[meta] Remove name lookups in formats;

This does a lot at once, since there was no clear way to split the three
commits:

- Instruction need to be passed an explicit InstructionFormat,
- InstructionFormat deduplication is checked once all entities have been
defined;
This commit is contained in:
Benjamin Bouvier
2019-10-18 19:24:03 +02:00
parent 9e9a7626d7
commit 0243b642e3
17 changed files with 1002 additions and 730 deletions

View File

@@ -374,7 +374,7 @@ pub(crate) fn define(
r: &RecipeGroup,
) -> PerCpuModeEncodings {
let shared = &shared_defs.instructions;
let formats = &shared_defs.format_registry;
let formats = &shared_defs.formats;
// Shorthands for instructions.
let adjust_sp_down = shared.by_name("adjust_sp_down");
@@ -774,8 +774,8 @@ pub(crate) fn define(
e.enc64(iconst.bind(I32), rec_pu_id.opcodes(&MOV_IMM));
// The 32-bit immediate movl also zero-extends to 64 bits.
let f_unary_imm = formats.by_name("UnaryImm");
let is_unsigned_int32 = InstructionPredicate::new_is_unsigned_int(&*f_unary_imm, "imm", 32, 0);
let is_unsigned_int32 =
InstructionPredicate::new_is_unsigned_int(&*formats.unary_imm, "imm", 32, 0);
e.enc64_func(
iconst.bind(I64),
@@ -801,7 +801,7 @@ pub(crate) fn define(
}
e.enc64(bconst.bind(B64), rec_pu_id_bool.opcodes(&MOV_IMM).rex());
let is_zero_int = InstructionPredicate::new_is_zero_int(f_unary_imm, "imm");
let is_zero_int = InstructionPredicate::new_is_zero_int(&formats.unary_imm, "imm");
e.enc_both_instp(
iconst.bind(I8),
rec_u_id_z.opcodes(&XORB),
@@ -880,8 +880,8 @@ pub(crate) fn define(
e.enc64_isap(ctz.bind(I32), rec_urm.opcodes(&TZCNT), use_bmi1);
// Loads and stores.
let f_load_complex = formats.by_name("LoadComplex");
let is_load_complex_length_two = InstructionPredicate::new_length_equals(&*f_load_complex, 2);
let is_load_complex_length_two =
InstructionPredicate::new_length_equals(&*formats.load_complex, 2);
for recipe in &[rec_ldWithIndex, rec_ldWithIndexDisp8, rec_ldWithIndexDisp32] {
e.enc_i32_i64_instp(
@@ -925,9 +925,8 @@ pub(crate) fn define(
);
}
let f_store_complex = formats.by_name("StoreComplex");
let is_store_complex_length_three =
InstructionPredicate::new_length_equals(&*f_store_complex, 3);
InstructionPredicate::new_length_equals(&*formats.store_complex, 3);
for recipe in &[rec_stWithIndex, rec_stWithIndexDisp8, rec_stWithIndexDisp32] {
e.enc_i32_i64_instp(
@@ -1233,8 +1232,8 @@ pub(crate) fn define(
);
// 64-bit, colocated, both PIC and non-PIC. Use the lea instruction's pc-relative field.
let f_func_addr = formats.by_name("FuncAddr");
let is_colocated_func = InstructionPredicate::new_is_colocated_func(&*f_func_addr, "func_ref");
let is_colocated_func =
InstructionPredicate::new_is_colocated_func(&*formats.func_addr, "func_ref");
e.enc64_instp(
func_addr.bind(I64),
rec_pcrel_fnaddr8.opcodes(&LEA).rex().w(),
@@ -1293,8 +1292,7 @@ pub(crate) fn define(
e.enc32(call, rec_call_id.opcodes(&CALL_RELATIVE));
// 64-bit, colocated, both PIC and non-PIC. Use the call instruction's pc-relative field.
let f_call = formats.by_name("Call");
let is_colocated_func = InstructionPredicate::new_is_colocated_func(&*f_call, "func_ref");
let is_colocated_func = InstructionPredicate::new_is_colocated_func(&*formats.call, "func_ref");
e.enc64_instp(call, rec_call_id.opcodes(&CALL_RELATIVE), is_colocated_func);
// 64-bit, non-colocated, PIC. There is no 64-bit non-colocated non-PIC version, since non-PIC
@@ -1564,18 +1562,16 @@ pub(crate) fn define(
// Floating-point constants equal to 0.0 can be encoded using either `xorps` or `xorpd`, for
// 32-bit and 64-bit floats respectively.
let f_unary_ieee32 = formats.by_name("UnaryIeee32");
let is_zero_32_bit_float =
InstructionPredicate::new_is_zero_32bit_float(&*f_unary_ieee32, "imm");
InstructionPredicate::new_is_zero_32bit_float(&*formats.unary_ieee32, "imm");
e.enc32_instp(
f32const,
rec_f32imm_z.opcodes(&XORPS),
is_zero_32_bit_float.clone(),
);
let f_unary_ieee64 = formats.by_name("UnaryIeee64");
let is_zero_64_bit_float =
InstructionPredicate::new_is_zero_64bit_float(&*f_unary_ieee64, "imm");
InstructionPredicate::new_is_zero_64bit_float(&*formats.unary_ieee64, "imm");
e.enc32_instp(
f64const,
rec_f64imm_z.opcodes(&XORPD),
@@ -1847,18 +1843,17 @@ pub(crate) fn define(
// this must be encoded prior to the MOVUPS implementation (below) so the compiler sees this
// encoding first
for ty in ValueType::all_lane_types().filter(allowed_simd_type) {
let f_unary_const = formats.by_name("UnaryConst");
let instruction = vconst.bind(vector(ty, sse_vector_size));
let is_zero_128bit =
InstructionPredicate::new_is_all_zeroes(&*f_unary_const, "constant_handle");
InstructionPredicate::new_is_all_zeroes(&*formats.unary_const, "constant_handle");
let template = rec_vconst_optimized.nonrex().opcodes(&PXOR);
e.enc_32_64_func(instruction.clone(), template, |builder| {
builder.inst_predicate(is_zero_128bit)
});
let is_ones_128bit =
InstructionPredicate::new_is_all_ones(&*f_unary_const, "constant_handle");
InstructionPredicate::new_is_all_ones(&*formats.unary_const, "constant_handle");
let template = rec_vconst_optimized.nonrex().opcodes(&PCMPEQB);
e.enc_32_64_func(instruction, template, |builder| {
builder.inst_predicate(is_ones_128bit)
@@ -2038,9 +2033,11 @@ pub(crate) fn define(
};
let instruction = icmp.bind(vector(ty, sse_vector_size));
let f_int_compare = formats.by_name("IntCompare");
let has_eq_condition_code =
InstructionPredicate::new_has_condition_code(&*f_int_compare, IntCC::Equal, "cond");
let has_eq_condition_code = InstructionPredicate::new_has_condition_code(
&*formats.int_compare,
IntCC::Equal,
"cond",
);
let template = rec_icscc_fpr.nonrex().opcodes(opcodes);
e.enc_32_64_func(instruction, template, |builder| {
let builder = builder.inst_predicate(has_eq_condition_code);