 0 $x)) (brz $x))
(=> (brz (icmp_imm eq 0 $x)) (brnz $x))
;; Division and remainder by constants.
;;
;; TODO: this section is incomplete, and a bunch of related optimizations are
;; still hand-coded in `simple_preopt.rs`.
;; (Division by one is handled above.)
;; Remainder by one is zero.
(=> (urem_imm 1 $x) 0)
(=> (srem_imm 1 $x) 0)
;; Division by a power of two -> shift right.
(=> (when (udiv_imm $C $x)
(is-power-of-two $C))
(ushr_imm $(log2 $C) $x))

Binary file not shown.

View File

@@ -10,13 +10,12 @@ use crate::divconst_magic_numbers::{MS32, MS64, MU32, MU64};
use crate::flowgraph::ControlFlowGraph;
use crate::ir::{
condcodes::{CondCode, IntCC},
dfg::ValueDef,
immediates,
instructions::{Opcode, ValueList},
types::{I16, I32, I64, I8},
instructions::Opcode,
types::{I32, I64},
Block, DataFlowGraph, Function, Inst, InstBuilder, InstructionData, Type, Value,
};
use crate::isa::TargetIsa;
use crate::peepmatic::ValueOrInst;
use crate::timing;
#[inline]
@@ -183,12 +182,8 @@ fn do_divrem_transformation(divrem_info: &DivRemByConstInfo, pos: &mut FuncCurso
// U32 div by 1: identity
// U32 rem by 1: zero
DivRemByConstInfo::DivU32(n1, 1) | DivRemByConstInfo::RemU32(n1, 1) => {
if is_rem {
pos.func.dfg.replace(inst).iconst(I32, 0);
} else {
replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
}
DivRemByConstInfo::DivU32(_, 1) | DivRemByConstInfo::RemU32(_, 1) => {
unreachable!("unsigned division and remainder by one is handled in `preopt.peepmatic`");
}
// U32 div, rem by a power-of-2
@@ -203,7 +198,10 @@ fn do_divrem_transformation(divrem_info: &DivRemByConstInfo, pos: &mut FuncCurso
let mask = (1u64 << k) - 1;
pos.func.dfg.replace(inst).band_imm(n1, mask as i64);
} else {
pos.func.dfg.replace(inst).ushr_imm(n1, k as i64);
unreachable!(
"unsigned division by a power of two is handled in \
`preopt.peepmatic`"
);
}
}
@@ -253,12 +251,8 @@ fn do_divrem_transformation(divrem_info: &DivRemByConstInfo, pos: &mut FuncCurso
// U64 div by 1: identity
// U64 rem by 1: zero
DivRemByConstInfo::DivU64(n1, 1) | DivRemByConstInfo::RemU64(n1, 1) => {
if is_rem {
pos.func.dfg.replace(inst).iconst(I64, 0);
} else {
replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
}
DivRemByConstInfo::DivU64(_, 1) | DivRemByConstInfo::RemU64(_, 1) => {
unreachable!("unsigned division and remainder by one is handled in `preopt.peepmatic`");
}
// U64 div, rem by a power-of-2
@@ -273,7 +267,9 @@ fn do_divrem_transformation(divrem_info: &DivRemByConstInfo, pos: &mut FuncCurso
let mask = (1u64 << k) - 1;
pos.func.dfg.replace(inst).band_imm(n1, mask as i64);
} else {
pos.func.dfg.replace(inst).ushr_imm(n1, k as i64);
unreachable!(
"unsigned division by a power of two is handled in `preopt.peepmatic`"
);
}
}
@@ -326,12 +322,8 @@ fn do_divrem_transformation(divrem_info: &DivRemByConstInfo, pos: &mut FuncCurso
// S32 div by 1: identity
// S32 rem by 1: zero
DivRemByConstInfo::DivS32(n1, 1) | DivRemByConstInfo::RemS32(n1, 1) => {
if is_rem {
pos.func.dfg.replace(inst).iconst(I32, 0);
} else {
replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
}
DivRemByConstInfo::DivS32(_, 1) | DivRemByConstInfo::RemS32(_, 1) => {
unreachable!("signed division and remainder by one is handled in `preopt.peepmatic`");
}
DivRemByConstInfo::DivS32(n1, d) | DivRemByConstInfo::RemS32(n1, d) => {
@@ -401,12 +393,8 @@ fn do_divrem_transformation(divrem_info: &DivRemByConstInfo, pos: &mut FuncCurso
// S64 div by 1: identity
// S64 rem by 1: zero
DivRemByConstInfo::DivS64(n1, 1) | DivRemByConstInfo::RemS64(n1, 1) => {
if is_rem {
pos.func.dfg.replace(inst).iconst(I64, 0);
} else {
replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
}
DivRemByConstInfo::DivS64(_, 1) | DivRemByConstInfo::RemS64(_, 1) => {
unreachable!("division and remaineder by one are handled in `preopt.peepmatic`");
}
DivRemByConstInfo::DivS64(n1, d) | DivRemByConstInfo::RemS64(n1, d) => {
@@ -468,340 +456,6 @@ fn do_divrem_transformation(divrem_info: &DivRemByConstInfo, pos: &mut FuncCurso
}
}
#[inline]
fn resolve_imm64_value(dfg: &DataFlowGraph, value: Value) -> Option<immediates::Imm64> {
if let ValueDef::Result(candidate_inst, _) = dfg.value_def(value) {
if let InstructionData::UnaryImm {
opcode: Opcode::Iconst,
imm,
} = dfg[candidate_inst]
{
return Some(imm);
}
}
None
}
/// Try to transform [(x << N) >> N] into a (un)signed-extending move.
/// Returns true if the final instruction has been converted to such a move.
fn try_fold_extended_move(
pos: &mut FuncCursor,
inst: Inst,
opcode: Opcode,
arg: Value,
imm: immediates::Imm64,
) -> bool {
if let ValueDef::Result(arg_inst, _) = pos.func.dfg.value_def(arg) {
if let InstructionData::BinaryImm {
opcode: Opcode::IshlImm,
arg: prev_arg,
imm: prev_imm,
} = &pos.func.dfg[arg_inst]
{
if imm != *prev_imm {
return false;
}
let dest_ty = pos.func.dfg.ctrl_typevar(inst);
if dest_ty != pos.func.dfg.ctrl_typevar(arg_inst) || !dest_ty.is_int() {
return false;
}
let imm_bits: i64 = imm.into();
let ireduce_ty = match (dest_ty.lane_bits() as i64).wrapping_sub(imm_bits) {
8 => I8,
16 => I16,
32 => I32,
_ => return false,
};
let ireduce_ty = ireduce_ty.by(dest_ty.lane_count()).unwrap();
// This becomes a no-op, since ireduce_ty has a smaller lane width than
// the argument type (also the destination type).
let arg = *prev_arg;
let narrower_arg = pos.ins().ireduce(ireduce_ty, arg);
if opcode == Opcode::UshrImm {
pos.func.dfg.replace(inst).uextend(dest_ty, narrower_arg);
} else {
pos.func.dfg.replace(inst).sextend(dest_ty, narrower_arg);
}
return true;
}
}
false
}
/// Apply basic simplifications.
///
/// This folds constants with arithmetic to form `_imm` instructions, and other minor
/// simplifications.
///
/// Doesn't apply some simplifications if the native word width (in bytes) is smaller than the
/// controlling type's width of the instruction. This would result in an illegal instruction that
/// would likely be expanded back into an instruction on smaller types with the same initial
/// opcode, creating unnecessary churn.
fn simplify(pos: &mut FuncCursor, inst: Inst, native_word_width: u32) {
match pos.func.dfg[inst] {
InstructionData::Binary { opcode, args } => {
if let Some(mut imm) = resolve_imm64_value(&pos.func.dfg, args[1]) {
let new_opcode = match opcode {
Opcode::Iadd => Opcode::IaddImm,
Opcode::Imul => Opcode::ImulImm,
Opcode::Sdiv => Opcode::SdivImm,
Opcode::Udiv => Opcode::UdivImm,
Opcode::Srem => Opcode::SremImm,
Opcode::Urem => Opcode::UremImm,
Opcode::Band => Opcode::BandImm,
Opcode::Bor => Opcode::BorImm,
Opcode::Bxor => Opcode::BxorImm,
Opcode::Rotl => Opcode::RotlImm,
Opcode::Rotr => Opcode::RotrImm,
Opcode::Ishl => Opcode::IshlImm,
Opcode::Ushr => Opcode::UshrImm,
Opcode::Sshr => Opcode::SshrImm,
Opcode::Isub => {
imm = imm.wrapping_neg();
Opcode::IaddImm
}
Opcode::Ifcmp => Opcode::IfcmpImm,
_ => return,
};
let ty = pos.func.dfg.ctrl_typevar(inst);
if ty.bytes() <= native_word_width {
pos.func
.dfg
.replace(inst)
.BinaryImm(new_opcode, ty, imm, args[0]);
// Repeat for BinaryImm simplification.
simplify(pos, inst, native_word_width);
}
} else if let Some(imm) = resolve_imm64_value(&pos.func.dfg, args[0]) {
let new_opcode = match opcode {
Opcode::Iadd => Opcode::IaddImm,
Opcode::Imul => Opcode::ImulImm,
Opcode::Band => Opcode::BandImm,
Opcode::Bor => Opcode::BorImm,
Opcode::Bxor => Opcode::BxorImm,
Opcode::Isub => Opcode::IrsubImm,
_ => return,
};
let ty = pos.func.dfg.ctrl_typevar(inst);
if ty.bytes() <= native_word_width {
pos.func
.dfg
.replace(inst)
.BinaryImm(new_opcode, ty, imm, args[1]);
}
}
}
InstructionData::Unary { opcode, arg } => {
if let Opcode::AdjustSpDown = opcode {
if let Some(imm) = resolve_imm64_value(&pos.func.dfg, arg) {
// Note this works for both positive and negative immediate values.
pos.func.dfg.replace(inst).adjust_sp_down_imm(imm);
}
}
}
InstructionData::BinaryImm { opcode, arg, imm } => {
let ty = pos.func.dfg.ctrl_typevar(inst);
let mut arg = arg;
let mut imm = imm;
match opcode {
Opcode::IaddImm
| Opcode::ImulImm
| Opcode::BorImm
| Opcode::BandImm
| Opcode::BxorImm => {
// Fold binary_op(C2, binary_op(C1, x)) into binary_op(binary_op(C1, C2), x)
if let ValueDef::Result(arg_inst, _) = pos.func.dfg.value_def(arg) {
if let InstructionData::BinaryImm {
opcode: prev_opcode,
arg: prev_arg,
imm: prev_imm,
} = &pos.func.dfg[arg_inst]
{
if opcode == *prev_opcode && ty == pos.func.dfg.ctrl_typevar(arg_inst) {
let lhs: i64 = imm.into();
let rhs: i64 = (*prev_imm).into();
let new_imm = match opcode {
Opcode::BorImm => lhs | rhs,
Opcode::BandImm => lhs & rhs,
Opcode::BxorImm => lhs ^ rhs,
Opcode::IaddImm => lhs.wrapping_add(rhs),
Opcode::ImulImm => lhs.wrapping_mul(rhs),
_ => panic!("can't happen"),
};
let new_imm = immediates::Imm64::from(new_imm);
let new_arg = *prev_arg;
pos.func
.dfg
.replace(inst)
.BinaryImm(opcode, ty, new_imm, new_arg);
imm = new_imm;
arg = new_arg;
}
}
}
}
Opcode::UshrImm | Opcode::SshrImm => {
if pos.func.dfg.ctrl_typevar(inst).bytes() <= native_word_width
&& try_fold_extended_move(pos, inst, opcode, arg, imm)
{
return;
}
}
_ => {}
};
// Replace operations that are no-ops.
match (opcode, imm.into()) {
(Opcode::IaddImm, 0)
| (Opcode::ImulImm, 1)
| (Opcode::SdivImm, 1)
| (Opcode::UdivImm, 1)
| (Opcode::BorImm, 0)
| (Opcode::BandImm, -1)
| (Opcode::BxorImm, 0)
| (Opcode::RotlImm, 0)
| (Opcode::RotrImm, 0)
| (Opcode::IshlImm, 0)
| (Opcode::UshrImm, 0)
| (Opcode::SshrImm, 0) => {
// Alias the result value with the original argument.
replace_single_result_with_alias(&mut pos.func.dfg, inst, arg);
}
(Opcode::ImulImm, 0) | (Opcode::BandImm, 0) => {
// Replace by zero.
pos.func.dfg.replace(inst).iconst(ty, 0);
}
(Opcode::BorImm, -1) => {
// Replace by minus one.
pos.func.dfg.replace(inst).iconst(ty, -1);
}
_ => {}
}
}
InstructionData::IntCompare { opcode, cond, args } => {
debug_assert_eq!(opcode, Opcode::Icmp);
if let Some(imm) = resolve_imm64_value(&pos.func.dfg, args[1]) {
if pos.func.dfg.ctrl_typevar(inst).bytes() <= native_word_width {
pos.func.dfg.replace(inst).icmp_imm(cond, args[0], imm);
}
}
}
InstructionData::CondTrap { .. }
| InstructionData::Branch { .. }
| InstructionData::Ternary {
opcode: Opcode::Select,
..
} => {
// Fold away a redundant `bint`.
let condition_def = {
let args = pos.func.dfg.inst_args(inst);
pos.func.dfg.value_def(args[0])
};
if let ValueDef::Result(def_inst, _) = condition_def {
if let InstructionData::Unary {
opcode: Opcode::Bint,
arg: bool_val,
} = pos.func.dfg[def_inst]
{
let args = pos.func.dfg.inst_args_mut(inst);
args[0] = bool_val;
}
}
}
_ => {}
}
}
struct BranchOptInfo {
br_inst: Inst,
cmp_arg: Value,
args: ValueList,
new_opcode: Opcode,
}
/// Fold comparisons into branch operations when possible.
///
/// This matches against operations which compare against zero, then use the
/// result in a `brz` or `brnz` branch. It folds those two operations into a
/// single `brz` or `brnz`.
fn branch_opt(pos: &mut FuncCursor, inst: Inst) {
let mut info = if let InstructionData::Branch {
opcode: br_opcode,
args: ref br_args,
..
} = pos.func.dfg[inst]
{
let first_arg = {
let args = pos.func.dfg.inst_args(inst);
args[0]
};
let icmp_inst = if let ValueDef::Result(icmp_inst, _) = pos.func.dfg.value_def(first_arg) {
icmp_inst
} else {
return;
};
if let InstructionData::IntCompareImm {
opcode: Opcode::IcmpImm,
arg: cmp_arg,
cond: cmp_cond,
imm: cmp_imm,
} = pos.func.dfg[icmp_inst]
{
let cmp_imm: i64 = cmp_imm.into();
if cmp_imm != 0 {
return;
}
// icmp_imm returns non-zero when the comparison is true. So, if
// we're branching on zero, we need to invert the condition.
let cond = match br_opcode {
Opcode::Brz => cmp_cond.inverse(),
Opcode::Brnz => cmp_cond,
_ => return,
};
let new_opcode = match cond {
IntCC::Equal => Opcode::Brz,
IntCC::NotEqual => Opcode::Brnz,
_ => return,
};
BranchOptInfo {
br_inst: inst,
cmp_arg,
args: br_args.clone(),
new_opcode,
}
} else {
return;
}
} else {
return;
};
info.args.as_mut_slice(&mut pos.func.dfg.value_lists)[0] = info.cmp_arg;
if let InstructionData::Branch { ref mut opcode, .. } = pos.func.dfg[info.br_inst] {
*opcode = info.new_opcode;
} else {
panic!();
}
}
enum BranchOrderKind {
BrzToBrnz(Value),
BrnzToBrz(Value),
@@ -945,14 +599,20 @@ fn branch_order(pos: &mut FuncCursor, cfg: &mut ControlFlowGraph, block: Block,
}
/// The main pre-opt pass.
pub fn do_preopt(func: &mut Function, cfg: &mut ControlFlowGraph, isa: &dyn TargetIsa) {
pub fn do_preopt<'func, 'isa>(
func: &'func mut Function,
cfg: &mut ControlFlowGraph,
isa: &'isa dyn TargetIsa,
) {
let _tt = timing::preopt();
let mut pos = FuncCursor::new(func);
let native_word_width = isa.pointer_bytes();
let mut preopt = crate::peepmatic::preopt(isa);
while let Some(block) = pos.next_block() {
while let Some(inst) = pos.next_inst() {
// Apply basic simplifications.
simplify(&mut pos, inst, native_word_width as u32);
preopt.apply_all(&mut pos, ValueOrInst::Inst(inst));
let inst = pos.current_inst().unwrap();
// Try to transform divide-by-constant into simpler operations.
if let Some(divrem_info) = get_div_info(inst, &pos.func.dfg) {
@@ -960,7 +620,6 @@ pub fn do_preopt(func: &mut Function, cfg: &mut ControlFlowGraph, isa: &dyn Targ
continue;
}
branch_opt(&mut pos, inst);
branch_order(&mut pos, cfg, block, inst);
}
}