[meta] Remove name lookups in formats;

This does a lot at once, since there was no clear way to split the three
commits:

- Instruction need to be passed an explicit InstructionFormat,
- InstructionFormat deduplication is checked once all entities have been
defined;
This commit is contained in:
Benjamin Bouvier
2019-10-18 19:24:03 +02:00
parent 9e9a7626d7
commit 0243b642e3
17 changed files with 1002 additions and 730 deletions

View File

@@ -1,9 +1,6 @@
use crate::cdsl::operands::{Operand, OperandKind};
use std::collections::{HashMap, HashSet};
use crate::cdsl::operands::OperandKind;
use std::fmt;
use std::rc::Rc;
use std::slice;
/// An immediate field in an instruction format.
///
@@ -30,7 +27,7 @@ pub struct FormatField {
///
/// All instruction formats must be predefined in the meta shared/formats.rs module.
#[derive(Debug)]
pub struct InstructionFormat {
pub(crate) struct InstructionFormat {
/// Instruction format name in CamelCase. This is used as a Rust variant name in both the
/// `InstructionData` and `InstructionFormat` enums.
pub name: &'static str,
@@ -47,6 +44,14 @@ pub struct InstructionFormat {
pub typevar_operand: Option<usize>,
}
/// A tuple serving as a key to deduplicate InstructionFormat.
#[derive(Hash, PartialEq, Eq)]
pub(crate) struct FormatStructure {
pub num_value_operands: usize,
pub has_value_list: bool,
pub imm_field_names: Vec<&'static str>,
}
impl fmt::Display for InstructionFormat {
fn fmt(&self, fmt: &mut fmt::Formatter) -> Result<(), fmt::Error> {
let imm_args = self
@@ -75,9 +80,22 @@ impl InstructionFormat {
)
})
}
/// Returns a tuple that uniquely identifies the structure.
pub fn structure(&self) -> FormatStructure {
FormatStructure {
num_value_operands: self.num_value_operands,
has_value_list: self.has_value_list,
imm_field_names: self
.imm_fields
.iter()
.map(|field| field.kind.name)
.collect::<Vec<_>>(),
}
}
}
pub struct InstructionFormatBuilder {
pub(crate) struct InstructionFormatBuilder {
name: &'static str,
num_value_operands: usize,
has_value_list: bool,
@@ -131,7 +149,7 @@ impl InstructionFormatBuilder {
self
}
pub fn build(self) -> InstructionFormat {
pub fn build(self) -> Rc<InstructionFormat> {
let typevar_operand = if self.typevar_operand.is_some() {
self.typevar_operand
} else if self.has_value_list || self.num_value_operands > 0 {
@@ -141,98 +159,12 @@ impl InstructionFormatBuilder {
None
};
InstructionFormat {
Rc::new(InstructionFormat {
name: self.name,
num_value_operands: self.num_value_operands,
has_value_list: self.has_value_list,
imm_fields: self.imm_fields,
typevar_operand,
}
}
}
pub struct FormatRegistry {
/// Map (immediate kinds names, number of values, has varargs) to an instruction format.
sig_to_index: HashMap<(Vec<String>, usize, bool), usize>,
formats: Vec<Rc<InstructionFormat>>,
name_set: HashSet<&'static str>,
}
impl FormatRegistry {
pub fn new() -> Self {
Self {
sig_to_index: HashMap::new(),
formats: Vec::new(),
name_set: HashSet::new(),
}
}
/// Find an existing instruction format that matches the given lists of instruction inputs and
/// outputs.
pub fn lookup(&self, operands_in: &Vec<Operand>) -> &Rc<InstructionFormat> {
let mut imm_keys = Vec::new();
let mut num_values = 0;
let mut has_varargs = false;
for operand in operands_in.iter() {
if operand.is_value() {
num_values += 1;
}
if !has_varargs {
has_varargs = operand.is_varargs();
}
if let Some(imm_key) = operand.kind.imm_key() {
imm_keys.push(imm_key);
}
}
let sig = (imm_keys, num_values, has_varargs);
let index = *self
.sig_to_index
.get(&sig)
.expect("unknown InstructionFormat; please define it in shared/formats.rs first");
&self.formats[index]
}
pub fn by_name(&self, name: &str) -> &Rc<InstructionFormat> {
&self
.formats
.iter()
.find(|format| format.name == name)
.unwrap_or_else(|| panic!("format with name '{}' doesn't exist", name))
}
pub fn insert(&mut self, inst_format: InstructionFormatBuilder) {
let name = &inst_format.name;
if !self.name_set.insert(name) {
panic!(
"Trying to add an InstructionFormat named {}, but it already exists!",
name
);
}
let format = inst_format.build();
// Compute key.
let imm_keys = format
.imm_fields
.iter()
.map(|field| field.kind.imm_key().unwrap())
.collect();
let key = (imm_keys, format.num_value_operands, format.has_value_list);
let index = self.formats.len();
self.formats.push(Rc::new(format));
if let Some(already_inserted) = self.sig_to_index.insert(key, index) {
panic!(
"duplicate InstructionFormat: trying to insert '{}' while '{}' already has the same structure.",
self.formats[index].name,
self.formats[already_inserted].name
);
}
}
pub fn iter(&self) -> slice::Iter<Rc<InstructionFormat>> {
self.formats.iter()
})
}
}

View File

@@ -1,3 +1,4 @@
use cranelift_codegen_shared::condcodes::IntCC;
use cranelift_entity::{entity_impl, PrimaryMap};
use std::collections::HashMap;
@@ -6,13 +7,14 @@ use std::fmt::{Display, Error, Formatter};
use std::rc::Rc;
use crate::cdsl::camel_case;
use crate::cdsl::formats::{FormatField, FormatRegistry, InstructionFormat};
use crate::cdsl::formats::{FormatField, InstructionFormat};
use crate::cdsl::operands::Operand;
use crate::cdsl::type_inference::Constraint;
use crate::cdsl::types::{LaneType, ReferenceType, ValueType, VectorType};
use crate::cdsl::typevar::TypeVar;
use crate::shared::formats::Formats;
use crate::shared::types::{Bool, Float, Int, Reference};
use cranelift_codegen_shared::condcodes::IntCC;
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub(crate) struct OpcodeNumber(u32);
@@ -20,19 +22,14 @@ entity_impl!(OpcodeNumber);
pub(crate) type AllInstructions = PrimaryMap<OpcodeNumber, Instruction>;
pub(crate) struct InstructionGroupBuilder<'format_reg, 'all_inst> {
format_registry: &'format_reg FormatRegistry,
pub(crate) struct InstructionGroupBuilder<'all_inst> {
all_instructions: &'all_inst mut AllInstructions,
own_instructions: Vec<Instruction>,
}
impl<'format_reg, 'all_inst> InstructionGroupBuilder<'format_reg, 'all_inst> {
pub fn new(
all_instructions: &'all_inst mut AllInstructions,
format_registry: &'format_reg FormatRegistry,
) -> Self {
impl<'all_inst> InstructionGroupBuilder<'all_inst> {
pub fn new(all_instructions: &'all_inst mut AllInstructions) -> Self {
Self {
format_registry,
all_instructions,
own_instructions: Vec::new(),
}
@@ -40,7 +37,7 @@ impl<'format_reg, 'all_inst> InstructionGroupBuilder<'format_reg, 'all_inst> {
pub fn push(&mut self, builder: InstructionBuilder) {
let opcode_number = OpcodeNumber(self.all_instructions.next_key().as_u32());
let inst = builder.build(self.format_registry, opcode_number);
let inst = builder.build(opcode_number);
// Note this clone is cheap, since Instruction is a Rc<> wrapper for InstructionContent.
self.own_instructions.push(inst.clone());
self.all_instructions.push(inst);
@@ -201,6 +198,7 @@ impl fmt::Display for InstructionContent {
pub(crate) struct InstructionBuilder {
name: String,
doc: String,
format: Rc<InstructionFormat>,
operands_in: Option<Vec<Operand>>,
operands_out: Option<Vec<Operand>>,
constraints: Option<Vec<Constraint>>,
@@ -219,10 +217,11 @@ pub(crate) struct InstructionBuilder {
}
impl InstructionBuilder {
pub fn new<S: Into<String>>(name: S, doc: S) -> Self {
pub fn new<S: Into<String>>(name: S, doc: S, format: &Rc<InstructionFormat>) -> Self {
Self {
name: name.into(),
doc: doc.into(),
format: format.clone(),
operands_in: None,
operands_out: None,
constraints: None,
@@ -297,7 +296,7 @@ impl InstructionBuilder {
self
}
fn build(self, format_registry: &FormatRegistry, opcode_number: OpcodeNumber) -> Instruction {
fn build(self, opcode_number: OpcodeNumber) -> Instruction {
let operands_in = self.operands_in.unwrap_or_else(Vec::new);
let operands_out = self.operands_out.unwrap_or_else(Vec::new);
@@ -319,9 +318,10 @@ impl InstructionBuilder {
.filter_map(|(i, op)| if op.is_value() { Some(i) } else { None })
.collect();
let format = format_registry.lookup(&operands_in).clone();
verify_format(&self.name, &operands_in, &self.format);
let polymorphic_info =
verify_polymorphic(&operands_in, &operands_out, &format, &value_opnums);
verify_polymorphic(&operands_in, &operands_out, &self.format, &value_opnums);
// Infer from output operands whether an instruciton clobbers CPU flags or not.
let writes_cpu_flags = operands_out.iter().any(|op| op.is_cpu_flags());
@@ -336,7 +336,7 @@ impl InstructionBuilder {
operands_in,
operands_out,
constraints: self.constraints.unwrap_or_else(Vec::new),
format,
format: self.format,
polymorphic_info,
value_opnums,
value_results,
@@ -533,6 +533,57 @@ impl Bindable for BoundInstruction {
}
}
/// Checks that the input operands actually match the given format.
fn verify_format(inst_name: &str, operands_in: &Vec<Operand>, format: &InstructionFormat) {
// A format is defined by:
// - its number of input value operands,
// - its number and names of input immediate operands,
// - whether it has a value list or not.
let mut num_values = 0;
let mut imm_index = 0;
for operand in operands_in.iter() {
if operand.is_varargs() {
assert!(
format.has_value_list,
"instruction {} has varargs, but its format {} doesn't have a value list; you may \
need to use a different format.",
inst_name, format.name
);
}
if operand.is_value() {
num_values += 1;
}
if let Some(imm_name) = operand.kind.imm_name() {
if let Some(format_field) = format.imm_fields.get(imm_index) {
assert_eq!(
format_field.kind.name, imm_name,
"{}th operand of {} should be {} (according to format), not {} (according to \
inst definition). You may need to use a different format.",
imm_index, inst_name, format_field.kind.name, imm_name
);
imm_index += 1;
}
}
}
assert_eq!(
num_values, format.num_value_operands,
"inst {} doesnt' have as many value input operand as its format {} declares; you may need \
to use a different format.",
inst_name, format.name
);
assert_eq!(
imm_index,
format.imm_fields.len(),
"inst {} doesn't have as many immediate input \
operands as its format {} declares; you may need to use a different format.",
inst_name,
format.name
);
}
/// Check if this instruction is polymorphic, and verify its use of type variables.
fn verify_polymorphic(
operands_in: &Vec<Operand>,
@@ -1089,8 +1140,8 @@ impl InstructionPredicate {
))
}
pub fn new_is_colocated_data(format_registry: &FormatRegistry) -> InstructionPredicateNode {
let format = format_registry.by_name("UnaryGlobalValue");
pub fn new_is_colocated_data(formats: &Formats) -> InstructionPredicateNode {
let format = &formats.unary_global_value;
InstructionPredicateNode::FormatPredicate(FormatPredicateNode::new(
&*format,
"global_value",
@@ -1271,7 +1322,6 @@ mod test {
outputs: Vec<OperandKindFields>,
) -> Instruction {
// setup a format from the input operands
let mut formats = FormatRegistry::new();
let mut format = InstructionFormatBuilder::new("fake");
for (i, f) in inputs.iter().enumerate() {
match f {
@@ -1282,13 +1332,13 @@ mod test {
_ => {}
};
}
formats.insert(format);
let format = format.build();
// create the fake instruction
InstructionBuilder::new("fake", "A fake instruction for testing.")
InstructionBuilder::new("fake", "A fake instruction for testing.", &format)
.operands_in(field_to_operands(inputs).iter().collect())
.operands_out(field_to_operands(outputs).iter().collect())
.build(&formats, OpcodeNumber(42))
.build(OpcodeNumber(42))
}
#[test]

View File

@@ -138,11 +138,11 @@ pub struct OperandKind {
}
impl OperandKind {
pub fn imm_key(&self) -> Option<String> {
pub fn imm_name(&self) -> Option<&str> {
match self.fields {
OperandKindFields::ImmEnum(_)
| OperandKindFields::ImmValue
| OperandKindFields::EntityRef => Some(self.name.to_string()),
| OperandKindFields::EntityRef => Some(&self.name),
_ => None,
}
}

View File

@@ -465,14 +465,15 @@ impl TransformGroups {
#[test]
#[should_panic]
fn test_double_custom_legalization() {
use crate::cdsl::formats::{FormatRegistry, InstructionFormatBuilder};
use crate::cdsl::formats::InstructionFormatBuilder;
use crate::cdsl::instructions::{AllInstructions, InstructionBuilder, InstructionGroupBuilder};
let nullary = InstructionFormatBuilder::new("nullary").build();
let mut dummy_all = AllInstructions::new();
let mut format = FormatRegistry::new();
format.insert(InstructionFormatBuilder::new("nullary"));
let mut inst_group = InstructionGroupBuilder::new(&mut dummy_all, &format);
inst_group.push(InstructionBuilder::new("dummy", "doc"));
let mut inst_group = InstructionGroupBuilder::new(&mut dummy_all);
inst_group.push(InstructionBuilder::new("dummy", "doc", &nullary));
let inst_group = inst_group.build();
let dummy_inst = inst_group.by_name("dummy");

View File

@@ -4,13 +4,11 @@ use cranelift_codegen_shared::constant_hash;
use cranelift_entity::EntityRef;
use crate::cdsl::camel_case;
use crate::cdsl::formats::{FormatRegistry, InstructionFormat};
use crate::cdsl::formats::InstructionFormat;
use crate::cdsl::instructions::{AllInstructions, Instruction};
use crate::cdsl::operands::Operand;
use crate::cdsl::typevar::{TypeSet, TypeVar};
use crate::shared::Definitions as SharedDefinitions;
use crate::error;
use crate::srcgen::{Formatter, Match};
use crate::unique_table::{UniqueSeqTable, UniqueTable};
@@ -19,7 +17,7 @@ use crate::unique_table::{UniqueSeqTable, UniqueTable};
const TYPESET_LIMIT: usize = 0xff;
/// Generate an instruction format enumeration.
fn gen_formats(registry: &FormatRegistry, fmt: &mut Formatter) {
fn gen_formats(formats: &Vec<&InstructionFormat>, fmt: &mut Formatter) {
fmt.doc_comment(
r#"
An instruction format
@@ -32,7 +30,7 @@ fn gen_formats(registry: &FormatRegistry, fmt: &mut Formatter) {
fmt.line("#[derive(Copy, Clone, PartialEq, Eq, Debug)]");
fmt.line("pub enum InstructionFormat {");
fmt.indent(|fmt| {
for format in registry.iter() {
for format in formats {
fmt.doc_comment(format.to_string());
fmtln!(fmt, "{},", format.name);
}
@@ -47,7 +45,7 @@ fn gen_formats(registry: &FormatRegistry, fmt: &mut Formatter) {
fmt.line("fn from(inst: &'a InstructionData) -> Self {");
fmt.indent(|fmt| {
let mut m = Match::new("*inst");
for format in registry.iter() {
for format in formats {
m.arm(
format!("InstructionData::{}", format.name),
vec![".."],
@@ -67,12 +65,12 @@ fn gen_formats(registry: &FormatRegistry, fmt: &mut Formatter) {
/// Every variant must contain an `opcode` field. The size of `InstructionData` should be kept at
/// 16 bytes on 64-bit architectures. If more space is needed to represent an instruction, use a
/// `ValueList` to store the additional information out of line.
fn gen_instruction_data(registry: &FormatRegistry, fmt: &mut Formatter) {
fn gen_instruction_data(formats: &Vec<&InstructionFormat>, fmt: &mut Formatter) {
fmt.line("#[derive(Clone, Debug)]");
fmt.line("#[allow(missing_docs)]");
fmt.line("pub enum InstructionData {");
fmt.indent(|fmt| {
for format in registry.iter() {
for format in formats {
fmtln!(fmt, "{} {{", format.name);
fmt.indent(|fmt| {
fmt.line("opcode: Opcode,");
@@ -95,7 +93,7 @@ fn gen_instruction_data(registry: &FormatRegistry, fmt: &mut Formatter) {
fmt.line("}");
}
fn gen_arguments_method(registry: &FormatRegistry, fmt: &mut Formatter, is_mut: bool) {
fn gen_arguments_method(formats: &Vec<&InstructionFormat>, fmt: &mut Formatter, is_mut: bool) {
let (method, mut_, rslice, as_slice) = if is_mut {
(
"arguments_mut",
@@ -117,7 +115,7 @@ fn gen_arguments_method(registry: &FormatRegistry, fmt: &mut Formatter, is_mut:
);
fmt.indent(|fmt| {
let mut m = Match::new("*self");
for format in registry.iter() {
for format in formats {
let name = format!("InstructionData::{}", format.name);
// Formats with a value list put all of their arguments in the list. We don't split
@@ -165,14 +163,14 @@ fn gen_arguments_method(registry: &FormatRegistry, fmt: &mut Formatter, is_mut:
/// - `pub fn put_value_list(&mut self, args: ir::ValueList>`
/// - `pub fn eq(&self, &other: Self, &pool) -> bool`
/// - `pub fn hash<H: Hasher>(&self, state: &mut H, &pool)`
fn gen_instruction_data_impl(registry: &FormatRegistry, fmt: &mut Formatter) {
fn gen_instruction_data_impl(formats: &Vec<&InstructionFormat>, fmt: &mut Formatter) {
fmt.line("impl InstructionData {");
fmt.indent(|fmt| {
fmt.doc_comment("Get the opcode of this instruction.");
fmt.line("pub fn opcode(&self) -> Opcode {");
fmt.indent(|fmt| {
let mut m = Match::new("*self");
for format in registry.iter() {
for format in formats {
m.arm(format!("InstructionData::{}", format.name), vec!["opcode", ".."],
"opcode".to_string());
}
@@ -185,7 +183,7 @@ fn gen_instruction_data_impl(registry: &FormatRegistry, fmt: &mut Formatter) {
fmt.line("pub fn typevar_operand(&self, pool: &ir::ValueListPool) -> Option<Value> {");
fmt.indent(|fmt| {
let mut m = Match::new("*self");
for format in registry.iter() {
for format in formats {
let name = format!("InstructionData::{}", format.name);
if format.typevar_operand.is_none() {
m.arm(name, vec![".."], "None".to_string());
@@ -208,12 +206,12 @@ fn gen_instruction_data_impl(registry: &FormatRegistry, fmt: &mut Formatter) {
fmt.empty_line();
fmt.doc_comment("Get the value arguments to this instruction.");
gen_arguments_method(registry, fmt, false);
gen_arguments_method(formats, fmt, false);
fmt.empty_line();
fmt.doc_comment(r#"Get mutable references to the value arguments to this
instruction."#);
gen_arguments_method(registry, fmt, true);
gen_arguments_method(formats, fmt, true);
fmt.empty_line();
fmt.doc_comment(r#"
@@ -227,7 +225,7 @@ fn gen_instruction_data_impl(registry: &FormatRegistry, fmt: &mut Formatter) {
fmt.indent(|fmt| {
let mut m = Match::new("*self");
for format in registry.iter() {
for format in formats {
if format.has_value_list {
m.arm(format!("InstructionData::{}", format.name),
vec!["ref mut args", ".."],
@@ -254,7 +252,7 @@ fn gen_instruction_data_impl(registry: &FormatRegistry, fmt: &mut Formatter) {
fmt.indent(|fmt| {
fmt.line("let args = match *self {");
fmt.indent(|fmt| {
for format in registry.iter() {
for format in formats {
if format.has_value_list {
fmtln!(fmt, "InstructionData::{} {{ ref mut args, .. }} => args,", format.name);
}
@@ -284,7 +282,7 @@ fn gen_instruction_data_impl(registry: &FormatRegistry, fmt: &mut Formatter) {
fmt.line("match (self, other) {");
fmt.indent(|fmt| {
for format in registry.iter() {
for format in formats {
let name = format!("&InstructionData::{}", format.name);
let mut members = vec!["opcode"];
@@ -336,7 +334,7 @@ fn gen_instruction_data_impl(registry: &FormatRegistry, fmt: &mut Formatter) {
fmt.indent(|fmt| {
fmt.line("match *self {");
fmt.indent(|fmt| {
for format in registry.iter() {
for format in formats {
let name = format!("InstructionData::{}", format.name);
let mut members = vec!["opcode"];
@@ -1037,7 +1035,11 @@ fn gen_inst_builder(inst: &Instruction, format: &InstructionFormat, fmt: &mut Fo
}
/// Generate a Builder trait with methods for all instructions.
fn gen_builder(instructions: &AllInstructions, formats: &FormatRegistry, fmt: &mut Formatter) {
fn gen_builder(
instructions: &AllInstructions,
formats: &Vec<&InstructionFormat>,
fmt: &mut Formatter,
) {
fmt.doc_comment(
r#"
Convenience methods for building instructions.
@@ -1060,7 +1062,7 @@ fn gen_builder(instructions: &AllInstructions, formats: &FormatRegistry, fmt: &m
for inst in instructions.values() {
gen_inst_builder(inst, &*inst.format, fmt);
}
for format in formats.iter() {
for format in formats {
gen_format_constructor(format, fmt);
}
});
@@ -1068,20 +1070,18 @@ fn gen_builder(instructions: &AllInstructions, formats: &FormatRegistry, fmt: &m
}
pub(crate) fn generate(
shared_defs: &SharedDefinitions,
formats: Vec<&InstructionFormat>,
all_inst: &AllInstructions,
opcode_filename: &str,
inst_builder_filename: &str,
out_dir: &str,
) -> Result<(), error::Error> {
let format_registry = &shared_defs.format_registry;
let all_inst = &shared_defs.all_instructions;
// Opcodes.
let mut fmt = Formatter::new();
gen_formats(format_registry, &mut fmt);
gen_instruction_data(format_registry, &mut fmt);
gen_formats(&formats, &mut fmt);
gen_instruction_data(&formats, &mut fmt);
fmt.empty_line();
gen_instruction_data_impl(format_registry, &mut fmt);
gen_instruction_data_impl(&formats, &mut fmt);
fmt.empty_line();
gen_opcodes(all_inst, &mut fmt);
gen_type_constraints(all_inst, &mut fmt);
@@ -1089,7 +1089,7 @@ pub(crate) fn generate(
// Instruction builder.
let mut fmt = Formatter::new();
gen_builder(all_inst, format_registry, &mut fmt);
gen_builder(all_inst, &formats, &mut fmt);
fmt.update_file(inst_builder_filename, out_dir)?;
Ok(())

View File

@@ -53,11 +53,7 @@ pub(crate) fn define(shared_defs: &mut SharedDefinitions) -> TargetIsa {
let settings = define_settings(&shared_defs.settings);
let regs = define_regs();
let inst_group = InstructionGroupBuilder::new(
&mut shared_defs.all_instructions,
&shared_defs.format_registry,
)
.build();
let inst_group = InstructionGroupBuilder::new(&mut shared_defs.all_instructions).build();
// CPU modes for 32-bit ARM and Thumb2.
let mut a32 = CpuMode::new("A32");

View File

@@ -49,11 +49,7 @@ pub(crate) fn define(shared_defs: &mut SharedDefinitions) -> TargetIsa {
let settings = define_settings(&shared_defs.settings);
let regs = define_registers();
let inst_group = InstructionGroupBuilder::new(
&mut shared_defs.all_instructions,
&shared_defs.format_registry,
)
.build();
let inst_group = InstructionGroupBuilder::new(&mut shared_defs.all_instructions).build();
let mut a64 = CpuMode::new("A64");

View File

@@ -89,11 +89,7 @@ pub(crate) fn define(shared_defs: &mut SharedDefinitions) -> TargetIsa {
let settings = define_settings(&shared_defs.settings);
let regs = define_registers();
let inst_group = InstructionGroupBuilder::new(
&mut shared_defs.all_instructions,
&shared_defs.format_registry,
)
.build();
let inst_group = InstructionGroupBuilder::new(&mut shared_defs.all_instructions).build();
// CPU modes for 32-bit and 64-bit operation.
let mut rv_32 = CpuMode::new("RV32");

View File

@@ -46,23 +46,7 @@ impl RecipeGroup {
}
pub(crate) fn define(shared_defs: &SharedDefinitions, regs: &IsaRegs) -> RecipeGroup {
// Format shorthands.
let formats = &shared_defs.format_registry;
let f_binary = formats.by_name("Binary");
let f_binary_imm = formats.by_name("BinaryImm");
let f_branch = formats.by_name("Branch");
let f_branch_icmp = formats.by_name("BranchIcmp");
let f_call = formats.by_name("Call");
let f_call_indirect = formats.by_name("CallIndirect");
let f_copy_to_ssa = formats.by_name("CopyToSsa");
let f_int_compare = formats.by_name("IntCompare");
let f_int_compare_imm = formats.by_name("IntCompareImm");
let f_jump = formats.by_name("Jump");
let f_multiary = formats.by_name("MultiAry");
let f_regmove = formats.by_name("RegMove");
let f_unary = formats.by_name("Unary");
let f_unary_imm = formats.by_name("UnaryImm");
let formats = &shared_defs.formats;
// Register classes shorthands.
let gpr = regs.class_by_name("GPR");
@@ -73,7 +57,7 @@ pub(crate) fn define(shared_defs: &SharedDefinitions, regs: &IsaRegs) -> RecipeG
// R-type 32-bit instructions: These are mostly binary arithmetic instructions.
// The encbits are `opcode[6:2] | (funct3 << 5) | (funct7 << 8)
recipes.push(
EncodingRecipeBuilder::new("R", f_binary, 4)
EncodingRecipeBuilder::new("R", &formats.binary, 4)
.operands_in(vec![gpr, gpr])
.operands_out(vec![gpr])
.emit("put_r(bits, in_reg0, in_reg1, out_reg0, sink);"),
@@ -81,7 +65,7 @@ pub(crate) fn define(shared_defs: &SharedDefinitions, regs: &IsaRegs) -> RecipeG
// R-type with an immediate shift amount instead of rs2.
recipes.push(
EncodingRecipeBuilder::new("Rshamt", f_binary_imm, 4)
EncodingRecipeBuilder::new("Rshamt", &formats.binary_imm, 4)
.operands_in(vec![gpr])
.operands_out(vec![gpr])
.emit("put_rshamt(bits, in_reg0, imm.into(), out_reg0, sink);"),
@@ -89,18 +73,18 @@ pub(crate) fn define(shared_defs: &SharedDefinitions, regs: &IsaRegs) -> RecipeG
// R-type encoding of an integer comparison.
recipes.push(
EncodingRecipeBuilder::new("Ricmp", f_int_compare, 4)
EncodingRecipeBuilder::new("Ricmp", &formats.int_compare, 4)
.operands_in(vec![gpr, gpr])
.operands_out(vec![gpr])
.emit("put_r(bits, in_reg0, in_reg1, out_reg0, sink);"),
);
recipes.push(
EncodingRecipeBuilder::new("Ii", f_binary_imm, 4)
EncodingRecipeBuilder::new("Ii", &formats.binary_imm, 4)
.operands_in(vec![gpr])
.operands_out(vec![gpr])
.inst_predicate(InstructionPredicate::new_is_signed_int(
&*f_binary_imm,
&*formats.binary_imm,
"imm",
12,
0,
@@ -110,10 +94,10 @@ pub(crate) fn define(shared_defs: &SharedDefinitions, regs: &IsaRegs) -> RecipeG
// I-type instruction with a hardcoded %x0 rs1.
recipes.push(
EncodingRecipeBuilder::new("Iz", f_unary_imm, 4)
EncodingRecipeBuilder::new("Iz", &formats.unary_imm, 4)
.operands_out(vec![gpr])
.inst_predicate(InstructionPredicate::new_is_signed_int(
&*f_unary_imm,
&*&formats.unary_imm,
"imm",
12,
0,
@@ -123,11 +107,11 @@ pub(crate) fn define(shared_defs: &SharedDefinitions, regs: &IsaRegs) -> RecipeG
// I-type encoding of an integer comparison.
recipes.push(
EncodingRecipeBuilder::new("Iicmp", f_int_compare_imm, 4)
EncodingRecipeBuilder::new("Iicmp", &formats.int_compare_imm, 4)
.operands_in(vec![gpr])
.operands_out(vec![gpr])
.inst_predicate(InstructionPredicate::new_is_signed_int(
&*f_int_compare_imm,
&*&formats.int_compare_imm,
"imm",
12,
0,
@@ -137,7 +121,8 @@ pub(crate) fn define(shared_defs: &SharedDefinitions, regs: &IsaRegs) -> RecipeG
// I-type encoding for `jalr` as a return instruction. We won't use the immediate offset. The
// variable return values are not encoded.
recipes.push(EncodingRecipeBuilder::new("Iret", f_multiary, 4).emit(
recipes.push(
EncodingRecipeBuilder::new("Iret", &formats.multiary, 4).emit(
r#"
// Return instructions are always a jalr to %x1.
// The return address is provided as a special-purpose link argument.
@@ -149,11 +134,12 @@ pub(crate) fn define(shared_defs: &SharedDefinitions, regs: &IsaRegs) -> RecipeG
sink,
);
"#,
));
),
);
// I-type encoding for `jalr` as a call_indirect.
recipes.push(
EncodingRecipeBuilder::new("Icall", f_call_indirect, 4)
EncodingRecipeBuilder::new("Icall", &formats.call_indirect, 4)
.operands_in(vec![gpr])
.emit(
r#"
@@ -171,7 +157,7 @@ pub(crate) fn define(shared_defs: &SharedDefinitions, regs: &IsaRegs) -> RecipeG
// Copy of a GPR is implemented as addi x, 0.
recipes.push(
EncodingRecipeBuilder::new("Icopy", f_unary, 4)
EncodingRecipeBuilder::new("Icopy", &formats.unary, 4)
.operands_in(vec![gpr])
.operands_out(vec![gpr])
.emit("put_i(bits, in_reg0, 0, out_reg0, sink);"),
@@ -179,14 +165,14 @@ pub(crate) fn define(shared_defs: &SharedDefinitions, regs: &IsaRegs) -> RecipeG
// Same for a GPR regmove.
recipes.push(
EncodingRecipeBuilder::new("Irmov", f_regmove, 4)
EncodingRecipeBuilder::new("Irmov", &formats.reg_move, 4)
.operands_in(vec![gpr])
.emit("put_i(bits, src, 0, dst, sink);"),
);
// Same for copy-to-SSA -- GPR regmove.
recipes.push(
EncodingRecipeBuilder::new("copytossa", f_copy_to_ssa, 4)
EncodingRecipeBuilder::new("copytossa", &formats.copy_to_ssa, 4)
// No operands_in to mention, because a source register is specified directly.
.operands_out(vec![gpr])
.emit("put_i(bits, src, 0, out_reg0, sink);"),
@@ -194,10 +180,10 @@ pub(crate) fn define(shared_defs: &SharedDefinitions, regs: &IsaRegs) -> RecipeG
// U-type instructions have a 20-bit immediate that targets bits 12-31.
recipes.push(
EncodingRecipeBuilder::new("U", f_unary_imm, 4)
EncodingRecipeBuilder::new("U", &formats.unary_imm, 4)
.operands_out(vec![gpr])
.inst_predicate(InstructionPredicate::new_is_signed_int(
&*f_unary_imm,
&*&formats.unary_imm,
"imm",
32,
12,
@@ -207,7 +193,7 @@ pub(crate) fn define(shared_defs: &SharedDefinitions, regs: &IsaRegs) -> RecipeG
// UJ-type unconditional branch instructions.
recipes.push(
EncodingRecipeBuilder::new("UJ", f_jump, 4)
EncodingRecipeBuilder::new("UJ", &formats.jump, 4)
.branch_range((0, 21))
.emit(
r#"
@@ -218,7 +204,7 @@ pub(crate) fn define(shared_defs: &SharedDefinitions, regs: &IsaRegs) -> RecipeG
),
);
recipes.push(EncodingRecipeBuilder::new("UJcall", f_call, 4).emit(
recipes.push(EncodingRecipeBuilder::new("UJcall", &formats.call, 4).emit(
r#"
sink.reloc_external(Reloc::RiscvCall,
&func.dfg.ext_funcs[func_ref].name,
@@ -230,7 +216,7 @@ pub(crate) fn define(shared_defs: &SharedDefinitions, regs: &IsaRegs) -> RecipeG
// SB-type branch instructions.
recipes.push(
EncodingRecipeBuilder::new("SB", f_branch_icmp, 4)
EncodingRecipeBuilder::new("SB", &formats.branch_icmp, 4)
.operands_in(vec![gpr, gpr])
.branch_range((0, 13))
.emit(
@@ -244,7 +230,7 @@ pub(crate) fn define(shared_defs: &SharedDefinitions, regs: &IsaRegs) -> RecipeG
// SB-type branch instruction with rs2 fixed to zero.
recipes.push(
EncodingRecipeBuilder::new("SBzero", f_branch, 4)
EncodingRecipeBuilder::new("SBzero", &formats.branch, 4)
.operands_in(vec![gpr])
.branch_range((0, 13))
.emit(
@@ -258,7 +244,7 @@ pub(crate) fn define(shared_defs: &SharedDefinitions, regs: &IsaRegs) -> RecipeG
// Spill of a GPR.
recipes.push(
EncodingRecipeBuilder::new("GPsp", f_unary, 4)
EncodingRecipeBuilder::new("GPsp", &formats.unary, 4)
.operands_in(vec![gpr])
.operands_out(vec![Stack::new(gpr)])
.emit("unimplemented!();"),
@@ -266,7 +252,7 @@ pub(crate) fn define(shared_defs: &SharedDefinitions, regs: &IsaRegs) -> RecipeG
// Fill of a GPR.
recipes.push(
EncodingRecipeBuilder::new("GPfi", f_unary, 4)
EncodingRecipeBuilder::new("GPfi", &formats.unary, 4)
.operands_in(vec![Stack::new(gpr)])
.operands_out(vec![gpr])
.emit("unimplemented!();"),
@@ -274,7 +260,7 @@ pub(crate) fn define(shared_defs: &SharedDefinitions, regs: &IsaRegs) -> RecipeG
// Stack-slot to same stack-slot copy, which is guaranteed to turn into a no-op.
recipes.push(
EncodingRecipeBuilder::new("stacknull", f_unary, 0)
EncodingRecipeBuilder::new("stacknull", &formats.unary, 0)
.operands_in(vec![Stack::new(gpr)])
.operands_out(vec![Stack::new(gpr)])
.emit(""),
@@ -282,7 +268,7 @@ pub(crate) fn define(shared_defs: &SharedDefinitions, regs: &IsaRegs) -> RecipeG
// No-op fills, created by late-stage redundant-fill removal.
recipes.push(
EncodingRecipeBuilder::new("fillnull", f_unary, 0)
EncodingRecipeBuilder::new("fillnull", &formats.unary, 0)
.operands_in(vec![Stack::new(gpr)])
.operands_out(vec![gpr])
.clobbers_flags(false)

View File

@@ -374,7 +374,7 @@ pub(crate) fn define(
r: &RecipeGroup,
) -> PerCpuModeEncodings {
let shared = &shared_defs.instructions;
let formats = &shared_defs.format_registry;
let formats = &shared_defs.formats;
// Shorthands for instructions.
let adjust_sp_down = shared.by_name("adjust_sp_down");
@@ -774,8 +774,8 @@ pub(crate) fn define(
e.enc64(iconst.bind(I32), rec_pu_id.opcodes(&MOV_IMM));
// The 32-bit immediate movl also zero-extends to 64 bits.
let f_unary_imm = formats.by_name("UnaryImm");
let is_unsigned_int32 = InstructionPredicate::new_is_unsigned_int(&*f_unary_imm, "imm", 32, 0);
let is_unsigned_int32 =
InstructionPredicate::new_is_unsigned_int(&*formats.unary_imm, "imm", 32, 0);
e.enc64_func(
iconst.bind(I64),
@@ -801,7 +801,7 @@ pub(crate) fn define(
}
e.enc64(bconst.bind(B64), rec_pu_id_bool.opcodes(&MOV_IMM).rex());
let is_zero_int = InstructionPredicate::new_is_zero_int(f_unary_imm, "imm");
let is_zero_int = InstructionPredicate::new_is_zero_int(&formats.unary_imm, "imm");
e.enc_both_instp(
iconst.bind(I8),
rec_u_id_z.opcodes(&XORB),
@@ -880,8 +880,8 @@ pub(crate) fn define(
e.enc64_isap(ctz.bind(I32), rec_urm.opcodes(&TZCNT), use_bmi1);
// Loads and stores.
let f_load_complex = formats.by_name("LoadComplex");
let is_load_complex_length_two = InstructionPredicate::new_length_equals(&*f_load_complex, 2);
let is_load_complex_length_two =
InstructionPredicate::new_length_equals(&*formats.load_complex, 2);
for recipe in &[rec_ldWithIndex, rec_ldWithIndexDisp8, rec_ldWithIndexDisp32] {
e.enc_i32_i64_instp(
@@ -925,9 +925,8 @@ pub(crate) fn define(
);
}
let f_store_complex = formats.by_name("StoreComplex");
let is_store_complex_length_three =
InstructionPredicate::new_length_equals(&*f_store_complex, 3);
InstructionPredicate::new_length_equals(&*formats.store_complex, 3);
for recipe in &[rec_stWithIndex, rec_stWithIndexDisp8, rec_stWithIndexDisp32] {
e.enc_i32_i64_instp(
@@ -1233,8 +1232,8 @@ pub(crate) fn define(
);
// 64-bit, colocated, both PIC and non-PIC. Use the lea instruction's pc-relative field.
let f_func_addr = formats.by_name("FuncAddr");
let is_colocated_func = InstructionPredicate::new_is_colocated_func(&*f_func_addr, "func_ref");
let is_colocated_func =
InstructionPredicate::new_is_colocated_func(&*formats.func_addr, "func_ref");
e.enc64_instp(
func_addr.bind(I64),
rec_pcrel_fnaddr8.opcodes(&LEA).rex().w(),
@@ -1293,8 +1292,7 @@ pub(crate) fn define(
e.enc32(call, rec_call_id.opcodes(&CALL_RELATIVE));
// 64-bit, colocated, both PIC and non-PIC. Use the call instruction's pc-relative field.
let f_call = formats.by_name("Call");
let is_colocated_func = InstructionPredicate::new_is_colocated_func(&*f_call, "func_ref");
let is_colocated_func = InstructionPredicate::new_is_colocated_func(&*formats.call, "func_ref");
e.enc64_instp(call, rec_call_id.opcodes(&CALL_RELATIVE), is_colocated_func);
// 64-bit, non-colocated, PIC. There is no 64-bit non-colocated non-PIC version, since non-PIC
@@ -1564,18 +1562,16 @@ pub(crate) fn define(
// Floating-point constants equal to 0.0 can be encoded using either `xorps` or `xorpd`, for
// 32-bit and 64-bit floats respectively.
let f_unary_ieee32 = formats.by_name("UnaryIeee32");
let is_zero_32_bit_float =
InstructionPredicate::new_is_zero_32bit_float(&*f_unary_ieee32, "imm");
InstructionPredicate::new_is_zero_32bit_float(&*formats.unary_ieee32, "imm");
e.enc32_instp(
f32const,
rec_f32imm_z.opcodes(&XORPS),
is_zero_32_bit_float.clone(),
);
let f_unary_ieee64 = formats.by_name("UnaryIeee64");
let is_zero_64_bit_float =
InstructionPredicate::new_is_zero_64bit_float(&*f_unary_ieee64, "imm");
InstructionPredicate::new_is_zero_64bit_float(&*formats.unary_ieee64, "imm");
e.enc32_instp(
f64const,
rec_f64imm_z.opcodes(&XORPD),
@@ -1847,18 +1843,17 @@ pub(crate) fn define(
// this must be encoded prior to the MOVUPS implementation (below) so the compiler sees this
// encoding first
for ty in ValueType::all_lane_types().filter(allowed_simd_type) {
let f_unary_const = formats.by_name("UnaryConst");
let instruction = vconst.bind(vector(ty, sse_vector_size));
let is_zero_128bit =
InstructionPredicate::new_is_all_zeroes(&*f_unary_const, "constant_handle");
InstructionPredicate::new_is_all_zeroes(&*formats.unary_const, "constant_handle");
let template = rec_vconst_optimized.nonrex().opcodes(&PXOR);
e.enc_32_64_func(instruction.clone(), template, |builder| {
builder.inst_predicate(is_zero_128bit)
});
let is_ones_128bit =
InstructionPredicate::new_is_all_ones(&*f_unary_const, "constant_handle");
InstructionPredicate::new_is_all_ones(&*formats.unary_const, "constant_handle");
let template = rec_vconst_optimized.nonrex().opcodes(&PCMPEQB);
e.enc_32_64_func(instruction, template, |builder| {
builder.inst_predicate(is_ones_128bit)
@@ -2038,9 +2033,11 @@ pub(crate) fn define(
};
let instruction = icmp.bind(vector(ty, sse_vector_size));
let f_int_compare = formats.by_name("IntCompare");
let has_eq_condition_code =
InstructionPredicate::new_has_condition_code(&*f_int_compare, IntCC::Equal, "cond");
let has_eq_condition_code = InstructionPredicate::new_has_condition_code(
&*formats.int_compare,
IntCC::Equal,
"cond",
);
let template = rec_icscc_fpr.nonrex().opcodes(opcodes);
e.enc_32_64_func(instruction, template, |builder| {
let builder = builder.inst_predicate(has_eq_condition_code);

View File

@@ -1,21 +1,22 @@
#![allow(non_snake_case)]
use crate::cdsl::formats::FormatRegistry;
use crate::cdsl::instructions::{
AllInstructions, InstructionBuilder as Inst, InstructionGroup, InstructionGroupBuilder,
};
use crate::cdsl::operands::{create_operand as operand, create_operand_doc as operand_doc};
use crate::cdsl::types::ValueType;
use crate::cdsl::typevar::{Interval, TypeSetBuilder, TypeVar};
use crate::shared::formats::Formats;
use crate::shared::immediates::Immediates;
use crate::shared::types;
pub(crate) fn define(
mut all_instructions: &mut AllInstructions,
format_registry: &FormatRegistry,
formats: &Formats,
immediates: &Immediates,
) -> InstructionGroup {
let mut ig = InstructionGroupBuilder::new(&mut all_instructions, format_registry);
let mut ig = InstructionGroupBuilder::new(&mut all_instructions);
let iflags: &TypeVar = &ValueType::Special(types::Flag::IFlags.into()).into();
@@ -43,6 +44,7 @@ pub(crate) fn define(
Return both quotient and remainder.
"#,
&formats.ternary,
)
.operands_in(vec![nlo, nhi, d])
.operands_out(vec![q, r])
@@ -62,6 +64,7 @@ pub(crate) fn define(
Return both quotient and remainder.
"#,
&formats.ternary,
)
.operands_in(vec![nlo, nhi, d])
.operands_out(vec![q, r])
@@ -82,6 +85,7 @@ pub(crate) fn define(
Polymorphic over all scalar integer types, but does not support vector
types.
"#,
&formats.binary,
)
.operands_in(vec![argL, argR])
.operands_out(vec![resLo, resHi]),
@@ -96,6 +100,7 @@ pub(crate) fn define(
Polymorphic over all scalar integer types, but does not support vector
types.
"#,
&formats.binary,
)
.operands_in(vec![argL, argR])
.operands_out(vec![resLo, resHi]),
@@ -132,6 +137,7 @@ pub(crate) fn define(
This instruction does not trap.
"#,
&formats.unary,
)
.operands_in(vec![x])
.operands_out(vec![a]),
@@ -154,6 +160,7 @@ pub(crate) fn define(
When the two operands don't compare as LT, `y` is returned unchanged,
even if it is a signalling NaN.
"#,
&formats.binary,
)
.operands_in(vec![x, y])
.operands_out(vec![a]),
@@ -172,6 +179,7 @@ pub(crate) fn define(
When the two operands don't compare as GT, `y` is returned unchanged,
even if it is a signalling NaN.
"#,
&formats.binary,
)
.operands_in(vec![x, y])
.operands_out(vec![a]),
@@ -190,6 +198,7 @@ pub(crate) fn define(
This is polymorphic in i32 and i64. However, it is only implemented for i64
in 64-bit mode, and only for i32 in 32-bit mode.
"#,
&formats.unary,
)
.operands_in(vec![x])
.other_side_effects(true)
@@ -208,6 +217,7 @@ pub(crate) fn define(
This is polymorphic in i32 and i64. However, it is only implemented for i64
in 64-bit mode, and only for i32 in 32-bit mode.
"#,
&formats.nullary,
)
.operands_out(vec![x])
.other_side_effects(true)
@@ -229,6 +239,7 @@ pub(crate) fn define(
This is polymorphic in i32 and i64. It is implemented for both i64 and
i32 in 64-bit mode, and only for i32 in 32-bit mode.
"#,
&formats.unary,
)
.operands_in(vec![x])
.operands_out(vec![y, rflags]),
@@ -241,6 +252,7 @@ pub(crate) fn define(
Bit Scan Forwards -- returns the bit-index of the least significant 1
in the word. Is otherwise identical to 'bsr', just above.
"#,
&formats.unary,
)
.operands_in(vec![x])
.operands_out(vec![y, rflags]),
@@ -269,6 +281,7 @@ pub(crate) fn define(
Packed Shuffle Doublewords -- copies data from either memory or lanes in an extended
register and re-orders the data according to the passed immediate byte.
"#,
&formats.extract_lane,
)
.operands_in(vec![a, i]) // TODO allow copying from memory here (need more permissive type than TxN)
.operands_out(vec![a]),
@@ -281,6 +294,7 @@ pub(crate) fn define(
Packed Shuffle Bytes -- re-orders data in an extended register using a shuffle
mask from either memory or another extended register
"#,
&formats.binary,
)
.operands_in(vec![a, b]) // TODO allow re-ordering from memory here (need more permissive type than TxN)
.operands_out(vec![a]),
@@ -298,6 +312,7 @@ pub(crate) fn define(
The lane index, ``Idx``, is an immediate value, not an SSA value. It
must indicate a valid lane index for the type of ``x``.
"#,
&formats.extract_lane,
)
.operands_in(vec![x, Idx])
.operands_out(vec![a]),
@@ -325,6 +340,7 @@ pub(crate) fn define(
The lane index, ``Idx``, is an immediate value, not an SSA value. It
must indicate a valid lane index for the type of ``x``.
"#,
&formats.insert_lane,
)
.operands_in(vec![x, Idx, y])
.operands_out(vec![a]),
@@ -351,6 +367,7 @@ pub(crate) fn define(
extracted from and which it is inserted to. This is similar to x86_pinsr but inserts
floats, which are already stored in an XMM register.
"#,
&formats.insert_lane,
)
.operands_in(vec![x, Idx, y])
.operands_out(vec![a]),
@@ -366,6 +383,7 @@ pub(crate) fn define(
r#"
Move the low 64 bits of the float vector ``y`` to the low 64 bits of float vector ``x``
"#,
&formats.binary,
)
.operands_in(vec![x, y])
.operands_out(vec![a]),
@@ -377,6 +395,7 @@ pub(crate) fn define(
r#"
Move the low 64 bits of the float vector ``y`` to the high 64 bits of float vector ``x``
"#,
&formats.binary,
)
.operands_in(vec![x, y])
.operands_out(vec![a]),
@@ -401,9 +420,11 @@ pub(crate) fn define(
.includes_scalars(false)
.build(),
);
let x = &operand_doc("x", IxN, "Vector value to shift");
let y = &operand_doc("y", I64x2, "Number of bits to shift");
let a = &operand("a", IxN);
ig.push(
Inst::new(
"x86_psll",
@@ -412,10 +433,12 @@ pub(crate) fn define(
``ishl`` but alters the shift operand to live in an XMM register as expected by the PSLL*
family of instructions.
"#,
&formats.binary,
)
.operands_in(vec![x, y])
.operands_out(vec![a]),
);
ig.push(
Inst::new(
"x86_psrl",
@@ -424,10 +447,12 @@ pub(crate) fn define(
``ushr`` but alters the shift operand to live in an XMM register as expected by the PSRL*
family of instructions.
"#,
&formats.binary,
)
.operands_in(vec![x, y])
.operands_out(vec![a]),
);
ig.push(
Inst::new(
"x86_psra",
@@ -436,6 +461,7 @@ pub(crate) fn define(
instruction ``sshr`` but alters the shift operand to live in an XMM register as expected by
the PSRA* family of instructions.
"#,
&formats.binary,
)
.operands_in(vec![x, y])
.operands_out(vec![a]),

View File

@@ -20,7 +20,7 @@ pub(crate) fn define(shared_defs: &mut SharedDefinitions) -> TargetIsa {
let inst_group = instructions::define(
&mut shared_defs.all_instructions,
&shared_defs.format_registry,
&shared_defs.formats,
&shared_defs.imm,
);
legalize::define(shared_defs, &inst_group);

File diff suppressed because it is too large Load Diff

View File

@@ -23,7 +23,8 @@ pub fn isa_from_arch(arch: &str) -> Result<isa::Isa, String> {
/// Generates all the Rust source files used in Cranelift from the meta-language.
pub fn generate(isas: &Vec<isa::Isa>, out_dir: &str) -> Result<(), error::Error> {
// Common definitions.
// Create all the definitions:
// - common definitions.
let mut shared_defs = shared::define();
gen_settings::generate(
@@ -34,10 +35,20 @@ pub fn generate(isas: &Vec<isa::Isa>, out_dir: &str) -> Result<(), error::Error>
)?;
gen_types::generate("types.rs", &out_dir)?;
// Per ISA definitions.
// - per ISA definitions.
let isas = isa::define(isas, &mut shared_defs);
gen_inst::generate(&shared_defs, "opcodes.rs", "inst_builder.rs", &out_dir)?;
// At this point, all definitions are done.
let all_formats = shared_defs.verify_instruction_formats();
// Generate all the code.
gen_inst::generate(
all_formats,
&shared_defs.all_instructions,
"opcodes.rs",
"inst_builder.rs",
&out_dir,
)?;
gen_legalizer::generate(&isas, &shared_defs.transform_groups, "legalize", &out_dir)?;

View File

@@ -1,226 +1,303 @@
use crate::cdsl::formats::{FormatRegistry, InstructionFormatBuilder as Builder};
use crate::cdsl::formats::{InstructionFormat, InstructionFormatBuilder as Builder};
use crate::shared::{entities::EntityRefs, immediates::Immediates};
use std::rc::Rc;
pub(crate) fn define(imm: &Immediates, entities: &EntityRefs) -> FormatRegistry {
let mut registry = FormatRegistry::new();
pub(crate) struct Formats {
pub(crate) binary: Rc<InstructionFormat>,
pub(crate) binary_imm: Rc<InstructionFormat>,
pub(crate) branch: Rc<InstructionFormat>,
pub(crate) branch_float: Rc<InstructionFormat>,
pub(crate) branch_icmp: Rc<InstructionFormat>,
pub(crate) branch_int: Rc<InstructionFormat>,
pub(crate) branch_table: Rc<InstructionFormat>,
pub(crate) branch_table_base: Rc<InstructionFormat>,
pub(crate) branch_table_entry: Rc<InstructionFormat>,
pub(crate) call: Rc<InstructionFormat>,
pub(crate) call_indirect: Rc<InstructionFormat>,
pub(crate) cond_trap: Rc<InstructionFormat>,
pub(crate) copy_special: Rc<InstructionFormat>,
pub(crate) copy_to_ssa: Rc<InstructionFormat>,
pub(crate) extract_lane: Rc<InstructionFormat>,
pub(crate) float_compare: Rc<InstructionFormat>,
pub(crate) float_cond: Rc<InstructionFormat>,
pub(crate) float_cond_trap: Rc<InstructionFormat>,
pub(crate) func_addr: Rc<InstructionFormat>,
pub(crate) heap_addr: Rc<InstructionFormat>,
pub(crate) indirect_jump: Rc<InstructionFormat>,
pub(crate) insert_lane: Rc<InstructionFormat>,
pub(crate) int_compare: Rc<InstructionFormat>,
pub(crate) int_compare_imm: Rc<InstructionFormat>,
pub(crate) int_cond: Rc<InstructionFormat>,
pub(crate) int_cond_trap: Rc<InstructionFormat>,
pub(crate) int_select: Rc<InstructionFormat>,
pub(crate) jump: Rc<InstructionFormat>,
pub(crate) load: Rc<InstructionFormat>,
pub(crate) load_complex: Rc<InstructionFormat>,
pub(crate) multiary: Rc<InstructionFormat>,
pub(crate) nullary: Rc<InstructionFormat>,
pub(crate) reg_fill: Rc<InstructionFormat>,
pub(crate) reg_move: Rc<InstructionFormat>,
pub(crate) reg_spill: Rc<InstructionFormat>,
pub(crate) shuffle: Rc<InstructionFormat>,
pub(crate) stack_load: Rc<InstructionFormat>,
pub(crate) stack_store: Rc<InstructionFormat>,
pub(crate) store: Rc<InstructionFormat>,
pub(crate) store_complex: Rc<InstructionFormat>,
pub(crate) table_addr: Rc<InstructionFormat>,
pub(crate) ternary: Rc<InstructionFormat>,
pub(crate) trap: Rc<InstructionFormat>,
pub(crate) unary: Rc<InstructionFormat>,
pub(crate) unary_bool: Rc<InstructionFormat>,
pub(crate) unary_const: Rc<InstructionFormat>,
pub(crate) unary_global_value: Rc<InstructionFormat>,
pub(crate) unary_ieee32: Rc<InstructionFormat>,
pub(crate) unary_ieee64: Rc<InstructionFormat>,
pub(crate) unary_imm: Rc<InstructionFormat>,
}
registry.insert(Builder::new("Unary").value());
registry.insert(Builder::new("UnaryImm").imm(&imm.imm64));
registry.insert(Builder::new("UnaryIeee32").imm(&imm.ieee32));
registry.insert(Builder::new("UnaryIeee64").imm(&imm.ieee64));
registry.insert(Builder::new("UnaryBool").imm(&imm.boolean));
registry.insert(Builder::new("UnaryConst").imm(&imm.pool_constant));
registry.insert(Builder::new("UnaryGlobalValue").imm(&entities.global_value));
impl Formats {
pub fn new(imm: &Immediates, entities: &EntityRefs) -> Self {
Self {
unary: Builder::new("Unary").value().build(),
registry.insert(Builder::new("Binary").value().value());
registry.insert(Builder::new("BinaryImm").value().imm(&imm.imm64));
unary_imm: Builder::new("UnaryImm").imm(&imm.imm64).build(),
unary_ieee32: Builder::new("UnaryIeee32").imm(&imm.ieee32).build(),
unary_ieee64: Builder::new("UnaryIeee64").imm(&imm.ieee64).build(),
unary_bool: Builder::new("UnaryBool").imm(&imm.boolean).build(),
unary_const: Builder::new("UnaryConst").imm(&imm.pool_constant).build(),
unary_global_value: Builder::new("UnaryGlobalValue")
.imm(&entities.global_value)
.build(),
binary: Builder::new("Binary").value().value().build(),
binary_imm: Builder::new("BinaryImm").value().imm(&imm.imm64).build(),
// The select instructions are controlled by the second VALUE operand.
// The first VALUE operand is the controlling flag which has a derived type.
// The fma instruction has the same constraint on all inputs.
registry.insert(
Builder::new("Ternary")
ternary: Builder::new("Ternary")
.value()
.value()
.value()
.typevar_operand(1),
);
.typevar_operand(1)
.build(),
// Catch-all for instructions with many outputs and inputs and no immediate
// operands.
registry.insert(Builder::new("MultiAry").varargs());
multiary: Builder::new("MultiAry").varargs().build(),
registry.insert(Builder::new("NullAry"));
nullary: Builder::new("NullAry").build(),
registry.insert(
Builder::new("InsertLane")
insert_lane: Builder::new("InsertLane")
.value()
.imm_with_name("lane", &imm.uimm8)
.value(),
);
registry.insert(
Builder::new("ExtractLane")
.value()
.imm_with_name("lane", &imm.uimm8),
);
registry.insert(
Builder::new("Shuffle")
.value()
.value()
.imm_with_name("mask", &imm.uimm128),
);
.build(),
registry.insert(Builder::new("IntCompare").imm(&imm.intcc).value().value());
registry.insert(
Builder::new("IntCompareImm")
extract_lane: Builder::new("ExtractLane")
.value()
.imm_with_name("lane", &imm.uimm8)
.build(),
shuffle: Builder::new("Shuffle")
.value()
.value()
.imm_with_name("mask", &imm.uimm128)
.build(),
int_compare: Builder::new("IntCompare")
.imm(&imm.intcc)
.value()
.imm(&imm.imm64),
);
registry.insert(Builder::new("IntCond").imm(&imm.intcc).value());
.value()
.build(),
registry.insert(
Builder::new("FloatCompare")
int_compare_imm: Builder::new("IntCompareImm")
.imm(&imm.intcc)
.value()
.imm(&imm.imm64)
.build(),
int_cond: Builder::new("IntCond").imm(&imm.intcc).value().build(),
float_compare: Builder::new("FloatCompare")
.imm(&imm.floatcc)
.value()
.value(),
);
registry.insert(Builder::new("FloatCond").imm(&imm.floatcc).value());
.value()
.build(),
registry.insert(
Builder::new("IntSelect")
float_cond: Builder::new("FloatCond").imm(&imm.floatcc).value().build(),
int_select: Builder::new("IntSelect")
.imm(&imm.intcc)
.value()
.value()
.value(),
);
.value()
.build(),
registry.insert(Builder::new("Jump").imm(&entities.ebb).varargs());
registry.insert(Builder::new("Branch").value().imm(&entities.ebb).varargs());
registry.insert(
Builder::new("BranchInt")
jump: Builder::new("Jump").imm(&entities.ebb).varargs().build(),
branch: Builder::new("Branch")
.value()
.imm(&entities.ebb)
.varargs()
.build(),
branch_int: Builder::new("BranchInt")
.imm(&imm.intcc)
.value()
.imm(&entities.ebb)
.varargs(),
);
registry.insert(
Builder::new("BranchFloat")
.varargs()
.build(),
branch_float: Builder::new("BranchFloat")
.imm(&imm.floatcc)
.value()
.imm(&entities.ebb)
.varargs(),
);
registry.insert(
Builder::new("BranchIcmp")
.varargs()
.build(),
branch_icmp: Builder::new("BranchIcmp")
.imm(&imm.intcc)
.value()
.value()
.imm(&entities.ebb)
.varargs(),
);
registry.insert(
Builder::new("BranchTable")
.varargs()
.build(),
branch_table: Builder::new("BranchTable")
.value()
.imm(&entities.ebb)
.imm(&entities.jump_table),
);
registry.insert(
Builder::new("BranchTableEntry")
.imm(&entities.jump_table)
.build(),
branch_table_entry: Builder::new("BranchTableEntry")
.value()
.value()
.imm(&imm.uimm8)
.imm(&entities.jump_table),
);
registry.insert(Builder::new("BranchTableBase").imm(&entities.jump_table));
registry.insert(
Builder::new("IndirectJump")
.value()
.imm(&entities.jump_table),
);
.imm(&entities.jump_table)
.build(),
registry.insert(Builder::new("Call").imm(&entities.func_ref).varargs());
registry.insert(
Builder::new("CallIndirect")
branch_table_base: Builder::new("BranchTableBase")
.imm(&entities.jump_table)
.build(),
indirect_jump: Builder::new("IndirectJump")
.value()
.imm(&entities.jump_table)
.build(),
call: Builder::new("Call")
.imm(&entities.func_ref)
.varargs()
.build(),
call_indirect: Builder::new("CallIndirect")
.imm(&entities.sig_ref)
.value()
.varargs(),
);
registry.insert(Builder::new("FuncAddr").imm(&entities.func_ref));
.varargs()
.build(),
registry.insert(
Builder::new("Load")
func_addr: Builder::new("FuncAddr").imm(&entities.func_ref).build(),
load: Builder::new("Load")
.imm(&imm.memflags)
.value()
.imm(&imm.offset32),
);
registry.insert(
Builder::new("LoadComplex")
.imm(&imm.offset32)
.build(),
load_complex: Builder::new("LoadComplex")
.imm(&imm.memflags)
.varargs()
.imm(&imm.offset32),
);
registry.insert(
Builder::new("Store")
.imm(&imm.offset32)
.build(),
store: Builder::new("Store")
.imm(&imm.memflags)
.value()
.value()
.imm(&imm.offset32),
);
registry.insert(
Builder::new("StoreComplex")
.imm(&imm.offset32)
.build(),
store_complex: Builder::new("StoreComplex")
.imm(&imm.memflags)
.value()
.varargs()
.imm(&imm.offset32),
);
registry.insert(
Builder::new("StackLoad")
.imm(&imm.offset32)
.build(),
stack_load: Builder::new("StackLoad")
.imm(&entities.stack_slot)
.imm(&imm.offset32),
);
registry.insert(
Builder::new("StackStore")
.imm(&imm.offset32)
.build(),
stack_store: Builder::new("StackStore")
.value()
.imm(&entities.stack_slot)
.imm(&imm.offset32),
);
.imm(&imm.offset32)
.build(),
// Accessing a WebAssembly heap.
registry.insert(
Builder::new("HeapAddr")
heap_addr: Builder::new("HeapAddr")
.imm(&entities.heap)
.value()
.imm(&imm.uimm32),
);
.imm(&imm.uimm32)
.build(),
// Accessing a WebAssembly table.
registry.insert(
Builder::new("TableAddr")
table_addr: Builder::new("TableAddr")
.imm(&entities.table)
.value()
.imm(&imm.offset32),
);
.imm(&imm.offset32)
.build(),
registry.insert(
Builder::new("RegMove")
reg_move: Builder::new("RegMove")
.value()
.imm_with_name("src", &imm.regunit)
.imm_with_name("dst", &imm.regunit),
);
registry.insert(
Builder::new("CopySpecial")
.imm_with_name("dst", &imm.regunit)
.build(),
copy_special: Builder::new("CopySpecial")
.imm_with_name("src", &imm.regunit)
.imm_with_name("dst", &imm.regunit),
);
registry.insert(Builder::new("CopyToSsa").imm_with_name("src", &imm.regunit));
registry.insert(
Builder::new("RegSpill")
.imm_with_name("dst", &imm.regunit)
.build(),
copy_to_ssa: Builder::new("CopyToSsa")
.imm_with_name("src", &imm.regunit)
.build(),
reg_spill: Builder::new("RegSpill")
.value()
.imm_with_name("src", &imm.regunit)
.imm_with_name("dst", &entities.stack_slot),
);
registry.insert(
Builder::new("RegFill")
.imm_with_name("dst", &entities.stack_slot)
.build(),
reg_fill: Builder::new("RegFill")
.value()
.imm_with_name("src", &entities.stack_slot)
.imm_with_name("dst", &imm.regunit),
);
.imm_with_name("dst", &imm.regunit)
.build(),
registry.insert(Builder::new("Trap").imm(&imm.trapcode));
registry.insert(Builder::new("CondTrap").value().imm(&imm.trapcode));
registry.insert(
Builder::new("IntCondTrap")
trap: Builder::new("Trap").imm(&imm.trapcode).build(),
cond_trap: Builder::new("CondTrap").value().imm(&imm.trapcode).build(),
int_cond_trap: Builder::new("IntCondTrap")
.imm(&imm.intcc)
.value()
.imm(&imm.trapcode),
);
registry.insert(
Builder::new("FloatCondTrap")
.imm(&imm.trapcode)
.build(),
float_cond_trap: Builder::new("FloatCondTrap")
.imm(&imm.floatcc)
.value()
.imm(&imm.trapcode),
);
registry
.imm(&imm.trapcode)
.build(),
}
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -8,20 +8,25 @@ pub mod legalize;
pub mod settings;
pub mod types;
use crate::cdsl::formats::FormatRegistry;
use crate::cdsl::formats::{FormatStructure, InstructionFormat};
use crate::cdsl::instructions::{AllInstructions, InstructionGroup};
use crate::cdsl::settings::SettingGroup;
use crate::cdsl::xform::TransformGroups;
use crate::shared::entities::EntityRefs;
use crate::shared::formats::Formats;
use crate::shared::immediates::Immediates;
use std::collections::HashMap;
use std::iter::FromIterator;
use std::rc::Rc;
pub(crate) struct Definitions {
pub settings: SettingGroup,
pub all_instructions: AllInstructions,
pub instructions: InstructionGroup,
pub imm: Immediates,
pub format_registry: FormatRegistry,
pub formats: Formats,
pub transform_groups: TransformGroups,
}
@@ -30,13 +35,9 @@ pub(crate) fn define() -> Definitions {
let immediates = Immediates::new();
let entities = EntityRefs::new();
let format_registry = formats::define(&immediates, &entities);
let instructions = instructions::define(
&mut all_instructions,
&format_registry,
&immediates,
&entities,
);
let formats = Formats::new(&immediates, &entities);
let instructions =
instructions::define(&mut all_instructions, &formats, &immediates, &entities);
let transform_groups = legalize::define(&instructions, &immediates);
Definitions {
@@ -44,7 +45,53 @@ pub(crate) fn define() -> Definitions {
all_instructions,
instructions,
imm: immediates,
format_registry,
formats,
transform_groups,
}
}
impl Definitions {
/// Verifies certain properties of formats.
///
/// - Formats must be uniquely named: if two formats have the same name, they must refer to the
/// same data. Otherwise, two format variants in the codegen crate would have the same name.
/// - Formats must be structurally different from each other. Otherwise, this would lead to
/// code duplicate in the codegen crate.
///
/// Returns a list of all the instruction formats effectively used.
pub fn verify_instruction_formats(&self) -> Vec<&InstructionFormat> {
let mut format_names: HashMap<&'static str, &Rc<InstructionFormat>> = HashMap::new();
// A structure is: number of input value operands / whether there's varargs or not / names
// of immediate fields.
let mut format_structures: HashMap<FormatStructure, &InstructionFormat> = HashMap::new();
for inst in self.all_instructions.values() {
// Check name.
if let Some(existing_format) = format_names.get(&inst.format.name) {
assert!(
Rc::ptr_eq(&existing_format, &inst.format),
"formats must uniquely named; there's a\
conflict on the name '{}', please make sure it is used only once.",
existing_format.name
);
} else {
format_names.insert(inst.format.name, &inst.format);
}
// Check structure.
let key = inst.format.structure();
if let Some(existing_format) = format_structures.get(&key) {
assert_eq!(
existing_format.name, inst.format.name,
"duplicate instruction formats {} and {}; please remove one.",
existing_format.name, inst.format.name
);
} else {
format_structures.insert(key, &inst.format);
}
}
Vec::from_iter(format_structures.into_iter().map(|(_, v)| v))
}
}