Files
regalloc2/src/ion/mod.rs

4570 lines
186 KiB
Rust

/*
* The following license applies to this file, which has been largely
* derived from the files `js/src/jit/BacktrackingAllocator.h` and
* `js/src/jit/BacktrackingAllocator.cpp` in Mozilla Firefox:
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*/
//! Backtracking register allocator on SSA code ported from IonMonkey's
//! BacktrackingAllocator.
/*
* TODO:
*
* - "Fixed-stack location": negative spillslot numbers?
*
* - Rematerialization
*/
/*
Performance and code-quality ideas:
- Reduced spilling when spillslot is still "clean":
- Track 'dirty' status of reg and elide spill when not dirty.
- This is slightly tricky: fixpoint problem, across edges.
- We can simplify by assuming spillslot is dirty if value came
in on BB edge; only clean if we reload in same block we spill
in.
- As a slightly better variation on this, track dirty during
scan in a single range while resolving moves; in-edge makes
dirty.
- Avoid requiring two scratch regs:
- Require machine impl to be able to (i) push a reg, (ii) pop a
reg; then generate a balanced pair of push/pop, using the stack
slot as the scratch.
- on Cranelift side, take care to generate virtual-SP
adjustments!
- For a spillslot->spillslot move, push a fixed reg (say the
first preferred one), reload into it, spill out of it, and then
pop old val
- Avoid rebuilding MachineEnv on every function allocation in
regalloc.rs shim
- Profile allocations
*/
#![allow(dead_code, unused_imports)]
use crate::bitvec::BitVec;
use crate::cfg::CFGInfo;
use crate::index::ContainerComparator;
use crate::moves::ParallelMoves;
use crate::{
define_index, domtree, Allocation, AllocationKind, Block, Edit, Function, Inst, InstPosition,
MachineEnv, Operand, OperandKind, OperandPolicy, OperandPos, Output, PReg, ProgPoint,
RegAllocError, RegClass, SpillSlot, VReg,
};
use fxhash::{FxHashMap, FxHashSet};
use log::debug;
use smallvec::{smallvec, SmallVec};
use std::cmp::Ordering;
use std::collections::{BTreeMap, BinaryHeap, HashMap, HashSet, VecDeque};
use std::convert::TryFrom;
use std::fmt::Debug;
/// A range from `from` (inclusive) to `to` (exclusive).
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct CodeRange {
from: ProgPoint,
to: ProgPoint,
}
impl CodeRange {
#[inline(always)]
pub fn is_empty(&self) -> bool {
self.from == self.to
}
#[inline(always)]
pub fn contains(&self, other: &Self) -> bool {
other.from >= self.from && other.to <= self.to
}
#[inline(always)]
pub fn contains_point(&self, other: ProgPoint) -> bool {
other >= self.from && other < self.to
}
#[inline(always)]
pub fn overlaps(&self, other: &Self) -> bool {
other.to > self.from && other.from < self.to
}
#[inline(always)]
pub fn len(&self) -> usize {
self.to.inst().index() - self.from.inst().index()
}
}
impl std::cmp::PartialOrd for CodeRange {
#[inline(always)]
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl std::cmp::Ord for CodeRange {
#[inline(always)]
fn cmp(&self, other: &Self) -> Ordering {
if self.to <= other.from {
Ordering::Less
} else if self.from >= other.to {
Ordering::Greater
} else {
Ordering::Equal
}
}
}
define_index!(LiveBundleIndex);
define_index!(LiveRangeIndex);
define_index!(SpillSetIndex);
define_index!(UseIndex);
define_index!(VRegIndex);
define_index!(PRegIndex);
define_index!(SpillSlotIndex);
/// Used to carry small sets of bundles, e.g. for conflict sets.
type LiveBundleVec = SmallVec<[LiveBundleIndex; 4]>;
#[derive(Clone, Copy, Debug)]
struct LiveRangeListEntry {
range: CodeRange,
index: LiveRangeIndex,
}
type LiveRangeList = SmallVec<[LiveRangeListEntry; 4]>;
type UseList = SmallVec<[Use; 2]>;
#[derive(Clone, Debug)]
struct LiveRange {
range: CodeRange,
vreg: VRegIndex,
bundle: LiveBundleIndex,
uses_spill_weight_and_flags: u32,
uses: UseList,
merged_into: LiveRangeIndex,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[repr(u32)]
enum LiveRangeFlag {
StartsAtDef = 1,
}
impl LiveRange {
#[inline(always)]
pub fn set_flag(&mut self, flag: LiveRangeFlag) {
self.uses_spill_weight_and_flags |= (flag as u32) << 29;
}
#[inline(always)]
pub fn clear_flag(&mut self, flag: LiveRangeFlag) {
self.uses_spill_weight_and_flags &= !((flag as u32) << 29);
}
#[inline(always)]
pub fn assign_flag(&mut self, flag: LiveRangeFlag, val: bool) {
let bit = if val { (flag as u32) << 29 } else { 0 };
self.uses_spill_weight_and_flags &= 0xe000_0000;
self.uses_spill_weight_and_flags |= bit;
}
#[inline(always)]
pub fn has_flag(&self, flag: LiveRangeFlag) -> bool {
self.uses_spill_weight_and_flags & ((flag as u32) << 29) != 0
}
#[inline(always)]
pub fn flag_word(&self) -> u32 {
self.uses_spill_weight_and_flags & 0xe000_0000
}
#[inline(always)]
pub fn merge_flags(&mut self, flag_word: u32) {
self.uses_spill_weight_and_flags |= flag_word;
}
#[inline(always)]
pub fn uses_spill_weight(&self) -> u32 {
self.uses_spill_weight_and_flags & 0x1fff_ffff
}
#[inline(always)]
pub fn set_uses_spill_weight(&mut self, weight: u32) {
assert!(weight < (1 << 29));
self.uses_spill_weight_and_flags =
(self.uses_spill_weight_and_flags & 0xe000_0000) | weight;
}
}
#[derive(Clone, Copy, Debug)]
struct Use {
operand: Operand,
pos: ProgPoint,
slot: u8,
weight: u16,
}
impl Use {
#[inline(always)]
fn new(operand: Operand, pos: ProgPoint, slot: u8) -> Self {
Self {
operand,
pos,
slot,
// Weight is updated on insertion into LR.
weight: 0,
}
}
}
const SLOT_NONE: u8 = u8::MAX;
#[derive(Clone, Debug)]
struct LiveBundle {
ranges: LiveRangeList,
spillset: SpillSetIndex,
allocation: Allocation,
prio: u32, // recomputed after every bulk update
spill_weight_and_props: u32,
}
impl LiveBundle {
#[inline(always)]
fn set_cached_spill_weight_and_props(
&mut self,
spill_weight: u32,
minimal: bool,
fixed: bool,
stack: bool,
) {
debug_assert!(spill_weight < ((1 << 29) - 1));
self.spill_weight_and_props = spill_weight
| (if minimal { 1 << 31 } else { 0 })
| (if fixed { 1 << 30 } else { 0 })
| (if stack { 1 << 29 } else { 0 });
}
#[inline(always)]
fn cached_minimal(&self) -> bool {
self.spill_weight_and_props & (1 << 31) != 0
}
#[inline(always)]
fn cached_fixed(&self) -> bool {
self.spill_weight_and_props & (1 << 30) != 0
}
#[inline(always)]
fn cached_stack(&self) -> bool {
self.spill_weight_and_props & (1 << 29) != 0
}
#[inline(always)]
fn cached_spill_weight(&self) -> u32 {
self.spill_weight_and_props & ((1 << 29) - 1)
}
}
#[derive(Clone, Debug)]
struct SpillSet {
vregs: SmallVec<[VRegIndex; 2]>,
slot: SpillSlotIndex,
reg_hint: PReg,
class: RegClass,
spill_bundle: LiveBundleIndex,
required: bool,
size: u8,
}
#[derive(Clone, Debug)]
struct VRegData {
ranges: LiveRangeList,
blockparam: Block,
is_ref: bool,
is_pinned: bool,
}
#[derive(Clone, Debug)]
struct PRegData {
reg: PReg,
allocations: LiveRangeSet,
}
/*
* Environment setup:
*
* We have seven fundamental objects: LiveRange, LiveBundle, SpillSet, Use, VReg, PReg.
*
* The relationship is as follows:
*
* LiveRange --(vreg)--> shared(VReg)
* LiveRange --(bundle)--> shared(LiveBundle)
* LiveRange --(use) --> list(Use)
*
* Use --(vreg)--> shared(VReg)
*
* LiveBundle --(range)--> list(LiveRange)
* LiveBundle --(spillset)--> shared(SpillSet)
* LiveBundle --(parent)--> parent(LiveBundle)
*
* SpillSet --(parent)--> parent(SpillSet)
* SpillSet --(bundles)--> list(LiveBundle)
*
* VReg --(range)--> list(LiveRange)
*
* PReg --(ranges)--> set(LiveRange)
*/
#[derive(Clone, Debug)]
struct Env<'a, F: Function> {
func: &'a F,
env: &'a MachineEnv,
cfginfo: CFGInfo,
liveins: Vec<BitVec>,
liveouts: Vec<BitVec>,
/// Blockparam outputs: from-vreg, (end of) from-block, (start of)
/// to-block, to-vreg. The field order is significant: these are sorted so
/// that a scan over vregs, then blocks in each range, can scan in
/// order through this (sorted) list and add allocs to the
/// half-move list.
blockparam_outs: Vec<(VRegIndex, Block, Block, VRegIndex)>,
/// Blockparam inputs: to-vreg, (start of) to-block, (end of)
/// from-block. As above for `blockparam_outs`, field order is
/// significant.
blockparam_ins: Vec<(VRegIndex, Block, Block)>,
/// Blockparam allocs: block, idx, vreg, alloc. Info to describe
/// blockparam locations at block entry, for metadata purposes
/// (e.g. for the checker).
blockparam_allocs: Vec<(Block, u32, VRegIndex, Allocation)>,
ranges: Vec<LiveRange>,
bundles: Vec<LiveBundle>,
spillsets: Vec<SpillSet>,
vregs: Vec<VRegData>,
vreg_regs: Vec<VReg>,
pregs: Vec<PRegData>,
allocation_queue: PrioQueue,
clobbers: Vec<Inst>, // Sorted list of insts with clobbers.
safepoints: Vec<Inst>, // Sorted list of safepoint insts.
safepoints_per_vreg: HashMap<usize, HashSet<Inst>>,
spilled_bundles: Vec<LiveBundleIndex>,
spillslots: Vec<SpillSlotData>,
slots_by_size: Vec<SpillSlotList>,
// Program moves: these are moves in the provided program that we
// handle with our internal machinery, in order to avoid the
// overhead of ordinary operand processing. We expect the client
// to not generate any code for instructions that return
// `Some(..)` for `.is_move()`, and instead use the edits that we
// provide to implement those moves (or some simplified version of
// them) post-regalloc.
//
// (from-vreg, inst, from-alloc), sorted by (from-vreg, inst)
prog_move_srcs: Vec<((VRegIndex, Inst), Allocation)>,
// (to-vreg, inst, to-alloc), sorted by (to-vreg, inst)
prog_move_dsts: Vec<((VRegIndex, Inst), Allocation)>,
// (from-vreg, to-vreg) for bundle-merging.
prog_move_merges: Vec<(LiveRangeIndex, LiveRangeIndex)>,
// When multiple fixed-register constraints are present on a
// single VReg at a single program point (this can happen for,
// e.g., call args that use the same value multiple times), we
// remove all but one of the fixed-register constraints, make a
// note here, and add a clobber with that PReg instread to keep
// the register available. When we produce the final edit-list, we
// will insert a copy from wherever the VReg's primary allocation
// was to the approprate PReg.
//
// (progpoint, copy-from-preg, copy-to-preg, to-slot)
multi_fixed_reg_fixups: Vec<(ProgPoint, PRegIndex, PRegIndex, usize)>,
inserted_moves: Vec<InsertedMove>,
// Output:
edits: Vec<(u32, InsertMovePrio, Edit)>,
allocs: Vec<Allocation>,
inst_alloc_offsets: Vec<u32>,
num_spillslots: u32,
safepoint_slots: Vec<(ProgPoint, SpillSlot)>,
stats: Stats,
// For debug output only: a list of textual annotations at every
// ProgPoint to insert into the final allocated program listing.
debug_annotations: std::collections::HashMap<ProgPoint, Vec<String>>,
annotations_enabled: bool,
}
#[derive(Clone, Debug)]
struct SpillSlotData {
ranges: LiveRangeSet,
class: RegClass,
size: u32,
alloc: Allocation,
next_spillslot: SpillSlotIndex,
}
#[derive(Clone, Debug)]
struct SpillSlotList {
first_spillslot: SpillSlotIndex,
last_spillslot: SpillSlotIndex,
}
#[derive(Clone, Debug)]
struct PrioQueue {
heap: std::collections::BinaryHeap<PrioQueueEntry>,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
struct PrioQueueEntry {
prio: u32,
bundle: LiveBundleIndex,
reg_hint: PReg,
}
#[derive(Clone, Debug)]
struct LiveRangeSet {
btree: BTreeMap<LiveRangeKey, LiveRangeIndex>,
}
#[derive(Clone, Copy, Debug)]
struct LiveRangeKey {
from: u32,
to: u32,
}
impl LiveRangeKey {
#[inline(always)]
fn from_range(range: &CodeRange) -> Self {
Self {
from: range.from.to_index(),
to: range.to.to_index(),
}
}
}
impl std::cmp::PartialEq for LiveRangeKey {
#[inline(always)]
fn eq(&self, other: &Self) -> bool {
self.to > other.from && self.from < other.to
}
}
impl std::cmp::Eq for LiveRangeKey {}
impl std::cmp::PartialOrd for LiveRangeKey {
#[inline(always)]
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl std::cmp::Ord for LiveRangeKey {
#[inline(always)]
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
if self.to <= other.from {
std::cmp::Ordering::Less
} else if self.from >= other.to {
std::cmp::Ordering::Greater
} else {
std::cmp::Ordering::Equal
}
}
}
struct PrioQueueComparator<'a> {
prios: &'a [usize],
}
impl<'a> ContainerComparator for PrioQueueComparator<'a> {
type Ix = LiveBundleIndex;
fn compare(&self, a: Self::Ix, b: Self::Ix) -> std::cmp::Ordering {
self.prios[a.index()].cmp(&self.prios[b.index()])
}
}
impl PrioQueue {
fn new() -> Self {
PrioQueue {
heap: std::collections::BinaryHeap::new(),
}
}
#[inline(always)]
fn insert(&mut self, bundle: LiveBundleIndex, prio: usize, reg_hint: PReg) {
self.heap.push(PrioQueueEntry {
prio: prio as u32,
bundle,
reg_hint,
});
}
#[inline(always)]
fn is_empty(self) -> bool {
self.heap.is_empty()
}
#[inline(always)]
fn pop(&mut self) -> Option<(LiveBundleIndex, PReg)> {
self.heap.pop().map(|entry| (entry.bundle, entry.reg_hint))
}
}
impl LiveRangeSet {
pub(crate) fn new() -> Self {
Self {
btree: BTreeMap::new(),
}
}
}
#[inline(always)]
fn spill_weight_from_policy(policy: OperandPolicy, loop_depth: usize, is_def: bool) -> u32 {
// A bonus of 1000 for one loop level, 4000 for two loop levels,
// 16000 for three loop levels, etc. Avoids exponentiation.
let hot_bonus = std::cmp::min(16000, 1000 * (1 << (2 * loop_depth)));
let def_bonus = if is_def { 2000 } else { 0 };
let policy_bonus = match policy {
OperandPolicy::Any => 1000,
OperandPolicy::Reg | OperandPolicy::FixedReg(_) => 2000,
_ => 0,
};
hot_bonus + def_bonus + policy_bonus
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
enum Requirement {
Unknown,
Fixed(PReg),
Register(RegClass),
Stack(RegClass),
Any(RegClass),
Conflict,
}
impl Requirement {
#[inline(always)]
fn class(self) -> RegClass {
match self {
Requirement::Unknown => panic!("No class for unknown Requirement"),
Requirement::Fixed(preg) => preg.class(),
Requirement::Register(class) | Requirement::Any(class) | Requirement::Stack(class) => {
class
}
Requirement::Conflict => panic!("No class for conflicted Requirement"),
}
}
#[inline(always)]
fn merge(self, other: Requirement) -> Requirement {
match (self, other) {
(Requirement::Unknown, other) | (other, Requirement::Unknown) => other,
(Requirement::Conflict, _) | (_, Requirement::Conflict) => Requirement::Conflict,
(other, Requirement::Any(rc)) | (Requirement::Any(rc), other) => {
if other.class() == rc {
other
} else {
Requirement::Conflict
}
}
(Requirement::Stack(rc1), Requirement::Stack(rc2)) => {
if rc1 == rc2 {
self
} else {
Requirement::Conflict
}
}
(Requirement::Register(rc), Requirement::Fixed(preg))
| (Requirement::Fixed(preg), Requirement::Register(rc)) => {
if rc == preg.class() {
Requirement::Fixed(preg)
} else {
Requirement::Conflict
}
}
(Requirement::Register(rc1), Requirement::Register(rc2)) => {
if rc1 == rc2 {
self
} else {
Requirement::Conflict
}
}
(Requirement::Fixed(a), Requirement::Fixed(b)) if a == b => self,
_ => Requirement::Conflict,
}
}
#[inline(always)]
fn from_operand(op: Operand) -> Requirement {
match op.policy() {
OperandPolicy::FixedReg(preg) => Requirement::Fixed(preg),
OperandPolicy::Reg | OperandPolicy::Reuse(_) => Requirement::Register(op.class()),
OperandPolicy::Stack => Requirement::Stack(op.class()),
_ => Requirement::Any(op.class()),
}
}
}
#[derive(Clone, Debug, PartialEq, Eq)]
enum AllocRegResult {
Allocated(Allocation),
Conflict(LiveBundleVec),
ConflictWithFixed,
ConflictHighCost,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
struct BundleProperties {
minimal: bool,
fixed: bool,
}
#[derive(Clone, Debug)]
struct InsertedMove {
pos: ProgPoint,
prio: InsertMovePrio,
from_alloc: Allocation,
to_alloc: Allocation,
to_vreg: Option<VReg>,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
enum InsertMovePrio {
InEdgeMoves,
BlockParam,
Regular,
MultiFixedReg,
ReusedInput,
OutEdgeMoves,
}
#[derive(Clone, Copy, Debug, Default)]
pub struct Stats {
livein_blocks: usize,
livein_iterations: usize,
initial_liverange_count: usize,
merged_bundle_count: usize,
prog_moves: usize,
prog_moves_dead_src: usize,
prog_move_merge_attempt: usize,
prog_move_merge_success: usize,
process_bundle_count: usize,
process_bundle_reg_probes_fixed: usize,
process_bundle_reg_success_fixed: usize,
process_bundle_bounding_range_probe_start_any: usize,
process_bundle_bounding_range_probes_any: usize,
process_bundle_bounding_range_success_any: usize,
process_bundle_reg_probe_start_any: usize,
process_bundle_reg_probes_any: usize,
process_bundle_reg_success_any: usize,
evict_bundle_event: usize,
evict_bundle_count: usize,
splits: usize,
splits_clobbers: usize,
splits_hot: usize,
splits_conflicts: usize,
splits_defs: usize,
splits_all: usize,
final_liverange_count: usize,
final_bundle_count: usize,
spill_bundle_count: usize,
spill_bundle_reg_probes: usize,
spill_bundle_reg_success: usize,
blockparam_ins_count: usize,
blockparam_outs_count: usize,
blockparam_allocs_count: usize,
halfmoves_count: usize,
edits_count: usize,
}
/// This iterator represents a traversal through all allocatable
/// registers of a given class, in a certain order designed to
/// minimize allocation contention.
///
/// The order in which we try registers is somewhat complex:
/// - First, if there is a hint, we try that.
/// - Then, we try registers in a traversal order that is based on an
/// "offset" (usually the bundle index) spreading pressure evenly
/// among registers to reduce commitment-map contention.
/// - Within that scan, we try registers in two groups: first,
/// prferred registers; then, non-preferred registers. (In normal
/// usage, these consist of caller-save and callee-save registers
/// respectively, to minimize clobber-saves; but they need not.)
struct RegTraversalIter<'a> {
env: &'a MachineEnv,
class: usize,
hints: [Option<PReg>; 2],
hint_idx: usize,
pref_idx: usize,
non_pref_idx: usize,
offset_pref: usize,
offset_non_pref: usize,
}
impl<'a> RegTraversalIter<'a> {
pub fn new(
env: &'a MachineEnv,
class: RegClass,
hint_reg: PReg,
hint2_reg: PReg,
offset: usize,
) -> Self {
let mut hint_reg = if hint_reg != PReg::invalid() {
Some(hint_reg)
} else {
None
};
let mut hint2_reg = if hint2_reg != PReg::invalid() {
Some(hint2_reg)
} else {
None
};
if hint_reg.is_none() {
hint_reg = hint2_reg;
hint2_reg = None;
}
let hints = [hint_reg, hint2_reg];
let class = class as u8 as usize;
let offset_pref = if env.preferred_regs_by_class[class].len() > 0 {
offset % env.preferred_regs_by_class[class].len()
} else {
0
};
let offset_non_pref = if env.non_preferred_regs_by_class[class].len() > 0 {
offset % env.non_preferred_regs_by_class[class].len()
} else {
0
};
Self {
env,
class,
hints,
hint_idx: 0,
pref_idx: 0,
non_pref_idx: 0,
offset_pref,
offset_non_pref,
}
}
}
impl<'a> std::iter::Iterator for RegTraversalIter<'a> {
type Item = PReg;
fn next(&mut self) -> Option<PReg> {
fn wrap(idx: usize, limit: usize) -> usize {
if idx >= limit {
idx - limit
} else {
idx
}
}
if self.hint_idx < 2 && self.hints[self.hint_idx].is_some() {
let h = self.hints[self.hint_idx];
self.hint_idx += 1;
return h;
}
while self.pref_idx < self.env.preferred_regs_by_class[self.class].len() {
let arr = &self.env.preferred_regs_by_class[self.class][..];
let r = arr[wrap(self.pref_idx + self.offset_pref, arr.len())];
self.pref_idx += 1;
if Some(r) == self.hints[0] || Some(r) == self.hints[1] {
continue;
}
return Some(r);
}
while self.non_pref_idx < self.env.non_preferred_regs_by_class[self.class].len() {
let arr = &self.env.non_preferred_regs_by_class[self.class][..];
let r = arr[wrap(self.non_pref_idx + self.offset_non_pref, arr.len())];
self.non_pref_idx += 1;
if Some(r) == self.hints[0] || Some(r) == self.hints[1] {
continue;
}
return Some(r);
}
None
}
}
impl<'a, F: Function> Env<'a, F> {
pub(crate) fn new(
func: &'a F,
env: &'a MachineEnv,
cfginfo: CFGInfo,
annotations_enabled: bool,
) -> Self {
let n = func.insts();
Self {
func,
env,
cfginfo,
liveins: Vec::with_capacity(func.blocks()),
liveouts: Vec::with_capacity(func.blocks()),
blockparam_outs: vec![],
blockparam_ins: vec![],
blockparam_allocs: vec![],
bundles: Vec::with_capacity(n),
ranges: Vec::with_capacity(4 * n),
spillsets: Vec::with_capacity(n),
vregs: Vec::with_capacity(n),
vreg_regs: Vec::with_capacity(n),
pregs: vec![],
allocation_queue: PrioQueue::new(),
clobbers: vec![],
safepoints: vec![],
safepoints_per_vreg: HashMap::new(),
spilled_bundles: vec![],
spillslots: vec![],
slots_by_size: vec![],
prog_move_srcs: Vec::with_capacity(n / 2),
prog_move_dsts: Vec::with_capacity(n / 2),
prog_move_merges: Vec::with_capacity(n / 2),
multi_fixed_reg_fixups: vec![],
inserted_moves: vec![],
edits: Vec::with_capacity(n),
allocs: Vec::with_capacity(4 * n),
inst_alloc_offsets: vec![],
num_spillslots: 0,
safepoint_slots: vec![],
stats: Stats::default(),
debug_annotations: std::collections::HashMap::new(),
annotations_enabled,
}
}
fn create_pregs_and_vregs(&mut self) {
// Create PRegs from the env.
self.pregs.resize(
PReg::MAX_INDEX,
PRegData {
reg: PReg::invalid(),
allocations: LiveRangeSet::new(),
},
);
for &preg in &self.env.regs {
self.pregs[preg.index()].reg = preg;
}
// Create VRegs from the vreg count.
for idx in 0..self.func.num_vregs() {
// We'll fill in the real details when we see the def.
let reg = VReg::new(idx, RegClass::Int);
self.add_vreg(
reg,
VRegData {
ranges: smallvec![],
blockparam: Block::invalid(),
is_ref: false,
is_pinned: false,
},
);
}
for v in self.func.reftype_vregs() {
self.vregs[v.vreg()].is_ref = true;
}
for v in self.func.pinned_vregs() {
self.vregs[v.vreg()].is_pinned = true;
}
// Create allocations too.
for inst in 0..self.func.insts() {
let start = self.allocs.len() as u32;
self.inst_alloc_offsets.push(start);
for _ in 0..self.func.inst_operands(Inst::new(inst)).len() {
self.allocs.push(Allocation::none());
}
}
}
fn add_vreg(&mut self, reg: VReg, data: VRegData) -> VRegIndex {
let idx = self.vregs.len();
self.vregs.push(data);
self.vreg_regs.push(reg);
VRegIndex::new(idx)
}
fn create_liverange(&mut self, range: CodeRange) -> LiveRangeIndex {
let idx = self.ranges.len();
self.ranges.push(LiveRange {
range,
vreg: VRegIndex::invalid(),
bundle: LiveBundleIndex::invalid(),
uses_spill_weight_and_flags: 0,
uses: smallvec![],
merged_into: LiveRangeIndex::invalid(),
});
LiveRangeIndex::new(idx)
}
/// Mark `range` as live for the given `vreg`.
///
/// Returns the liverange that contains the given range.
fn add_liverange_to_vreg(&mut self, vreg: VRegIndex, range: CodeRange) -> LiveRangeIndex {
log::debug!("add_liverange_to_vreg: vreg {:?} range {:?}", vreg, range);
// Invariant: as we are building liveness information, we
// *always* process instructions bottom-to-top, and as a
// consequence, new liveranges are always created before any
// existing liveranges for a given vreg. We assert this here,
// then use it to avoid an O(n) merge step (which would lead
// to O(n^2) liveness construction cost overall).
//
// We store liveranges in reverse order in the `.ranges`
// array, then reverse them at the end of
// `compute_liveness()`.
assert!(
self.vregs[vreg.index()].ranges.is_empty()
|| range.to
<= self.ranges[self.vregs[vreg.index()]
.ranges
.last()
.unwrap()
.index
.index()]
.range
.from
);
if self.vregs[vreg.index()].ranges.is_empty()
|| range.to
< self.ranges[self.vregs[vreg.index()]
.ranges
.last()
.unwrap()
.index
.index()]
.range
.from
{
// Is not contiguous with previously-added (immediately
// following) range; create a new range.
let lr = self.create_liverange(range);
self.ranges[lr.index()].vreg = vreg;
self.vregs[vreg.index()]
.ranges
.push(LiveRangeListEntry { range, index: lr });
lr
} else {
// Is contiguous with previously-added range; just extend
// its range and return it.
let lr = self.vregs[vreg.index()].ranges.last().unwrap().index;
assert!(range.to == self.ranges[lr.index()].range.from);
self.ranges[lr.index()].range.from = range.from;
lr
}
}
fn insert_use_into_liverange(&mut self, into: LiveRangeIndex, mut u: Use) {
let operand = u.operand;
let policy = operand.policy();
let block = self.cfginfo.insn_block[u.pos.inst().index()];
let loop_depth = self.cfginfo.approx_loop_depth[block.index()] as usize;
let weight =
spill_weight_from_policy(policy, loop_depth, operand.kind() != OperandKind::Use);
u.weight = u16::try_from(weight).expect("weight too large for u16 field");
log::debug!(
"insert use {:?} into lr {:?} with weight {}",
u,
into,
weight,
);
// N.B.: we do *not* update `requirement` on the range,
// because those will be computed during the multi-fixed-reg
// fixup pass later (after all uses are inserted).
self.ranges[into.index()].uses.push(u);
// Update stats.
self.ranges[into.index()].uses_spill_weight_and_flags += weight;
log::debug!(
" -> now range has weight {}",
self.ranges[into.index()].uses_spill_weight(),
);
}
fn find_vreg_liverange_for_pos(
&self,
vreg: VRegIndex,
pos: ProgPoint,
) -> Option<LiveRangeIndex> {
for entry in &self.vregs[vreg.index()].ranges {
if entry.range.contains_point(pos) {
return Some(entry.index);
}
}
None
}
fn add_liverange_to_preg(&mut self, range: CodeRange, reg: PReg) {
log::debug!("adding liverange to preg: {:?} to {}", range, reg);
let preg_idx = PRegIndex::new(reg.index());
self.pregs[preg_idx.index()]
.allocations
.btree
.insert(LiveRangeKey::from_range(&range), LiveRangeIndex::invalid());
}
fn is_live_in(&mut self, block: Block, vreg: VRegIndex) -> bool {
self.liveins[block.index()].get(vreg.index())
}
fn compute_liveness(&mut self) -> Result<(), RegAllocError> {
// Create initial LiveIn and LiveOut bitsets.
for _ in 0..self.func.blocks() {
self.liveins.push(BitVec::new());
self.liveouts.push(BitVec::new());
}
// Run a worklist algorithm to precisely compute liveins and
// liveouts.
let mut workqueue = VecDeque::new();
let mut workqueue_set = FxHashSet::default();
// Initialize workqueue with postorder traversal.
for &block in &self.cfginfo.postorder[..] {
workqueue.push_back(block);
workqueue_set.insert(block);
}
while !workqueue.is_empty() {
let block = workqueue.pop_front().unwrap();
workqueue_set.remove(&block);
log::debug!("computing liveins for block{}", block.index());
self.stats.livein_iterations += 1;
let mut live = self.liveouts[block.index()].clone();
log::debug!(" -> initial liveout set: {:?}", live);
for inst in self.func.block_insns(block).rev().iter() {
if let Some((src, dst)) = self.func.is_move(inst) {
live.set(dst.vreg().vreg(), false);
live.set(src.vreg().vreg(), true);
}
for pos in &[OperandPos::After, OperandPos::Before] {
for op in self.func.inst_operands(inst) {
if op.pos() == *pos {
let was_live = live.get(op.vreg().vreg());
log::debug!("op {:?} was_live = {}", op, was_live);
match op.kind() {
OperandKind::Use | OperandKind::Mod => {
live.set(op.vreg().vreg(), true);
}
OperandKind::Def => {
live.set(op.vreg().vreg(), false);
}
}
}
}
}
}
for &blockparam in self.func.block_params(block) {
live.set(blockparam.vreg(), false);
}
for &pred in self.func.block_preds(block) {
if self.liveouts[pred.index()].or(&live) {
if !workqueue_set.contains(&pred) {
workqueue_set.insert(pred);
workqueue.push_back(pred);
}
}
}
log::debug!("computed liveins at block{}: {:?}", block.index(), live);
self.liveins[block.index()] = live;
}
// Check that there are no liveins to the entry block. (The
// client should create a virtual intsruction that defines any
// PReg liveins if necessary.)
if self.liveins[self.func.entry_block().index()]
.iter()
.next()
.is_some()
{
log::debug!(
"non-empty liveins to entry block: {:?}",
self.liveins[self.func.entry_block().index()]
);
return Err(RegAllocError::EntryLivein);
}
for &vreg in self.func.reftype_vregs() {
self.safepoints_per_vreg.insert(vreg.vreg(), HashSet::new());
}
// Create Uses and Defs referring to VRegs, and place the Uses
// in LiveRanges.
//
// We already computed precise liveouts and liveins for every
// block above, so we don't need to run an iterative algorithm
// here; instead, every block's computation is purely local,
// from end to start.
// Track current LiveRange for each vreg.
//
// Invariant: a stale range may be present here; ranges are
// only valid if `live.get(vreg)` is true.
let mut vreg_ranges: Vec<LiveRangeIndex> =
vec![LiveRangeIndex::invalid(); self.func.num_vregs()];
for i in (0..self.func.blocks()).rev() {
let block = Block::new(i);
self.stats.livein_blocks += 1;
// Init our local live-in set.
let mut live = self.liveouts[block.index()].clone();
// Initially, registers are assumed live for the whole block.
for vreg in live.iter() {
let range = CodeRange {
from: self.cfginfo.block_entry[block.index()],
to: self.cfginfo.block_exit[block.index()].next(),
};
log::debug!(
"vreg {:?} live at end of block --> create range {:?}",
VRegIndex::new(vreg),
range
);
let lr = self.add_liverange_to_vreg(VRegIndex::new(vreg), range);
vreg_ranges[vreg] = lr;
}
// Create vreg data for blockparams.
for param in self.func.block_params(block) {
self.vreg_regs[param.vreg()] = *param;
self.vregs[param.vreg()].blockparam = block;
}
let insns = self.func.block_insns(block);
// If the last instruction is a branch (rather than
// return), create blockparam_out entries.
if self.func.is_branch(insns.last()) {
let operands = self.func.inst_operands(insns.last());
let mut i = self.func.branch_blockparam_arg_offset(block, insns.last());
for &succ in self.func.block_succs(block) {
for &blockparam in self.func.block_params(succ) {
let from_vreg = VRegIndex::new(operands[i].vreg().vreg());
let blockparam_vreg = VRegIndex::new(blockparam.vreg());
self.blockparam_outs
.push((from_vreg, block, succ, blockparam_vreg));
i += 1;
}
}
}
// For each instruction, in reverse order, process
// operands and clobbers.
for inst in insns.rev().iter() {
if self.func.inst_clobbers(inst).len() > 0 {
self.clobbers.push(inst);
}
// Mark clobbers with CodeRanges on PRegs.
for i in 0..self.func.inst_clobbers(inst).len() {
// don't borrow `self`
let clobber = self.func.inst_clobbers(inst)[i];
// Clobber range is at After point only: an
// instruction can still take an input in a reg
// that it later clobbers. (In other words, the
// clobber is like a normal def that never gets
// used.)
let range = CodeRange {
from: ProgPoint::after(inst),
to: ProgPoint::before(inst.next()),
};
self.add_liverange_to_preg(range, clobber);
}
// Does the instruction have any input-reusing
// outputs? This is important below to establish
// proper interference wrt other inputs.
let mut reused_input = None;
for op in self.func.inst_operands(inst) {
if let OperandPolicy::Reuse(i) = op.policy() {
reused_input = Some(i);
break;
}
}
// If this is a move, handle specially.
if let Some((src, dst)) = self.func.is_move(inst) {
// We can completely skip the move if it is
// trivial (vreg to same vreg).
if src.vreg() != dst.vreg() {
log::debug!(" -> move inst{}: src {} -> dst {}", inst.index(), src, dst);
assert_eq!(src.class(), dst.class());
assert_eq!(src.kind(), OperandKind::Use);
assert_eq!(src.pos(), OperandPos::Before);
assert_eq!(dst.kind(), OperandKind::Def);
assert_eq!(dst.pos(), OperandPos::After);
// If both src and dest are pinned, emit the
// move right here, right now.
if self.vregs[src.vreg().vreg()].is_pinned
&& self.vregs[dst.vreg().vreg()].is_pinned
{
// Update LRs.
if !live.get(src.vreg().vreg()) {
let lr = self.add_liverange_to_vreg(
VRegIndex::new(src.vreg().vreg()),
CodeRange {
from: self.cfginfo.block_entry[block.index()],
to: ProgPoint::after(inst),
},
);
live.set(src.vreg().vreg(), true);
vreg_ranges[src.vreg().vreg()] = lr;
}
if live.get(dst.vreg().vreg()) {
let lr = vreg_ranges[dst.vreg().vreg()];
self.ranges[lr.index()].range.from = ProgPoint::after(inst);
live.set(dst.vreg().vreg(), false);
} else {
self.add_liverange_to_vreg(
VRegIndex::new(dst.vreg().vreg()),
CodeRange {
from: ProgPoint::after(inst),
to: ProgPoint::before(inst.next()),
},
);
}
let src_preg = match src.policy() {
OperandPolicy::FixedReg(r) => r,
_ => unreachable!(),
};
let dst_preg = match dst.policy() {
OperandPolicy::FixedReg(r) => r,
_ => unreachable!(),
};
self.insert_move(
ProgPoint::before(inst),
InsertMovePrio::MultiFixedReg,
Allocation::reg(src_preg),
Allocation::reg(dst_preg),
Some(dst.vreg()),
);
}
// If exactly one of source and dest (but not
// both) is a pinned-vreg, convert this into a
// ghost use on the other vreg with a FixedReg
// policy.
else if self.vregs[src.vreg().vreg()].is_pinned
|| self.vregs[dst.vreg().vreg()].is_pinned
{
log::debug!(
" -> exactly one of src/dst is pinned; converting to ghost use"
);
let (preg, vreg, pinned_vreg, kind, pos, progpoint) =
if self.vregs[src.vreg().vreg()].is_pinned {
// Source is pinned: this is a def on the dst with a pinned preg.
(
self.func.is_pinned_vreg(src.vreg()).unwrap(),
dst.vreg(),
src.vreg(),
OperandKind::Def,
OperandPos::After,
ProgPoint::after(inst),
)
} else {
// Dest is pinned: this is a use on the src with a pinned preg.
(
self.func.is_pinned_vreg(dst.vreg()).unwrap(),
src.vreg(),
dst.vreg(),
OperandKind::Use,
OperandPos::Before,
ProgPoint::after(inst),
)
};
let policy = OperandPolicy::FixedReg(preg);
let operand = Operand::new(vreg, policy, kind, pos);
log::debug!(
concat!(
" -> preg {:?} vreg {:?} kind {:?} ",
"pos {:?} progpoint {:?} policy {:?} operand {:?}"
),
preg,
vreg,
kind,
pos,
progpoint,
policy,
operand
);
// Get the LR for the vreg; if none, create one.
let mut lr = vreg_ranges[vreg.vreg()];
if !live.get(vreg.vreg()) {
let from = match kind {
OperandKind::Use => self.cfginfo.block_entry[block.index()],
OperandKind::Def => progpoint,
_ => unreachable!(),
};
let to = progpoint.next();
lr = self.add_liverange_to_vreg(
VRegIndex::new(vreg.vreg()),
CodeRange { from, to },
);
log::debug!(" -> dead; created LR");
}
log::debug!(" -> LR {:?}", lr);
self.insert_use_into_liverange(
lr,
Use::new(operand, progpoint, SLOT_NONE),
);
if kind == OperandKind::Def {
live.set(vreg.vreg(), false);
if self.ranges[lr.index()].range.from
== self.cfginfo.block_entry[block.index()]
{
self.ranges[lr.index()].range.from = progpoint;
}
self.ranges[lr.index()].set_flag(LiveRangeFlag::StartsAtDef);
} else {
live.set(vreg.vreg(), true);
vreg_ranges[vreg.vreg()] = lr;
}
// Handle liveness of the other vreg. Note
// that this is somewhat special. For the
// destination case, we want the pinned
// vreg's LR to start just *after* the
// operand we inserted above, because
// otherwise it would overlap, and
// interfere, and prevent allocation. For
// the source case, we want to "poke a
// hole" in the LR: if it's live going
// downward, end it just after the operand
// and restart it before; if it isn't
// (this is the last use), start it
// before.
if kind == OperandKind::Def {
log::debug!(" -> src on pinned vreg {:?}", pinned_vreg);
// The *other* vreg is a def, so the pinned-vreg
// mention is a use. If already live,
// end the existing LR just *after*
// the `progpoint` defined above and
// start a new one just *before* the
// `progpoint` defined above,
// preserving the start. If not, start
// a new one live back to the top of
// the block, starting just before
// `progpoint`.
if live.get(pinned_vreg.vreg()) {
let pinned_lr = vreg_ranges[pinned_vreg.vreg()];
let orig_start = self.ranges[pinned_lr.index()].range.from;
log::debug!(
" -> live with LR {:?}; truncating to start at {:?}",
pinned_lr,
progpoint.next()
);
self.ranges[pinned_lr.index()].range.from = progpoint.next();
let new_lr = self.add_liverange_to_vreg(
VRegIndex::new(pinned_vreg.vreg()),
CodeRange {
from: orig_start,
to: progpoint.prev(),
},
);
vreg_ranges[pinned_vreg.vreg()] = new_lr;
log::debug!(" -> created LR {:?} with remaining range from {:?} to {:?}", new_lr, orig_start, progpoint);
// Add an edit right now to indicate that at
// this program point, the given
// preg is now known as that vreg,
// not the preg, but immediately
// after, it is known as the preg
// again. This is used by the
// checker.
self.add_edit(
ProgPoint::before(inst),
InsertMovePrio::MultiFixedReg,
Edit::DefAlloc {
alloc: Allocation::reg(preg),
vreg: dst.vreg(),
},
);
self.add_edit(
ProgPoint::after(inst),
InsertMovePrio::Regular,
Edit::DefAlloc {
alloc: Allocation::reg(preg),
vreg: src.vreg(),
},
);
} else {
if inst > self.cfginfo.block_entry[block.index()].inst() {
let new_lr = self.add_liverange_to_vreg(
VRegIndex::new(pinned_vreg.vreg()),
CodeRange {
from: self.cfginfo.block_entry[block.index()],
to: ProgPoint::before(inst),
},
);
vreg_ranges[pinned_vreg.vreg()] = new_lr;
live.set(pinned_vreg.vreg(), true);
log::debug!(
" -> was not live; created new LR {:?}",
new_lr
);
}
// Add an edit right now to indicate that at
// this program point, the given
// preg is now known as that vreg,
// not the preg. This is used by
// the checker.
self.add_edit(
ProgPoint::after(inst),
InsertMovePrio::Regular,
Edit::DefAlloc {
alloc: Allocation::reg(preg),
vreg: dst.vreg(),
},
);
}
} else {
log::debug!(" -> dst on pinned vreg {:?}", pinned_vreg);
// The *other* vreg is a use, so the pinned-vreg
// mention is a def. Truncate its LR
// just *after* the `progpoint`
// defined above.
if live.get(pinned_vreg.vreg()) {
let pinned_lr = vreg_ranges[pinned_vreg.vreg()];
self.ranges[pinned_lr.index()].range.from = progpoint.next();
log::debug!(
" -> was live with LR {:?}; truncated start to {:?}",
pinned_lr,
progpoint.next()
);
live.set(pinned_vreg.vreg(), false);
// Add a no-op edit right now to indicate that
// at this program point, the
// given preg is now known as that
// preg, not the vreg. This is
// used by the checker.
self.add_edit(
ProgPoint::after(inst),
InsertMovePrio::Regular,
Edit::DefAlloc {
alloc: Allocation::reg(preg),
vreg: dst.vreg(),
},
);
}
// Otherwise, if dead, no need to create
// a dummy LR -- there is no
// reservation to make (the other vreg
// will land in the reg with the
// fixed-reg operand constraint, but
// it's a dead move anyway).
}
} else {
// Redefine src and dst operands to have
// positions of After and Before respectively
// (see note below), and to have Any
// constraints if they were originally Reg.
let src_policy = match src.policy() {
OperandPolicy::Reg => OperandPolicy::Any,
x => x,
};
let dst_policy = match dst.policy() {
OperandPolicy::Reg => OperandPolicy::Any,
x => x,
};
let src = Operand::new(
src.vreg(),
src_policy,
OperandKind::Use,
OperandPos::After,
);
let dst = Operand::new(
dst.vreg(),
dst_policy,
OperandKind::Def,
OperandPos::Before,
);
if self.annotations_enabled && log::log_enabled!(log::Level::Debug) {
self.annotate(
ProgPoint::after(inst),
format!(
" prog-move v{} ({:?}) -> v{} ({:?})",
src.vreg().vreg(),
src_policy,
dst.vreg().vreg(),
dst_policy,
),
);
}
// N.B.: in order to integrate with the move
// resolution that joins LRs in general, we
// conceptually treat the move as happening
// between the move inst's After and the next
// inst's Before. Thus the src LR goes up to
// (exclusive) next-inst-pre, and the dst LR
// starts at next-inst-pre. We have to take
// care in our move insertion to handle this
// like other inter-inst moves, i.e., at
// `Regular` priority, so it properly happens
// in parallel with other inter-LR moves.
//
// Why the progpoint between move and next
// inst, and not the progpoint between prev
// inst and move? Because a move can be the
// first inst in a block, but cannot be the
// last; so the following progpoint is always
// within the same block, while the previous
// one may be an inter-block point (and the
// After of the prev inst in a different
// block).
// Handle the def w.r.t. liveranges: trim the
// start of the range and mark it dead at this
// point in our backward scan.
let pos = ProgPoint::before(inst.next());
let mut dst_lr = vreg_ranges[dst.vreg().vreg()];
if !live.get(dst.vreg().vreg()) {
let from = pos;
let to = pos.next();
dst_lr = self.add_liverange_to_vreg(
VRegIndex::new(dst.vreg().vreg()),
CodeRange { from, to },
);
log::debug!(" -> invalid LR for def; created {:?}", dst_lr);
}
log::debug!(" -> has existing LR {:?}", dst_lr);
// Trim the LR to start here.
if self.ranges[dst_lr.index()].range.from
== self.cfginfo.block_entry[block.index()]
{
log::debug!(" -> started at block start; trimming to {:?}", pos);
self.ranges[dst_lr.index()].range.from = pos;
}
self.ranges[dst_lr.index()].set_flag(LiveRangeFlag::StartsAtDef);
live.set(dst.vreg().vreg(), false);
vreg_ranges[dst.vreg().vreg()] = LiveRangeIndex::invalid();
self.vreg_regs[dst.vreg().vreg()] = dst.vreg();
// Handle the use w.r.t. liveranges: make it live
// and create an initial LR back to the start of
// the block.
let pos = ProgPoint::after(inst);
let src_lr = if !live.get(src.vreg().vreg()) {
let range = CodeRange {
from: self.cfginfo.block_entry[block.index()],
to: pos.next(),
};
let src_lr = self.add_liverange_to_vreg(
VRegIndex::new(src.vreg().vreg()),
range,
);
vreg_ranges[src.vreg().vreg()] = src_lr;
src_lr
} else {
vreg_ranges[src.vreg().vreg()]
};
log::debug!(" -> src LR {:?}", src_lr);
// Add to live-set.
let src_is_dead_after_move = !live.get(src.vreg().vreg());
live.set(src.vreg().vreg(), true);
// Add to program-moves lists.
self.prog_move_srcs.push((
(VRegIndex::new(src.vreg().vreg()), inst),
Allocation::none(),
));
self.prog_move_dsts.push((
(VRegIndex::new(dst.vreg().vreg()), inst.next()),
Allocation::none(),
));
self.stats.prog_moves += 1;
if src_is_dead_after_move {
self.stats.prog_moves_dead_src += 1;
self.prog_move_merges.push((src_lr, dst_lr));
}
}
}
continue;
}
// Process defs and uses.
for &cur_pos in &[InstPosition::After, InstPosition::Before] {
for i in 0..self.func.inst_operands(inst).len() {
// don't borrow `self`
let operand = self.func.inst_operands(inst)[i];
let pos = match (operand.kind(), operand.pos()) {
(OperandKind::Mod, _) => ProgPoint::before(inst),
(OperandKind::Def, OperandPos::Before) => ProgPoint::before(inst),
(OperandKind::Def, OperandPos::After) => ProgPoint::after(inst),
(OperandKind::Use, OperandPos::After) => ProgPoint::after(inst),
// If this is a branch, extend `pos` to
// the end of the block. (Branch uses are
// blockparams and need to be live at the
// end of the block.)
(OperandKind::Use, _) if self.func.is_branch(inst) => {
self.cfginfo.block_exit[block.index()]
}
// If there are any reused inputs in this
// instruction, and this is *not* the
// reused input, force `pos` to
// `After`. (See note below for why; it's
// very subtle!)
(OperandKind::Use, OperandPos::Before)
if reused_input.is_some() && reused_input.unwrap() != i =>
{
ProgPoint::after(inst)
}
(OperandKind::Use, OperandPos::Before) => ProgPoint::before(inst),
};
if pos.pos() != cur_pos {
continue;
}
log::debug!(
"processing inst{} operand at {:?}: {:?}",
inst.index(),
pos,
operand
);
match operand.kind() {
OperandKind::Def | OperandKind::Mod => {
log::debug!("Def of {} at {:?}", operand.vreg(), pos);
// Fill in vreg's actual data.
self.vreg_regs[operand.vreg().vreg()] = operand.vreg();
// Get or create the LiveRange.
let mut lr = vreg_ranges[operand.vreg().vreg()];
log::debug!(" -> has existing LR {:?}", lr);
// If there was no liverange (dead def), create a trivial one.
if !live.get(operand.vreg().vreg()) {
let from = match operand.kind() {
OperandKind::Def => pos,
OperandKind::Mod => self.cfginfo.block_entry[block.index()],
_ => unreachable!(),
};
let to = match operand.kind() {
OperandKind::Def => pos.next(),
OperandKind::Mod => pos.next().next(), // both Before and After positions
_ => unreachable!(),
};
lr = self.add_liverange_to_vreg(
VRegIndex::new(operand.vreg().vreg()),
CodeRange { from, to },
);
log::debug!(" -> invalid; created {:?}", lr);
vreg_ranges[operand.vreg().vreg()] = lr;
live.set(operand.vreg().vreg(), true);
}
// Create the use in the LiveRange.
self.insert_use_into_liverange(lr, Use::new(operand, pos, i as u8));
// If def (not mod), this reg is now dead,
// scanning backward; make it so.
if operand.kind() == OperandKind::Def {
// Trim the range for this vreg to start
// at `pos` if it previously ended at the
// start of this block (i.e. was not
// merged into some larger LiveRange due
// to out-of-order blocks).
if self.ranges[lr.index()].range.from
== self.cfginfo.block_entry[block.index()]
{
log::debug!(
" -> started at block start; trimming to {:?}",
pos
);
self.ranges[lr.index()].range.from = pos;
}
self.ranges[lr.index()].set_flag(LiveRangeFlag::StartsAtDef);
// Remove from live-set.
live.set(operand.vreg().vreg(), false);
vreg_ranges[operand.vreg().vreg()] = LiveRangeIndex::invalid();
}
}
OperandKind::Use => {
// Create/extend the LiveRange if it
// doesn't already exist, and add the use
// to the range.
let mut lr = vreg_ranges[operand.vreg().vreg()];
if !live.get(operand.vreg().vreg()) {
let range = CodeRange {
from: self.cfginfo.block_entry[block.index()],
to: pos.next(),
};
lr = self.add_liverange_to_vreg(
VRegIndex::new(operand.vreg().vreg()),
range,
);
vreg_ranges[operand.vreg().vreg()] = lr;
}
assert!(lr.is_valid());
log::debug!("Use of {:?} at {:?} -> {:?}", operand, pos, lr,);
self.insert_use_into_liverange(lr, Use::new(operand, pos, i as u8));
// Add to live-set.
live.set(operand.vreg().vreg(), true);
}
}
}
}
if self.func.is_safepoint(inst) {
self.safepoints.push(inst);
for vreg in live.iter() {
if let Some(safepoints) = self.safepoints_per_vreg.get_mut(&vreg) {
safepoints.insert(inst);
}
}
}
}
// Block parameters define vregs at the very beginning of
// the block. Remove their live vregs from the live set
// here.
for vreg in self.func.block_params(block) {
if live.get(vreg.vreg()) {
live.set(vreg.vreg(), false);
} else {
// Create trivial liverange if blockparam is dead.
let start = self.cfginfo.block_entry[block.index()];
self.add_liverange_to_vreg(
VRegIndex::new(vreg.vreg()),
CodeRange {
from: start,
to: start.next(),
},
);
}
// add `blockparam_ins` entries.
let vreg_idx = VRegIndex::new(vreg.vreg());
for &pred in self.func.block_preds(block) {
self.blockparam_ins.push((vreg_idx, block, pred));
}
}
}
self.safepoints.sort_unstable();
// Make ranges in each vreg and uses in each range appear in
// sorted order. We built them in reverse order above, so this
// is a simple reversal, *not* a full sort.
//
// The ordering invariant is always maintained for uses and
// always for ranges in bundles (which are initialized later),
// but not always for ranges in vregs; those are sorted only
// when needed, here and then again at the end of allocation
// when resolving moves.
for vreg in &mut self.vregs {
vreg.ranges.reverse();
let mut last = None;
for entry in &mut vreg.ranges {
// Ranges may have been truncated above at defs. We
// need to update with the final range here.
entry.range = self.ranges[entry.index.index()].range;
// Assert in-order and non-overlapping.
assert!(last.is_none() || last.unwrap() <= entry.range.from);
last = Some(entry.range.to);
}
}
for range in 0..self.ranges.len() {
self.ranges[range].uses.reverse();
debug_assert!(self.ranges[range]
.uses
.windows(2)
.all(|win| win[0].pos <= win[1].pos));
}
// Insert safepoint virtual stack uses, if needed.
for vreg in self.func.reftype_vregs() {
if self.vregs[vreg.vreg()].is_pinned {
continue;
}
let vreg = VRegIndex::new(vreg.vreg());
let mut inserted = false;
let mut safepoint_idx = 0;
for range_idx in 0..self.vregs[vreg.index()].ranges.len() {
let LiveRangeListEntry { range, index } =
self.vregs[vreg.index()].ranges[range_idx];
while safepoint_idx < self.safepoints.len()
&& ProgPoint::before(self.safepoints[safepoint_idx]) < range.from
{
safepoint_idx += 1;
}
while safepoint_idx < self.safepoints.len()
&& range.contains_point(ProgPoint::before(self.safepoints[safepoint_idx]))
{
// Create a virtual use.
let pos = ProgPoint::before(self.safepoints[safepoint_idx]);
let operand = Operand::new(
self.vreg_regs[vreg.index()],
OperandPolicy::Stack,
OperandKind::Use,
OperandPos::Before,
);
log::debug!(
"Safepoint-induced stack use of {:?} at {:?} -> {:?}",
operand,
pos,
index,
);
self.insert_use_into_liverange(index, Use::new(operand, pos, SLOT_NONE));
safepoint_idx += 1;
inserted = true;
}
if inserted {
self.ranges[index.index()]
.uses
.sort_unstable_by_key(|u| u.pos);
}
if safepoint_idx >= self.safepoints.len() {
break;
}
}
}
// Do a fixed-reg cleanup pass: if there are any LiveRanges with
// multiple uses (or defs) at the same ProgPoint and there is
// more than one FixedReg constraint at that ProgPoint, we
// need to record all but one of them in a special fixup list
// and handle them later; otherwise, bundle-splitting to
// create minimal bundles becomes much more complex (we would
// have to split the multiple uses at the same progpoint into
// different bundles, which breaks invariants related to
// disjoint ranges and bundles).
let mut seen_fixed_for_vreg: SmallVec<[VReg; 16]> = smallvec![];
let mut first_preg: SmallVec<[PRegIndex; 16]> = smallvec![];
let mut extra_clobbers: SmallVec<[(PReg, Inst); 8]> = smallvec![];
for vreg in 0..self.vregs.len() {
for range_idx in 0..self.vregs[vreg].ranges.len() {
let entry = self.vregs[vreg].ranges[range_idx];
let range = entry.index;
log::debug!(
"multi-fixed-reg cleanup: vreg {:?} range {:?}",
VRegIndex::new(vreg),
range,
);
let mut last_point = None;
let mut fixup_multi_fixed_vregs = |pos: ProgPoint,
slot: usize,
op: &mut Operand,
fixups: &mut Vec<(
ProgPoint,
PRegIndex,
PRegIndex,
usize,
)>| {
if last_point.is_some() && Some(pos) != last_point {
seen_fixed_for_vreg.clear();
first_preg.clear();
}
last_point = Some(pos);
if let OperandPolicy::FixedReg(preg) = op.policy() {
let vreg_idx = VRegIndex::new(op.vreg().vreg());
let preg_idx = PRegIndex::new(preg.index());
log::debug!(
"at pos {:?}, vreg {:?} has fixed constraint to preg {:?}",
pos,
vreg_idx,
preg_idx
);
if let Some(idx) = seen_fixed_for_vreg.iter().position(|r| *r == op.vreg())
{
let orig_preg = first_preg[idx];
if orig_preg != preg_idx {
log::debug!(" -> duplicate; switching to policy Reg");
fixups.push((pos, orig_preg, preg_idx, slot));
*op = Operand::new(
op.vreg(),
OperandPolicy::Reg,
op.kind(),
op.pos(),
);
log::debug!(
" -> extra clobber {} at inst{}",
preg,
pos.inst().index()
);
extra_clobbers.push((preg, pos.inst()));
}
} else {
seen_fixed_for_vreg.push(op.vreg());
first_preg.push(preg_idx);
}
}
};
for u in &mut self.ranges[range.index()].uses {
let pos = u.pos;
let slot = u.slot as usize;
fixup_multi_fixed_vregs(
pos,
slot,
&mut u.operand,
&mut self.multi_fixed_reg_fixups,
);
}
for &(clobber, inst) in &extra_clobbers {
let range = CodeRange {
from: ProgPoint::before(inst),
to: ProgPoint::before(inst.next()),
};
self.add_liverange_to_preg(range, clobber);
}
extra_clobbers.clear();
first_preg.clear();
seen_fixed_for_vreg.clear();
}
}
self.clobbers.sort_unstable();
self.blockparam_ins.sort_unstable();
self.blockparam_outs.sort_unstable();
self.prog_move_srcs.sort_unstable_by_key(|(pos, _)| *pos);
self.prog_move_dsts.sort_unstable_by_key(|(pos, _)| *pos);
log::debug!("prog_move_srcs = {:?}", self.prog_move_srcs);
log::debug!("prog_move_dsts = {:?}", self.prog_move_dsts);
self.stats.initial_liverange_count = self.ranges.len();
self.stats.blockparam_ins_count = self.blockparam_ins.len();
self.stats.blockparam_outs_count = self.blockparam_outs.len();
Ok(())
}
fn create_bundle(&mut self) -> LiveBundleIndex {
let bundle = self.bundles.len();
self.bundles.push(LiveBundle {
allocation: Allocation::none(),
ranges: smallvec![],
spillset: SpillSetIndex::invalid(),
prio: 0,
spill_weight_and_props: 0,
});
LiveBundleIndex::new(bundle)
}
fn merge_bundles(&mut self, from: LiveBundleIndex, to: LiveBundleIndex) -> bool {
if from == to {
// Merge bundle into self -- trivial merge.
return true;
}
log::debug!(
"merging from bundle{} to bundle{}",
from.index(),
to.index()
);
// Both bundles must deal with the same RegClass.
let from_rc = self.spillsets[self.bundles[from.index()].spillset.index()].class;
let to_rc = self.spillsets[self.bundles[to.index()].spillset.index()].class;
if from_rc != to_rc {
log::debug!(" -> mismatching reg classes");
return false;
}
// If either bundle is already assigned (due to a pinned vreg), don't merge.
if !self.bundles[from.index()].allocation.is_none()
|| !self.bundles[to.index()].allocation.is_none()
{
log::debug!("one of the bundles is already assigned (pinned)");
return false;
}
#[cfg(debug)]
{
// Sanity check: both bundles should contain only ranges with appropriate VReg classes.
for entry in &self.bundles[from.index()].ranges {
let vreg = self.ranges[entry.index.index()].vreg;
assert_eq!(rc, self.vregs[vreg.index()].reg.class());
}
for entry in &self.bundles[to.index()].ranges {
let vreg = self.ranges[entry.index.index()].vreg;
assert_eq!(rc, self.vregs[vreg.index()].reg.class());
}
}
// Check for overlap in LiveRanges and for conflicting
// requirements.
let ranges_from = &self.bundles[from.index()].ranges[..];
let ranges_to = &self.bundles[to.index()].ranges[..];
let mut idx_from = 0;
let mut idx_to = 0;
let mut range_count = 0;
while idx_from < ranges_from.len() && idx_to < ranges_to.len() {
range_count += 1;
if range_count > 200 {
log::debug!(
"reached merge complexity (range_count = {}); exiting",
range_count
);
// Limit merge complexity.
return false;
}
if ranges_from[idx_from].range.from >= ranges_to[idx_to].range.to {
idx_to += 1;
} else if ranges_to[idx_to].range.from >= ranges_from[idx_from].range.to {
idx_from += 1;
} else {
// Overlap -- cannot merge.
log::debug!(
" -> overlap between {:?} and {:?}, exiting",
ranges_from[idx_from].index,
ranges_to[idx_to].index
);
return false;
}
}
// There could be a requirements conflict only one of the both
// sides of the merge has at least one requirement that is not
// 'Reg' or 'Any'. (Note that we already checked that the
// RegClass is the same on both sides.)
if self.bundles[from.index()].cached_fixed()
|| self.bundles[from.index()].cached_stack()
|| self.bundles[to.index()].cached_fixed()
|| self.bundles[to.index()].cached_stack()
{
let mut req = Requirement::Unknown;
for entry in ranges_from.iter().chain(ranges_to.iter()) {
for u in &self.ranges[entry.index.index()].uses {
req = req.merge(Requirement::from_operand(u.operand));
if req == Requirement::Conflict {
log::debug!(" -> conflicting requirements; aborting merge");
return false;
}
}
}
}
log::debug!(" -> committing to merge");
// If we reach here, then the bundles do not overlap -- merge
// them! We do this with a merge-sort-like scan over both
// lists, building a new range list and replacing the list on
// `to` when we're done.
let mut idx_from = 0;
let mut idx_to = 0;
if ranges_from.is_empty() {
// `from` bundle is empty -- trivial merge.
log::debug!(" -> from bundle{} is empty; trivial merge", from.index());
return true;
}
if ranges_to.is_empty() {
// `to` bundle is empty -- just move the list over from
// `from` and set `bundle` up-link on all ranges.
log::debug!(" -> to bundle{} is empty; trivial merge", to.index());
let list = std::mem::replace(&mut self.bundles[from.index()].ranges, smallvec![]);
for entry in &list {
self.ranges[entry.index.index()].bundle = to;
if self.annotations_enabled && log::log_enabled!(log::Level::Debug) {
self.annotate(
entry.range.from,
format!(
" MERGE range{} v{} from bundle{} to bundle{}",
entry.index.index(),
self.ranges[entry.index.index()].vreg.index(),
from.index(),
to.index(),
),
);
}
}
self.bundles[to.index()].ranges = list;
return true;
}
// Two non-empty lists of LiveRanges: traverse both simultaneously and
// merge ranges into `merged`.
let mut merged: LiveRangeList = smallvec![];
log::debug!(
"merging: ranges_from = {:?} ranges_to = {:?}",
ranges_from,
ranges_to
);
while idx_from < ranges_from.len() || idx_to < ranges_to.len() {
if idx_from < ranges_from.len() && idx_to < ranges_to.len() {
if ranges_from[idx_from].range.from <= ranges_to[idx_to].range.from {
self.ranges[ranges_from[idx_from].index.index()].bundle = to;
merged.push(ranges_from[idx_from]);
idx_from += 1;
} else {
merged.push(ranges_to[idx_to]);
idx_to += 1;
}
} else if idx_from < ranges_from.len() {
for entry in &ranges_from[idx_from..] {
self.ranges[entry.index.index()].bundle = to;
}
merged.extend_from_slice(&ranges_from[idx_from..]);
break;
} else {
assert!(idx_to < ranges_to.len());
merged.extend_from_slice(&ranges_to[idx_to..]);
break;
}
}
#[cfg(debug_assertions)]
{
log::debug!("merging: merged = {:?}", merged);
let mut last_range = None;
for entry in &merged {
if last_range.is_some() {
assert!(last_range.unwrap() < entry.range);
}
last_range = Some(entry.range);
if self.ranges[entry.index.index()].bundle == from {
if self.annotations_enabled && log::log_enabled!(log::Level::Debug) {
self.annotate(
entry.range.from,
format!(
" MERGE range{} v{} from bundle{} to bundle{}",
entry.index.index(),
self.ranges[entry.index.index()].vreg.index(),
from.index(),
to.index(),
),
);
}
}
log::debug!(
" -> merged result for bundle{}: range{}",
to.index(),
entry.index.index(),
);
}
}
self.bundles[to.index()].ranges = merged;
self.bundles[from.index()].ranges.clear();
if self.bundles[from.index()].spillset != self.bundles[to.index()].spillset {
let from_vregs = std::mem::replace(
&mut self.spillsets[self.bundles[from.index()].spillset.index()].vregs,
smallvec![],
);
let to_vregs = &mut self.spillsets[self.bundles[to.index()].spillset.index()].vregs;
for vreg in from_vregs {
if !to_vregs.contains(&vreg) {
to_vregs.push(vreg);
}
}
}
true
}
fn merge_vreg_bundles(&mut self) {
// Create a bundle for every vreg, initially.
log::debug!("merge_vreg_bundles: creating vreg bundles");
for vreg in 0..self.vregs.len() {
let vreg = VRegIndex::new(vreg);
if self.vregs[vreg.index()].ranges.is_empty() {
continue;
}
// If this is a pinned vreg, go ahead and add it to the
// commitment map, and avoid creating a bundle entirely.
if self.vregs[vreg.index()].is_pinned {
for entry in &self.vregs[vreg.index()].ranges {
let preg = self
.func
.is_pinned_vreg(self.vreg_regs[vreg.index()])
.unwrap();
let key = LiveRangeKey::from_range(&entry.range);
self.pregs[preg.index()]
.allocations
.btree
.insert(key, LiveRangeIndex::invalid());
}
continue;
}
let bundle = self.create_bundle();
self.bundles[bundle.index()].ranges = self.vregs[vreg.index()].ranges.clone();
log::debug!("vreg v{} gets bundle{}", vreg.index(), bundle.index());
for entry in &self.bundles[bundle.index()].ranges {
log::debug!(
" -> with LR range{}: {:?}",
entry.index.index(),
entry.range
);
self.ranges[entry.index.index()].bundle = bundle;
}
// Create a spillslot for this bundle.
let ssidx = SpillSetIndex::new(self.spillsets.len());
let reg = self.vreg_regs[vreg.index()];
let size = self.func.spillslot_size(reg.class(), reg) as u8;
self.spillsets.push(SpillSet {
vregs: smallvec![vreg],
slot: SpillSlotIndex::invalid(),
size,
required: false,
class: reg.class(),
reg_hint: PReg::invalid(),
spill_bundle: LiveBundleIndex::invalid(),
});
self.bundles[bundle.index()].spillset = ssidx;
}
for inst in 0..self.func.insts() {
let inst = Inst::new(inst);
// Attempt to merge Reuse-policy operand outputs with the
// corresponding inputs.
for op in self.func.inst_operands(inst) {
if let OperandPolicy::Reuse(reuse_idx) = op.policy() {
let src_vreg = op.vreg();
let dst_vreg = self.func.inst_operands(inst)[reuse_idx].vreg();
if self.vregs[src_vreg.vreg()].is_pinned
|| self.vregs[dst_vreg.vreg()].is_pinned
{
continue;
}
log::debug!(
"trying to merge reused-input def: src {} to dst {}",
src_vreg,
dst_vreg
);
let src_bundle =
self.ranges[self.vregs[src_vreg.vreg()].ranges[0].index.index()].bundle;
assert!(src_bundle.is_valid());
let dest_bundle =
self.ranges[self.vregs[dst_vreg.vreg()].ranges[0].index.index()].bundle;
assert!(dest_bundle.is_valid());
self.merge_bundles(/* from */ dest_bundle, /* to */ src_bundle);
}
}
}
// Attempt to merge blockparams with their inputs.
for i in 0..self.blockparam_outs.len() {
let (from_vreg, _, _, to_vreg) = self.blockparam_outs[i];
log::debug!(
"trying to merge blockparam v{} with input v{}",
to_vreg.index(),
from_vreg.index()
);
let to_bundle = self.ranges[self.vregs[to_vreg.index()].ranges[0].index.index()].bundle;
assert!(to_bundle.is_valid());
let from_bundle =
self.ranges[self.vregs[from_vreg.index()].ranges[0].index.index()].bundle;
assert!(from_bundle.is_valid());
log::debug!(
" -> from bundle{} to bundle{}",
from_bundle.index(),
to_bundle.index()
);
self.merge_bundles(from_bundle, to_bundle);
}
// Attempt to merge move srcs/dsts.
for i in 0..self.prog_move_merges.len() {
let (src, dst) = self.prog_move_merges[i];
log::debug!("trying to merge move src LR {:?} to dst LR {:?}", src, dst);
let src = self.resolve_merged_lr(src);
let dst = self.resolve_merged_lr(dst);
log::debug!(
"resolved LR-construction merging chains: move-merge is now src LR {:?} to dst LR {:?}",
src,
dst
);
let dst_vreg = self.vreg_regs[self.ranges[dst.index()].vreg.index()];
let src_vreg = self.vreg_regs[self.ranges[src.index()].vreg.index()];
if self.vregs[src_vreg.vreg()].is_pinned && self.vregs[dst_vreg.vreg()].is_pinned {
continue;
}
if self.vregs[src_vreg.vreg()].is_pinned {
let dest_bundle = self.ranges[dst.index()].bundle;
let spillset = self.bundles[dest_bundle.index()].spillset;
self.spillsets[spillset.index()].reg_hint =
self.func.is_pinned_vreg(src_vreg).unwrap();
continue;
}
if self.vregs[dst_vreg.vreg()].is_pinned {
let src_bundle = self.ranges[src.index()].bundle;
let spillset = self.bundles[src_bundle.index()].spillset;
self.spillsets[spillset.index()].reg_hint =
self.func.is_pinned_vreg(dst_vreg).unwrap();
continue;
}
let src_bundle = self.ranges[src.index()].bundle;
assert!(src_bundle.is_valid());
let dest_bundle = self.ranges[dst.index()].bundle;
assert!(dest_bundle.is_valid());
self.stats.prog_move_merge_attempt += 1;
if self.merge_bundles(/* from */ dest_bundle, /* to */ src_bundle) {
self.stats.prog_move_merge_success += 1;
}
}
log::debug!("done merging bundles");
}
fn resolve_merged_lr(&self, mut lr: LiveRangeIndex) -> LiveRangeIndex {
let mut iter = 0;
while iter < 100 && self.ranges[lr.index()].merged_into.is_valid() {
lr = self.ranges[lr.index()].merged_into;
iter += 1;
}
lr
}
fn compute_bundle_prio(&self, bundle: LiveBundleIndex) -> u32 {
// The priority is simply the total "length" -- the number of
// instructions covered by all LiveRanges.
let mut total = 0;
for entry in &self.bundles[bundle.index()].ranges {
total += entry.range.len() as u32;
}
total
}
fn queue_bundles(&mut self) {
for bundle in 0..self.bundles.len() {
log::debug!("enqueueing bundle{}", bundle);
if self.bundles[bundle].ranges.is_empty() {
log::debug!(" -> no ranges; skipping");
continue;
}
let bundle = LiveBundleIndex::new(bundle);
let prio = self.compute_bundle_prio(bundle);
log::debug!(" -> prio {}", prio);
self.bundles[bundle.index()].prio = prio;
self.recompute_bundle_properties(bundle);
self.allocation_queue
.insert(bundle, prio as usize, PReg::invalid());
}
self.stats.merged_bundle_count = self.allocation_queue.heap.len();
}
fn process_bundles(&mut self) -> Result<(), RegAllocError> {
let mut count = 0;
while let Some((bundle, reg_hint)) = self.allocation_queue.pop() {
self.stats.process_bundle_count += 1;
self.process_bundle(bundle, reg_hint)?;
count += 1;
if count > self.func.insts() * 50 {
self.dump_state();
panic!("Infinite loop!");
}
}
self.stats.final_liverange_count = self.ranges.len();
self.stats.final_bundle_count = self.bundles.len();
self.stats.spill_bundle_count = self.spilled_bundles.len();
Ok(())
}
fn dump_state(&self) {
log::debug!("Bundles:");
for (i, b) in self.bundles.iter().enumerate() {
log::debug!(
"bundle{}: spillset={:?} alloc={:?}",
i,
b.spillset,
b.allocation
);
for entry in &b.ranges {
log::debug!(
" * range {:?} -- {:?}: range{}",
entry.range.from,
entry.range.to,
entry.index.index()
);
}
}
log::debug!("VRegs:");
for (i, v) in self.vregs.iter().enumerate() {
log::debug!("vreg{}:", i);
for entry in &v.ranges {
log::debug!(
" * range {:?} -- {:?}: range{}",
entry.range.from,
entry.range.to,
entry.index.index()
);
}
}
log::debug!("Ranges:");
for (i, r) in self.ranges.iter().enumerate() {
log::debug!(
"range{}: range={:?} vreg={:?} bundle={:?} weight={}",
i,
r.range,
r.vreg,
r.bundle,
r.uses_spill_weight(),
);
for u in &r.uses {
log::debug!(" * use at {:?} (slot {}): {:?}", u.pos, u.slot, u.operand);
}
}
}
fn try_to_allocate_bundle_to_reg(
&mut self,
bundle: LiveBundleIndex,
reg: PRegIndex,
// if the max bundle weight in the conflict set exceeds this
// cost (if provided), just return
// `AllocRegResult::ConflictHighCost`.
max_allowable_cost: Option<u32>,
) -> AllocRegResult {
log::debug!("try_to_allocate_bundle_to_reg: {:?} -> {:?}", bundle, reg);
let mut conflicts = smallvec![];
let mut max_conflict_weight = 0;
// Traverse the BTreeMap in order by requesting the whole
// range spanned by the bundle and iterating over that
// concurrently with our ranges. Because our ranges are in
// order, and the BTreeMap is as well, this allows us to have
// an overall O(n log n) + O(b) complexity, where the PReg has
// n current ranges and the bundle has b ranges, rather than
// O(b * n log n) with the simple probe-for-each-bundle-range
// approach.
//
// Note that the comparator function on a CodeRange tests for
// *overlap*, so we are checking whether the BTree contains
// any preg range that *overlaps* with range `range`, not
// literally the range `range`.
let bundle_ranges = &self.bundles[bundle.index()].ranges;
let from_key = LiveRangeKey::from_range(&bundle_ranges.first().unwrap().range);
let to_key = LiveRangeKey::from_range(&bundle_ranges.last().unwrap().range);
assert!(from_key <= to_key);
let mut preg_range_iter = self.pregs[reg.index()]
.allocations
.btree
.range(from_key..=to_key)
.peekable();
log::debug!(
"alloc map for {:?}: {:?}",
reg,
self.pregs[reg.index()].allocations.btree
);
for entry in bundle_ranges {
log::debug!(" -> range LR {:?}: {:?}", entry.index, entry.range);
let key = LiveRangeKey::from_range(&entry.range);
// Advance our BTree traversal until it is >= this bundle
// range (i.e., skip PReg allocations in the BTree that
// are completely before this bundle range).
while preg_range_iter.peek().is_some() && *preg_range_iter.peek().unwrap().0 < key {
log::debug!(
"Skipping PReg range {:?}",
preg_range_iter.peek().unwrap().0
);
preg_range_iter.next();
}
// If there are no more PReg allocations, we're done!
if preg_range_iter.peek().is_none() {
log::debug!(" -> no more PReg allocations; so no conflict possible!");
break;
}
// If the current PReg range is beyond this range, there is no conflict; continue.
if *preg_range_iter.peek().unwrap().0 > key {
log::debug!(
" -> next PReg allocation is at {:?}; moving to next VReg range",
preg_range_iter.peek().unwrap().0
);
continue;
}
// Otherwise, there is a conflict.
assert_eq!(*preg_range_iter.peek().unwrap().0, key);
let preg_range = preg_range_iter.next().unwrap().1;
log::debug!(" -> btree contains range {:?} that overlaps", preg_range);
if preg_range.is_valid() {
log::debug!(" -> from vreg {:?}", self.ranges[preg_range.index()].vreg);
// range from an allocated bundle: find the bundle and add to
// conflicts list.
let conflict_bundle = self.ranges[preg_range.index()].bundle;
log::debug!(" -> conflict bundle {:?}", conflict_bundle);
if !conflicts.iter().any(|b| *b == conflict_bundle) {
conflicts.push(conflict_bundle);
max_conflict_weight = std::cmp::max(
max_conflict_weight,
self.bundles[conflict_bundle.index()].cached_spill_weight(),
);
if max_allowable_cost.is_some()
&& max_conflict_weight > max_allowable_cost.unwrap()
{
return AllocRegResult::ConflictHighCost;
}
}
} else {
log::debug!(" -> conflict with fixed reservation");
// range from a direct use of the PReg (due to clobber).
return AllocRegResult::ConflictWithFixed;
}
}
if conflicts.len() > 0 {
return AllocRegResult::Conflict(conflicts);
}
// We can allocate! Add our ranges to the preg's BTree.
let preg = self.pregs[reg.index()].reg;
log::debug!(" -> bundle {:?} assigned to preg {:?}", bundle, preg);
self.bundles[bundle.index()].allocation = Allocation::reg(preg);
for entry in &self.bundles[bundle.index()].ranges {
self.pregs[reg.index()]
.allocations
.btree
.insert(LiveRangeKey::from_range(&entry.range), entry.index);
}
AllocRegResult::Allocated(Allocation::reg(preg))
}
fn evict_bundle(&mut self, bundle: LiveBundleIndex) {
log::debug!(
"evicting bundle {:?}: alloc {:?}",
bundle,
self.bundles[bundle.index()].allocation
);
let preg = match self.bundles[bundle.index()].allocation.as_reg() {
Some(preg) => preg,
None => {
log::debug!(
" -> has no allocation! {:?}",
self.bundles[bundle.index()].allocation
);
return;
}
};
let preg_idx = PRegIndex::new(preg.index());
self.bundles[bundle.index()].allocation = Allocation::none();
for entry in &self.bundles[bundle.index()].ranges {
log::debug!(" -> removing LR {:?} from reg {:?}", entry.index, preg_idx);
self.pregs[preg_idx.index()]
.allocations
.btree
.remove(&LiveRangeKey::from_range(&entry.range));
}
let prio = self.bundles[bundle.index()].prio;
log::debug!(" -> prio {}; back into queue", prio);
self.allocation_queue
.insert(bundle, prio as usize, PReg::invalid());
}
fn bundle_spill_weight(&self, bundle: LiveBundleIndex) -> u32 {
self.bundles[bundle.index()].cached_spill_weight()
}
fn maximum_spill_weight_in_bundle_set(&self, bundles: &LiveBundleVec) -> u32 {
log::debug!("maximum_spill_weight_in_bundle_set: {:?}", bundles);
let m = bundles
.iter()
.map(|&b| {
let w = self.bundles[b.index()].cached_spill_weight();
log::debug!("bundle{}: {}", b.index(), w);
w
})
.max()
.unwrap_or(0);
log::debug!(" -> max: {}", m);
m
}
fn recompute_bundle_properties(&mut self, bundle: LiveBundleIndex) {
log::debug!("recompute bundle properties: bundle {:?}", bundle);
let minimal;
let mut fixed = false;
let mut stack = false;
let bundledata = &self.bundles[bundle.index()];
let first_range = bundledata.ranges[0].index;
let first_range_data = &self.ranges[first_range.index()];
if first_range_data.vreg.is_invalid() {
log::debug!(" -> no vreg; minimal and fixed");
minimal = true;
fixed = true;
} else {
for u in &first_range_data.uses {
if let OperandPolicy::FixedReg(_) = u.operand.policy() {
log::debug!(" -> fixed use at {:?}: {:?}", u.pos, u.operand);
fixed = true;
}
if let OperandPolicy::Stack = u.operand.policy() {
log::debug!(" -> stack use at {:?}: {:?}", u.pos, u.operand);
stack = true;
}
if stack && fixed {
break;
}
}
// Minimal if the range covers only one instruction. Note
// that it could cover just one ProgPoint,
// i.e. X.Before..X.After, or two ProgPoints,
// i.e. X.Before..X+1.Before.
log::debug!(" -> first range has range {:?}", first_range_data.range);
let bundle_start = self.bundles[bundle.index()]
.ranges
.first()
.unwrap()
.range
.from;
let bundle_end = self.bundles[bundle.index()].ranges.last().unwrap().range.to;
minimal = bundle_start.inst() == bundle_end.prev().inst();
log::debug!(" -> minimal: {}", minimal);
}
let spill_weight = if minimal {
if fixed {
log::debug!(" -> fixed and minimal: spill weight 2000000");
2_000_000
} else {
log::debug!(" -> non-fixed and minimal: spill weight 1000000");
1_000_000
}
} else {
let mut total = 0;
for entry in &self.bundles[bundle.index()].ranges {
let range_data = &self.ranges[entry.index.index()];
log::debug!(
" -> uses spill weight: +{}",
range_data.uses_spill_weight()
);
total += range_data.uses_spill_weight();
}
if self.bundles[bundle.index()].prio > 0 {
log::debug!(
" -> dividing by prio {}; final weight {}",
self.bundles[bundle.index()].prio,
total / self.bundles[bundle.index()].prio
);
total / self.bundles[bundle.index()].prio
} else {
0
}
};
self.bundles[bundle.index()].set_cached_spill_weight_and_props(
spill_weight,
minimal,
fixed,
stack,
);
}
fn minimal_bundle(&mut self, bundle: LiveBundleIndex) -> bool {
self.bundles[bundle.index()].cached_minimal()
}
fn recompute_range_properties(&mut self, range: LiveRangeIndex) {
let rangedata = &mut self.ranges[range.index()];
let mut w = 0;
for u in &rangedata.uses {
w += u.weight as u32;
log::debug!("range{}: use {:?}", range.index(), u);
}
rangedata.set_uses_spill_weight(w);
if rangedata.uses.len() > 0 && rangedata.uses[0].operand.kind() == OperandKind::Def {
// Note that we *set* the flag here, but we never *clear*
// it: it may be set by a progmove as well (which does not
// create an explicit use or def), and we want to preserve
// that. We will never split or trim ranges in a way that
// removes a def at the front and requires the flag to be
// cleared.
rangedata.set_flag(LiveRangeFlag::StartsAtDef);
}
}
fn split_and_requeue_bundle(
&mut self,
bundle: LiveBundleIndex,
mut split_at: ProgPoint,
reg_hint: PReg,
) {
self.stats.splits += 1;
log::debug!(
"split bundle {:?} at {:?} and requeue with reg hint (for first part) {:?}",
bundle,
split_at,
reg_hint,
);
// Split `bundle` at `split_at`, creating new LiveRanges and
// bundles (and updating vregs' linked lists appropriately),
// and enqueue the new bundles.
let spillset = self.bundles[bundle.index()].spillset;
assert!(!self.bundles[bundle.index()].ranges.is_empty());
// Split point *at* start is OK; this means we peel off
// exactly one use to create a minimal bundle.
let bundle_start = self.bundles[bundle.index()]
.ranges
.first()
.unwrap()
.range
.from;
assert!(split_at >= bundle_start);
let bundle_end = self.bundles[bundle.index()].ranges.last().unwrap().range.to;
assert!(split_at < bundle_end);
// Is the split point *at* the start? If so, peel off the
// first use: set the split point just after it, or just
// before it if it comes after the start of the bundle.
if split_at == bundle_start {
// Find any uses; if none, just chop off one instruction.
let mut first_use = None;
'outer: for entry in &self.bundles[bundle.index()].ranges {
for u in &self.ranges[entry.index.index()].uses {
first_use = Some(u.pos);
break 'outer;
}
}
log::debug!(" -> first use loc is {:?}", first_use);
split_at = match first_use {
Some(pos) => {
if pos.inst() == bundle_start.inst() {
ProgPoint::before(pos.inst().next())
} else {
ProgPoint::before(pos.inst())
}
}
None => ProgPoint::before(
self.bundles[bundle.index()]
.ranges
.first()
.unwrap()
.range
.from
.inst()
.next(),
),
};
log::debug!(
"split point is at bundle start; advancing to {:?}",
split_at
);
} else {
// Don't split in the middle of an instruction -- this could
// create impossible moves (we cannot insert a move between an
// instruction's uses and defs).
if split_at.pos() == InstPosition::After {
split_at = split_at.next();
}
if split_at >= bundle_end {
split_at = split_at.prev().prev();
}
}
assert!(split_at > bundle_start && split_at < bundle_end);
// We need to find which LRs fall on each side of the split,
// which LR we need to split down the middle, then update the
// current bundle, create a new one, and (re)-queue both.
log::debug!(" -> LRs: {:?}", self.bundles[bundle.index()].ranges);
let mut last_lr_in_old_bundle_idx = 0; // last LR-list index in old bundle
let mut first_lr_in_new_bundle_idx = 0; // first LR-list index in new bundle
for (i, entry) in self.bundles[bundle.index()].ranges.iter().enumerate() {
if split_at > entry.range.from {
last_lr_in_old_bundle_idx = i;
first_lr_in_new_bundle_idx = i;
}
if split_at < entry.range.to {
first_lr_in_new_bundle_idx = i;
break;
}
}
log::debug!(
" -> last LR in old bundle: LR {:?}",
self.bundles[bundle.index()].ranges[last_lr_in_old_bundle_idx]
);
log::debug!(
" -> first LR in new bundle: LR {:?}",
self.bundles[bundle.index()].ranges[first_lr_in_new_bundle_idx]
);
// Take the sublist of LRs that will go in the new bundle.
let mut new_lr_list: LiveRangeList = self.bundles[bundle.index()]
.ranges
.iter()
.cloned()
.skip(first_lr_in_new_bundle_idx)
.collect();
self.bundles[bundle.index()]
.ranges
.truncate(last_lr_in_old_bundle_idx + 1);
// If the first entry in `new_lr_list` is a LR that is split
// down the middle, replace it with a new LR and chop off the
// end of the same LR in the original list.
if split_at > new_lr_list[0].range.from {
assert_eq!(last_lr_in_old_bundle_idx, first_lr_in_new_bundle_idx);
let orig_lr = new_lr_list[0].index;
let new_lr = self.create_liverange(CodeRange {
from: split_at,
to: new_lr_list[0].range.to,
});
self.ranges[new_lr.index()].vreg = self.ranges[orig_lr.index()].vreg;
log::debug!(" -> splitting LR {:?} into {:?}", orig_lr, new_lr);
let first_use = self.ranges[orig_lr.index()]
.uses
.iter()
.position(|u| u.pos >= split_at)
.unwrap_or(self.ranges[orig_lr.index()].uses.len());
let rest_uses: UseList = self.ranges[orig_lr.index()]
.uses
.iter()
.cloned()
.skip(first_use)
.collect();
self.ranges[new_lr.index()].uses = rest_uses;
self.ranges[orig_lr.index()].uses.truncate(first_use);
self.recompute_range_properties(orig_lr);
self.recompute_range_properties(new_lr);
new_lr_list[0].index = new_lr;
new_lr_list[0].range = self.ranges[new_lr.index()].range;
self.ranges[orig_lr.index()].range.to = split_at;
self.bundles[bundle.index()].ranges[last_lr_in_old_bundle_idx].range =
self.ranges[orig_lr.index()].range;
// Perform a lazy split in the VReg data. We just
// append the new LR and its range; we will sort by
// start of range, and fix up range ends, once when we
// iterate over the VReg's ranges after allocation
// completes (this is the only time when order
// matters).
self.vregs[self.ranges[new_lr.index()].vreg.index()]
.ranges
.push(LiveRangeListEntry {
range: self.ranges[new_lr.index()].range,
index: new_lr,
});
}
let new_bundle = self.create_bundle();
log::debug!(" -> creating new bundle {:?}", new_bundle);
self.bundles[new_bundle.index()].spillset = spillset;
for entry in &new_lr_list {
self.ranges[entry.index.index()].bundle = new_bundle;
}
self.bundles[new_bundle.index()].ranges = new_lr_list;
self.recompute_bundle_properties(bundle);
self.recompute_bundle_properties(new_bundle);
let prio = self.compute_bundle_prio(bundle);
let new_prio = self.compute_bundle_prio(new_bundle);
self.bundles[bundle.index()].prio = prio;
self.bundles[new_bundle.index()].prio = new_prio;
self.allocation_queue
.insert(bundle, prio as usize, reg_hint);
self.allocation_queue
.insert(new_bundle, new_prio as usize, reg_hint);
}
fn compute_requirement(&self, bundle: LiveBundleIndex) -> Requirement {
let mut req = Requirement::Unknown;
for entry in &self.bundles[bundle.index()].ranges {
for u in &self.ranges[entry.index.index()].uses {
let r = Requirement::from_operand(u.operand);
req = req.merge(r);
}
}
req
}
fn process_bundle(
&mut self,
bundle: LiveBundleIndex,
reg_hint: PReg,
) -> Result<(), RegAllocError> {
let req = self.compute_requirement(bundle);
// Grab a hint from either the queue or our spillset, if any.
let hint_reg = if reg_hint != PReg::invalid() {
reg_hint
} else {
self.spillsets[self.bundles[bundle.index()].spillset.index()].reg_hint
};
log::debug!("process_bundle: bundle {:?} hint {:?}", bundle, hint_reg,);
// Try to allocate!
let mut attempts = 0;
let mut split_at_point = self.bundles[bundle.index()].ranges[0].range.from;
let mut requeue_with_reg = PReg::invalid();
loop {
attempts += 1;
log::debug!("attempt {}, req {:?}", attempts, req);
debug_assert!(attempts < 100 * self.func.insts());
let (conflicting_bundles, first_conflict_point, first_conflict_reg) = match req {
Requirement::Fixed(preg) => {
let preg_idx = PRegIndex::new(preg.index());
self.stats.process_bundle_reg_probes_fixed += 1;
log::debug!("trying fixed reg {:?}", preg_idx);
match self.try_to_allocate_bundle_to_reg(bundle, preg_idx, None) {
AllocRegResult::Allocated(alloc) => {
self.stats.process_bundle_reg_success_fixed += 1;
log::debug!(" -> allocated to fixed {:?}", preg_idx);
self.spillsets[self.bundles[bundle.index()].spillset.index()]
.reg_hint = alloc.as_reg().unwrap();
return Ok(());
}
AllocRegResult::Conflict(bundles) => {
log::debug!(" -> conflict with bundles {:?}", bundles);
let first_bundle = bundles[0];
(
bundles,
self.bundles[first_bundle.index()].ranges[0].range.from,
preg,
)
}
AllocRegResult::ConflictWithFixed => {
log::debug!(" -> conflict with fixed alloc");
// Empty conflicts set: there's nothing we can
// evict, because fixed conflicts cannot be moved.
(
smallvec![],
ProgPoint::before(Inst::new(0)),
PReg::invalid(),
)
}
AllocRegResult::ConflictHighCost => unreachable!(),
}
}
Requirement::Register(class) => {
// Scan all pregs and attempt to allocate.
let mut lowest_cost_conflict_set: Option<LiveBundleVec> = None;
let mut lowest_cost_conflict_cost: Option<u32> = None;
let mut lowest_cost_conflict_point = ProgPoint::before(Inst::new(0));
let mut lowest_cost_conflict_reg = PReg::invalid();
// Heuristic: start the scan for an available
// register at an offset influenced both by our
// location in the code and by the bundle we're
// considering. This has the effect of spreading
// demand more evenly across registers.
let scan_offset = self.ranges
[self.bundles[bundle.index()].ranges[0].index.index()]
.range
.from
.inst()
.index()
+ bundle.index();
self.stats.process_bundle_reg_probe_start_any += 1;
for preg in RegTraversalIter::new(
self.env,
class,
hint_reg,
PReg::invalid(),
scan_offset,
) {
self.stats.process_bundle_reg_probes_any += 1;
let preg_idx = PRegIndex::new(preg.index());
log::debug!("trying preg {:?}", preg_idx);
match self.try_to_allocate_bundle_to_reg(
bundle,
preg_idx,
lowest_cost_conflict_cost,
) {
AllocRegResult::Allocated(alloc) => {
self.stats.process_bundle_reg_success_any += 1;
log::debug!(" -> allocated to any {:?}", preg_idx);
self.spillsets[self.bundles[bundle.index()].spillset.index()]
.reg_hint = alloc.as_reg().unwrap();
return Ok(());
}
AllocRegResult::Conflict(bundles) => {
log::debug!(" -> conflict with bundles {:?}", bundles);
let first_conflict_point =
self.bundles[bundles[0].index()].ranges[0].range.from;
let cost = self.maximum_spill_weight_in_bundle_set(&bundles);
if lowest_cost_conflict_cost.is_none() {
lowest_cost_conflict_cost = Some(cost);
lowest_cost_conflict_set = Some(bundles);
lowest_cost_conflict_point = first_conflict_point;
lowest_cost_conflict_reg = preg;
} else if cost < lowest_cost_conflict_cost.unwrap() {
lowest_cost_conflict_cost = Some(cost);
lowest_cost_conflict_set = Some(bundles);
lowest_cost_conflict_point = first_conflict_point;
lowest_cost_conflict_reg = preg;
}
}
AllocRegResult::ConflictWithFixed => {
log::debug!(" -> conflict with fixed alloc");
// Simply don't consider as an option.
}
AllocRegResult::ConflictHighCost => {
// Simply don't consider -- we already have
// a lower-cost conflict bundle option
// to evict.
continue;
}
}
}
// Otherwise, we *require* a register, but didn't fit into
// any with current bundle assignments. Hence, we will need
// to either split or attempt to evict some bundles. Return
// the conflicting bundles to evict and retry. Empty list
// means nothing to try (due to fixed conflict) so we must
// split instead.
(
lowest_cost_conflict_set.unwrap_or(smallvec![]),
lowest_cost_conflict_point,
lowest_cost_conflict_reg,
)
}
Requirement::Stack(_) => {
// If we must be on the stack, mark our spillset
// as required immediately.
self.spillsets[self.bundles[bundle.index()].spillset.index()].required = true;
return Ok(());
}
Requirement::Any(_) | Requirement::Unknown => {
// If a register is not *required*, spill now (we'll retry
// allocation on spilled bundles later).
log::debug!("spilling bundle {:?} to spilled_bundles list", bundle);
self.spilled_bundles.push(bundle);
return Ok(());
}
Requirement::Conflict => {
break;
}
};
log::debug!(" -> conflict set {:?}", conflicting_bundles);
log::debug!(
" -> first conflict {:?} with reg {:?}",
first_conflict_point,
first_conflict_reg
);
// If we have already tried evictions once before and are
// still unsuccessful, give up and move on to splitting as
// long as this is not a minimal bundle.
if attempts >= 2 && !self.minimal_bundle(bundle) {
break;
}
// If we hit a fixed conflict, give up and move on to splitting.
if conflicting_bundles.is_empty() {
break;
}
let bundle_start = self.bundles[bundle.index()].ranges[0].range.from;
split_at_point = std::cmp::max(first_conflict_point, bundle_start);
requeue_with_reg = first_conflict_reg;
// Adjust `split_at_point` if it is within a deeper loop
// than the bundle start -- hoist it to just before the
// first loop header it encounters.
let bundle_start_depth = self.cfginfo.approx_loop_depth
[self.cfginfo.insn_block[bundle_start.inst().index()].index()];
let split_at_depth = self.cfginfo.approx_loop_depth
[self.cfginfo.insn_block[split_at_point.inst().index()].index()];
if split_at_depth > bundle_start_depth {
for block in (self.cfginfo.insn_block[bundle_start.inst().index()].index() + 1)
..=self.cfginfo.insn_block[split_at_point.inst().index()].index()
{
if self.cfginfo.approx_loop_depth[block] > bundle_start_depth {
split_at_point = self.cfginfo.block_entry[block];
break;
}
}
}
// If the maximum spill weight in the conflicting-bundles set is >= this bundle's spill
// weight, then don't evict.
let max_spill_weight = self.maximum_spill_weight_in_bundle_set(&conflicting_bundles);
log::debug!(
" -> max_spill_weight = {}; our spill weight {}",
max_spill_weight,
self.bundle_spill_weight(bundle)
);
if max_spill_weight >= self.bundle_spill_weight(bundle) {
log::debug!(" -> we're already the cheapest bundle to spill -- going to split");
break;
}
// Evict all bundles in `conflicting bundles` and try again.
self.stats.evict_bundle_event += 1;
for &bundle in &conflicting_bundles {
log::debug!(" -> evicting {:?}", bundle);
self.evict_bundle(bundle);
self.stats.evict_bundle_count += 1;
}
}
// A minimal bundle cannot be split.
if self.minimal_bundle(bundle) {
if let Requirement::Register(class) = req {
// Check if this is a too-many-live-registers situation.
let range = self.bundles[bundle.index()].ranges[0].range;
let mut min_bundles_assigned = 0;
let mut fixed_assigned = 0;
let mut total_regs = 0;
for preg in self.env.preferred_regs_by_class[class as u8 as usize]
.iter()
.chain(self.env.non_preferred_regs_by_class[class as u8 as usize].iter())
{
if let Some(&lr) = self.pregs[preg.index()]
.allocations
.btree
.get(&LiveRangeKey::from_range(&range))
{
if lr.is_valid() {
if self.minimal_bundle(self.ranges[lr.index()].bundle) {
min_bundles_assigned += 1;
}
} else {
fixed_assigned += 1;
}
}
total_regs += 1;
}
if min_bundles_assigned + fixed_assigned == total_regs {
return Err(RegAllocError::TooManyLiveRegs);
}
}
}
if self.minimal_bundle(bundle) {
self.dump_state();
}
assert!(!self.minimal_bundle(bundle));
self.split_and_requeue_bundle(bundle, split_at_point, requeue_with_reg);
Ok(())
}
fn try_allocating_regs_for_spilled_bundles(&mut self) {
log::debug!("allocating regs for spilled bundles");
for i in 0..self.spilled_bundles.len() {
let bundle = self.spilled_bundles[i]; // don't borrow self
let class = self.spillsets[self.bundles[bundle.index()].spillset.index()].class;
// This may be an empty-range bundle whose ranges are not
// sorted; sort all range-lists again here.
self.bundles[bundle.index()]
.ranges
.sort_unstable_by_key(|entry| entry.range.from);
let mut success = false;
self.stats.spill_bundle_reg_probes += 1;
for preg in RegTraversalIter::new(
self.env,
class,
PReg::invalid(),
PReg::invalid(),
bundle.index(),
) {
log::debug!("trying bundle {:?} to preg {:?}", bundle, preg);
let preg_idx = PRegIndex::new(preg.index());
if let AllocRegResult::Allocated(_) =
self.try_to_allocate_bundle_to_reg(bundle, preg_idx, None)
{
self.stats.spill_bundle_reg_success += 1;
success = true;
break;
}
}
if !success {
log::debug!(
"spilling bundle {:?}: marking spillset {:?} as required",
bundle,
self.bundles[bundle.index()].spillset
);
self.spillsets[self.bundles[bundle.index()].spillset.index()].required = true;
}
}
}
fn spillslot_can_fit_spillset(
&mut self,
spillslot: SpillSlotIndex,
spillset: SpillSetIndex,
) -> bool {
for &vreg in &self.spillsets[spillset.index()].vregs {
for entry in &self.vregs[vreg.index()].ranges {
if self.spillslots[spillslot.index()]
.ranges
.btree
.contains_key(&LiveRangeKey::from_range(&entry.range))
{
return false;
}
}
}
true
}
fn allocate_spillset_to_spillslot(
&mut self,
spillset: SpillSetIndex,
spillslot: SpillSlotIndex,
) {
self.spillsets[spillset.index()].slot = spillslot;
for i in 0..self.spillsets[spillset.index()].vregs.len() {
// don't borrow self
let vreg = self.spillsets[spillset.index()].vregs[i];
log::debug!(
"spillslot {:?} alloc'ed to spillset {:?}: vreg {:?}",
spillslot,
spillset,
vreg,
);
for entry in &self.vregs[vreg.index()].ranges {
log::debug!(
"spillslot {:?} getting range {:?} from LR {:?} from vreg {:?}",
spillslot,
entry.range,
entry.index,
vreg,
);
self.spillslots[spillslot.index()]
.ranges
.btree
.insert(LiveRangeKey::from_range(&entry.range), entry.index);
}
}
}
fn allocate_spillslots(&mut self) {
for spillset in 0..self.spillsets.len() {
log::debug!("allocate spillslot: {}", spillset);
let spillset = SpillSetIndex::new(spillset);
if !self.spillsets[spillset.index()].required {
continue;
}
// Get or create the spillslot list for this size.
let size = self.spillsets[spillset.index()].size as usize;
if size >= self.slots_by_size.len() {
self.slots_by_size.resize(
size + 1,
SpillSlotList {
first_spillslot: SpillSlotIndex::invalid(),
last_spillslot: SpillSlotIndex::invalid(),
},
);
}
// Try a few existing spillslots.
let mut spillslot_iter = self.slots_by_size[size].first_spillslot;
let mut first_slot = SpillSlotIndex::invalid();
let mut prev = SpillSlotIndex::invalid();
let mut success = false;
for _attempt in 0..10 {
if spillslot_iter.is_invalid() {
break;
}
if spillslot_iter == first_slot {
// We've started looking at slots we placed at the end; end search.
break;
}
if first_slot.is_invalid() {
first_slot = spillslot_iter;
}
if self.spillslot_can_fit_spillset(spillslot_iter, spillset) {
self.allocate_spillset_to_spillslot(spillset, spillslot_iter);
success = true;
break;
}
// Remove the slot and place it at the end of the respective list.
let next = self.spillslots[spillslot_iter.index()].next_spillslot;
if prev.is_valid() {
self.spillslots[prev.index()].next_spillslot = next;
} else {
self.slots_by_size[size].first_spillslot = next;
}
if !next.is_valid() {
self.slots_by_size[size].last_spillslot = prev;
}
let last = self.slots_by_size[size].last_spillslot;
if last.is_valid() {
self.spillslots[last.index()].next_spillslot = spillslot_iter;
} else {
self.slots_by_size[size].first_spillslot = spillslot_iter;
}
self.slots_by_size[size].last_spillslot = spillslot_iter;
prev = spillslot_iter;
spillslot_iter = next;
}
if !success {
// Allocate a new spillslot.
let spillslot = SpillSlotIndex::new(self.spillslots.len());
let next = self.slots_by_size[size].first_spillslot;
self.spillslots.push(SpillSlotData {
ranges: LiveRangeSet::new(),
next_spillslot: next,
size: size as u32,
alloc: Allocation::none(),
class: self.spillsets[spillset.index()].class,
});
self.slots_by_size[size].first_spillslot = spillslot;
if !next.is_valid() {
self.slots_by_size[size].last_spillslot = spillslot;
}
self.allocate_spillset_to_spillslot(spillset, spillslot);
}
}
// Assign actual slot indices to spillslots.
let mut offset: u32 = 0;
for data in &mut self.spillslots {
// Align up to `size`.
debug_assert!(data.size.is_power_of_two());
offset = (offset + data.size - 1) & !(data.size - 1);
let slot = if self.func.multi_spillslot_named_by_last_slot() {
offset + data.size - 1
} else {
offset
};
data.alloc = Allocation::stack(SpillSlot::new(slot as usize, data.class));
offset += data.size;
}
self.num_spillslots = offset;
log::debug!("spillslot allocator done");
}
fn is_start_of_block(&self, pos: ProgPoint) -> bool {
let block = self.cfginfo.insn_block[pos.inst().index()];
pos == self.cfginfo.block_entry[block.index()]
}
fn is_end_of_block(&self, pos: ProgPoint) -> bool {
let block = self.cfginfo.insn_block[pos.inst().index()];
pos == self.cfginfo.block_exit[block.index()]
}
fn insert_move(
&mut self,
pos: ProgPoint,
prio: InsertMovePrio,
from_alloc: Allocation,
to_alloc: Allocation,
to_vreg: Option<VReg>,
) {
debug!(
"insert_move: pos {:?} prio {:?} from_alloc {:?} to_alloc {:?}",
pos, prio, from_alloc, to_alloc
);
match (from_alloc.as_reg(), to_alloc.as_reg()) {
(Some(from), Some(to)) => {
assert_eq!(from.class(), to.class());
}
_ => {}
}
self.inserted_moves.push(InsertedMove {
pos,
prio,
from_alloc,
to_alloc,
to_vreg,
});
}
fn get_alloc(&self, inst: Inst, slot: usize) -> Allocation {
let inst_allocs = &self.allocs[self.inst_alloc_offsets[inst.index()] as usize..];
inst_allocs[slot]
}
fn set_alloc(&mut self, inst: Inst, slot: usize, alloc: Allocation) {
let inst_allocs = &mut self.allocs[self.inst_alloc_offsets[inst.index()] as usize..];
inst_allocs[slot] = alloc;
}
fn get_alloc_for_range(&self, range: LiveRangeIndex) -> Allocation {
log::debug!("get_alloc_for_range: {:?}", range);
let bundle = self.ranges[range.index()].bundle;
log::debug!(" -> bundle: {:?}", bundle);
let bundledata = &self.bundles[bundle.index()];
log::debug!(" -> allocation {:?}", bundledata.allocation);
if bundledata.allocation != Allocation::none() {
bundledata.allocation
} else {
log::debug!(" -> spillset {:?}", bundledata.spillset);
log::debug!(
" -> spill slot {:?}",
self.spillsets[bundledata.spillset.index()].slot
);
self.spillslots[self.spillsets[bundledata.spillset.index()].slot.index()].alloc
}
}
fn apply_allocations_and_insert_moves(&mut self) {
log::debug!("apply_allocations_and_insert_moves");
log::debug!("blockparam_ins: {:?}", self.blockparam_ins);
log::debug!("blockparam_outs: {:?}", self.blockparam_outs);
// Now that all splits are done, we can pay the cost once to
// sort VReg range lists and update with the final ranges.
for vreg in &mut self.vregs {
for entry in &mut vreg.ranges {
entry.range = self.ranges[entry.index.index()].range;
}
vreg.ranges.sort_unstable_by_key(|entry| entry.range.from);
}
/// We create "half-moves" in order to allow a single-scan
/// strategy with a subsequent sort. Basically, the key idea
/// is that as our single scan through a range for a vreg hits
/// upon the source or destination of an edge-move, we emit a
/// "half-move". These half-moves are carefully keyed in a
/// particular sort order (the field order below is
/// significant!) so that all half-moves on a given (from, to)
/// block-edge appear contiguously, and then all moves from a
/// given vreg appear contiguously. Within a given from-vreg,
/// pick the first `Source` (there should only be one, but
/// imprecision in liveranges due to loop handling sometimes
/// means that a blockparam-out is also recognized as a normal-out),
/// and then for each `Dest`, copy the source-alloc to that
/// dest-alloc.
#[derive(Clone, Debug, PartialEq, Eq)]
struct HalfMove {
key: u64,
alloc: Allocation,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
#[repr(u8)]
enum HalfMoveKind {
Source = 0,
Dest = 1,
}
fn half_move_key(
from_block: Block,
to_block: Block,
to_vreg: VRegIndex,
kind: HalfMoveKind,
) -> u64 {
assert!(from_block.index() < 1 << 21);
assert!(to_block.index() < 1 << 21);
assert!(to_vreg.index() < 1 << 21);
((from_block.index() as u64) << 43)
| ((to_block.index() as u64) << 22)
| ((to_vreg.index() as u64) << 1)
| (kind as u8 as u64)
}
impl HalfMove {
fn from_block(&self) -> Block {
Block::new(((self.key >> 43) & ((1 << 21) - 1)) as usize)
}
fn to_block(&self) -> Block {
Block::new(((self.key >> 22) & ((1 << 21) - 1)) as usize)
}
fn to_vreg(&self) -> VRegIndex {
VRegIndex::new(((self.key >> 1) & ((1 << 21) - 1)) as usize)
}
fn kind(&self) -> HalfMoveKind {
if self.key & 1 == 1 {
HalfMoveKind::Dest
} else {
HalfMoveKind::Source
}
}
}
let mut half_moves: Vec<HalfMove> = Vec::with_capacity(6 * self.func.insts());
let mut reuse_input_insts = Vec::with_capacity(self.func.insts() / 2);
let mut blockparam_in_idx = 0;
let mut blockparam_out_idx = 0;
let mut prog_move_src_idx = 0;
let mut prog_move_dst_idx = 0;
for vreg in 0..self.vregs.len() {
let vreg = VRegIndex::new(vreg);
let pinned_alloc = if self.vregs[vreg.index()].is_pinned {
self.func.is_pinned_vreg(self.vreg_regs[vreg.index()])
} else {
None
};
let mut clean_spillslot: Option<SpillSlot> = None;
// For each range in each vreg, insert moves or
// half-moves. We also scan over `blockparam_ins` and
// `blockparam_outs`, which are sorted by (block, vreg),
// and over program-move srcs/dsts to fill in allocations.
let mut prev = LiveRangeIndex::invalid();
for range_idx in 0..self.vregs[vreg.index()].ranges.len() {
let entry = self.vregs[vreg.index()].ranges[range_idx];
let alloc = pinned_alloc
.map(|preg| Allocation::reg(preg))
.unwrap_or_else(|| self.get_alloc_for_range(entry.index));
let range = entry.range;
log::debug!(
"apply_allocations: vreg {:?} LR {:?} with range {:?} has alloc {:?} (pinned {:?})",
vreg,
entry.index,
range,
alloc,
pinned_alloc,
);
debug_assert!(alloc != Allocation::none());
if self.annotations_enabled && log::log_enabled!(log::Level::Debug) {
self.annotate(
range.from,
format!(
" <<< start v{} in {} (range{}) (bundle{})",
vreg.index(),
alloc,
entry.index.index(),
self.ranges[entry.index.index()].bundle.raw_u32(),
),
);
self.annotate(
range.to,
format!(
" end v{} in {} (range{}) (bundle{}) >>>",
vreg.index(),
alloc,
entry.index.index(),
self.ranges[entry.index.index()].bundle.raw_u32(),
),
);
}
// Does this range follow immediately after a prior
// range in the same block? If so, insert a move (if
// the allocs differ). We do this directly rather than
// with half-moves because we eagerly know both sides
// already (and also, half-moves are specific to
// inter-block transfers).
//
// Note that we do *not* do this if there is also a
// def as the first use in the new range: it's
// possible that an old liverange covers the Before
// pos of an inst, a new liverange covers the After
// pos, and the def also happens at After. In this
// case we don't want to an insert a move after the
// instruction copying the old liverange.
//
// Note also that we assert that the new range has to
// start at the Before-point of an instruction; we
// can't insert a move that logically happens just
// before After (i.e. in the middle of a single
// instruction).
//
// Also note that this case is not applicable to
// pinned vregs (because they are always in one PReg).
if pinned_alloc.is_none() && prev.is_valid() {
let prev_alloc = self.get_alloc_for_range(prev);
let prev_range = self.ranges[prev.index()].range;
let first_is_def =
self.ranges[entry.index.index()].has_flag(LiveRangeFlag::StartsAtDef);
debug_assert!(prev_alloc != Allocation::none());
// If this is a stack-to-reg move, track that the reg is a clean copy of a spillslot.
if prev_alloc.is_stack() && alloc.is_reg() {
clean_spillslot = Some(prev_alloc.as_stack().unwrap());
}
// If this is a reg-to-stack move, elide it if the spillslot is still clean.
let skip_spill = prev_alloc.is_reg()
&& alloc.is_stack()
&& clean_spillslot == alloc.as_stack();
if prev_range.to == range.from
&& !self.is_start_of_block(range.from)
&& !first_is_def
&& !skip_spill
{
log::debug!(
"prev LR {} abuts LR {} in same block; moving {} -> {} for v{}",
prev.index(),
entry.index.index(),
prev_alloc,
alloc,
vreg.index()
);
assert_eq!(range.from.pos(), InstPosition::Before);
self.insert_move(
range.from,
InsertMovePrio::Regular,
prev_alloc,
alloc,
Some(self.vreg_regs[vreg.index()]),
);
}
}
// If this range either spans any block boundary, or
// has any mods/defs, then the spillslot (if any) that
// its value came from is no longer 'clean'.
if clean_spillslot.is_some() {
if self.cfginfo.insn_block[range.from.inst().index()]
!= self.cfginfo.insn_block[range.to.prev().inst().index()]
{
clean_spillslot = None;
} else {
for u in &self.ranges[entry.index.index()].uses {
match u.operand.kind() {
OperandKind::Def | OperandKind::Mod => {
clean_spillslot = None;
break;
}
_ => {}
}
}
}
}
// The block-to-block edge-move logic is not
// applicable to pinned vregs, which are always in one
// PReg (so never need moves within their own vreg
// ranges).
if pinned_alloc.is_none() {
// Scan over blocks whose ends are covered by this
// range. For each, for each successor that is not
// already in this range (hence guaranteed to have the
// same allocation) and if the vreg is live, add a
// Source half-move.
let mut block = self.cfginfo.insn_block[range.from.inst().index()];
while block.is_valid() && block.index() < self.func.blocks() {
if range.to < self.cfginfo.block_exit[block.index()].next() {
break;
}
log::debug!("examining block with end in range: block{}", block.index());
for &succ in self.func.block_succs(block) {
log::debug!(
" -> has succ block {} with entry {:?}",
succ.index(),
self.cfginfo.block_entry[succ.index()]
);
if range.contains_point(self.cfginfo.block_entry[succ.index()]) {
continue;
}
log::debug!(" -> out of this range, requires half-move if live");
if self.is_live_in(succ, vreg) {
log::debug!(" -> live at input to succ, adding halfmove");
half_moves.push(HalfMove {
key: half_move_key(block, succ, vreg, HalfMoveKind::Source),
alloc,
});
}
}
// Scan forward in `blockparam_outs`, adding all
// half-moves for outgoing values to blockparams
// in succs.
log::debug!(
"scanning blockparam_outs for v{} block{}: blockparam_out_idx = {}",
vreg.index(),
block.index(),
blockparam_out_idx,
);
while blockparam_out_idx < self.blockparam_outs.len() {
let (from_vreg, from_block, to_block, to_vreg) =
self.blockparam_outs[blockparam_out_idx];
if (from_vreg, from_block) > (vreg, block) {
break;
}
if (from_vreg, from_block) == (vreg, block) {
log::debug!(
" -> found: from v{} block{} to v{} block{}",
from_vreg.index(),
from_block.index(),
to_vreg.index(),
to_vreg.index()
);
half_moves.push(HalfMove {
key: half_move_key(
from_block,
to_block,
to_vreg,
HalfMoveKind::Source,
),
alloc,
});
if self.annotations_enabled && log::log_enabled!(log::Level::Debug)
{
self.annotate(
self.cfginfo.block_exit[block.index()],
format!(
"blockparam-out: block{} to block{}: v{} to v{} in {}",
from_block.index(),
to_block.index(),
from_vreg.index(),
to_vreg.index(),
alloc
),
);
}
}
blockparam_out_idx += 1;
}
block = block.next();
}
// Scan over blocks whose beginnings are covered by
// this range and for which the vreg is live at the
// start of the block. For each, for each predecessor,
// add a Dest half-move.
let mut block = self.cfginfo.insn_block[range.from.inst().index()];
if self.cfginfo.block_entry[block.index()] < range.from {
block = block.next();
}
while block.is_valid() && block.index() < self.func.blocks() {
if self.cfginfo.block_entry[block.index()] >= range.to {
break;
}
// Add half-moves for blockparam inputs.
log::debug!(
"scanning blockparam_ins at vreg {} block {}: blockparam_in_idx = {}",
vreg.index(),
block.index(),
blockparam_in_idx
);
while blockparam_in_idx < self.blockparam_ins.len() {
let (to_vreg, to_block, from_block) =
self.blockparam_ins[blockparam_in_idx];
if (to_vreg, to_block) > (vreg, block) {
break;
}
if (to_vreg, to_block) == (vreg, block) {
half_moves.push(HalfMove {
key: half_move_key(
from_block,
to_block,
to_vreg,
HalfMoveKind::Dest,
),
alloc,
});
log::debug!(
"match: blockparam_in: v{} in block{} from block{} into {}",
to_vreg.index(),
to_block.index(),
from_block.index(),
alloc,
);
#[cfg(debug)]
{
if log::log_enabled!(log::Level::Debug) {
self.annotate(
self.cfginfo.block_entry[block.index()],
format!(
"blockparam-in: block{} to block{}:into v{} in {}",
from_block.index(),
to_block.index(),
to_vreg.index(),
alloc
),
);
}
}
}
blockparam_in_idx += 1;
}
if !self.is_live_in(block, vreg) {
block = block.next();
continue;
}
log::debug!(
"scanning preds at vreg {} block {} for ends outside the range",
vreg.index(),
block.index()
);
// Now find any preds whose ends are not in the
// same range, and insert appropriate moves.
for &pred in self.func.block_preds(block) {
log::debug!(
"pred block {} has exit {:?}",
pred.index(),
self.cfginfo.block_exit[pred.index()]
);
if range.contains_point(self.cfginfo.block_exit[pred.index()]) {
continue;
}
log::debug!(" -> requires half-move");
half_moves.push(HalfMove {
key: half_move_key(pred, block, vreg, HalfMoveKind::Dest),
alloc,
});
}
block = block.next();
}
// If this is a blockparam vreg and the start of block
// is in this range, add to blockparam_allocs.
let (blockparam_block, blockparam_idx) =
self.cfginfo.vreg_def_blockparam[vreg.index()];
if blockparam_block.is_valid()
&& range.contains_point(self.cfginfo.block_entry[blockparam_block.index()])
{
self.blockparam_allocs.push((
blockparam_block,
blockparam_idx,
vreg,
alloc,
));
}
}
// Scan over def/uses and apply allocations.
for use_idx in 0..self.ranges[entry.index.index()].uses.len() {
let usedata = self.ranges[entry.index.index()].uses[use_idx];
log::debug!("applying to use: {:?}", usedata);
debug_assert!(range.contains_point(usedata.pos));
let inst = usedata.pos.inst();
let slot = usedata.slot;
let operand = usedata.operand;
// Safepoints add virtual uses with no slots;
// avoid these.
if slot != SLOT_NONE {
self.set_alloc(inst, slot as usize, alloc);
}
if let OperandPolicy::Reuse(_) = operand.policy() {
reuse_input_insts.push(inst);
}
}
// Scan over program move srcs/dsts to fill in allocations.
// Move srcs happen at `After` of a given
// inst. Compute [from, to) semi-inclusive range of
// inst indices for which we should fill in the source
// with this LR's allocation.
//
// range from inst-Before or inst-After covers cur
// inst's After; so includes move srcs from inst.
let move_src_start = (vreg, range.from.inst());
// range to (exclusive) inst-Before or inst-After
// covers only prev inst's After; so includes move
// srcs to (exclusive) inst.
let move_src_end = (vreg, range.to.inst());
log::debug!(
"vreg {:?} range {:?}: looking for program-move sources from {:?} to {:?}",
vreg,
range,
move_src_start,
move_src_end
);
while prog_move_src_idx < self.prog_move_srcs.len()
&& self.prog_move_srcs[prog_move_src_idx].0 < move_src_start
{
log::debug!(" -> skipping idx {}", prog_move_src_idx);
prog_move_src_idx += 1;
}
while prog_move_src_idx < self.prog_move_srcs.len()
&& self.prog_move_srcs[prog_move_src_idx].0 < move_src_end
{
log::debug!(
" -> setting idx {} ({:?}) to alloc {:?}",
prog_move_src_idx,
self.prog_move_srcs[prog_move_src_idx].0,
alloc
);
self.prog_move_srcs[prog_move_src_idx].1 = alloc;
prog_move_src_idx += 1;
}
// move dsts happen at Before point.
//
// Range from inst-Before includes cur inst, while inst-After includes only next inst.
let move_dst_start = if range.from.pos() == InstPosition::Before {
(vreg, range.from.inst())
} else {
(vreg, range.from.inst().next())
};
// Range to (exclusive) inst-Before includes prev
// inst, so to (exclusive) cur inst; range to
// (exclusive) inst-After includes cur inst, so to
// (exclusive) next inst.
let move_dst_end = if range.to.pos() == InstPosition::Before {
(vreg, range.to.inst())
} else {
(vreg, range.to.inst().next())
};
log::debug!(
"vreg {:?} range {:?}: looking for program-move dests from {:?} to {:?}",
vreg,
range,
move_dst_start,
move_dst_end
);
while prog_move_dst_idx < self.prog_move_dsts.len()
&& self.prog_move_dsts[prog_move_dst_idx].0 < move_dst_start
{
log::debug!(" -> skipping idx {}", prog_move_dst_idx);
prog_move_dst_idx += 1;
}
while prog_move_dst_idx < self.prog_move_dsts.len()
&& self.prog_move_dsts[prog_move_dst_idx].0 < move_dst_end
{
log::debug!(
" -> setting idx {} ({:?}) to alloc {:?}",
prog_move_dst_idx,
self.prog_move_dsts[prog_move_dst_idx].0,
alloc
);
self.prog_move_dsts[prog_move_dst_idx].1 = alloc;
prog_move_dst_idx += 1;
}
prev = entry.index;
}
}
// Sort the half-moves list. For each (from, to,
// from-vreg) tuple, find the from-alloc and all the
// to-allocs, and insert moves on the block edge.
half_moves.sort_unstable_by_key(|h| h.key);
log::debug!("halfmoves: {:?}", half_moves);
self.stats.halfmoves_count = half_moves.len();
let mut i = 0;
while i < half_moves.len() {
// Find a Source.
while i < half_moves.len() && half_moves[i].kind() != HalfMoveKind::Source {
i += 1;
}
if i >= half_moves.len() {
break;
}
let src = &half_moves[i];
i += 1;
// Find all Dests.
let dest_key = src.key | 1;
let first_dest = i;
while i < half_moves.len() && half_moves[i].key == dest_key {
i += 1;
}
let last_dest = i;
log::debug!(
"halfmove match: src {:?} dests {:?}",
src,
&half_moves[first_dest..last_dest]
);
// Determine the ProgPoint where moves on this (from, to)
// edge should go:
// - If there is more than one in-edge to `to`, then
// `from` must have only one out-edge; moves go at tail of
// `from` just before last Branch/Ret.
// - Otherwise, there must be at most one in-edge to `to`,
// and moves go at start of `to`.
let from_last_insn = self.func.block_insns(src.from_block()).last();
let to_first_insn = self.func.block_insns(src.to_block()).first();
let from_is_ret = self.func.is_ret(from_last_insn);
let to_is_entry = self.func.entry_block() == src.to_block();
let from_outs =
self.func.block_succs(src.from_block()).len() + if from_is_ret { 1 } else { 0 };
let to_ins =
self.func.block_preds(src.to_block()).len() + if to_is_entry { 1 } else { 0 };
let (insertion_point, prio) = if to_ins > 1 && from_outs <= 1 {
(
// N.B.: though semantically the edge moves happen
// after the branch, we must insert them before
// the branch because otherwise, of course, they
// would never execute. This is correct even in
// the presence of branches that read register
// inputs (e.g. conditional branches on some RISCs
// that branch on reg zero/not-zero, or any
// indirect branch), but for a very subtle reason:
// all cases of such branches will (or should)
// have multiple successors, and thus due to
// critical-edge splitting, their successors will
// have only the single predecessor, and we prefer
// to insert at the head of the successor in that
// case (rather than here). We make this a
// requirement, in fact: the user of this library
// shall not read registers in a branch
// instruction of there is only one successor per
// the given CFG information.
ProgPoint::before(from_last_insn),
InsertMovePrio::OutEdgeMoves,
)
} else if to_ins <= 1 {
(
ProgPoint::before(to_first_insn),
InsertMovePrio::InEdgeMoves,
)
} else {
panic!(
"Critical edge: can't insert moves between blocks {:?} and {:?}",
src.from_block(),
src.to_block()
);
};
let mut last = None;
for dest in first_dest..last_dest {
let dest = &half_moves[dest];
if last == Some(dest.alloc) {
continue;
}
self.insert_move(insertion_point, prio, src.alloc, dest.alloc, None);
last = Some(dest.alloc);
}
}
// Handle multi-fixed-reg constraints by copying.
for (progpoint, from_preg, to_preg, slot) in
std::mem::replace(&mut self.multi_fixed_reg_fixups, vec![])
{
log::debug!(
"multi-fixed-move constraint at {:?} from p{} to p{}",
progpoint,
from_preg.index(),
to_preg.index()
);
self.insert_move(
progpoint,
InsertMovePrio::MultiFixedReg,
Allocation::reg(self.pregs[from_preg.index()].reg),
Allocation::reg(self.pregs[to_preg.index()].reg),
None,
);
self.set_alloc(
progpoint.inst(),
slot,
Allocation::reg(self.pregs[to_preg.index()].reg),
);
}
// Handle outputs that reuse inputs: copy beforehand, then set
// input's alloc to output's.
//
// Note that the output's allocation may not *actually* be
// valid until InstPosition::After, but the reused input may
// occur at InstPosition::Before. This may appear incorrect,
// but we make it work by ensuring that all *other* inputs are
// extended to InstPosition::After so that the def will not
// interfere. (The liveness computation code does this -- we
// do not require the user to do so.)
//
// One might ask: why not insist that input-reusing defs occur
// at InstPosition::Before? this would be correct, but would
// mean that the reused input and the reusing output
// interfere, *guaranteeing* that every such case would
// require a move. This is really bad on ISAs (like x86) where
// reused inputs are ubiquitous.
//
// Another approach might be to put the def at Before, and
// trim the reused input's liverange back to the previous
// instruction's After. This is kind of OK until (i) a block
// boundary occurs between the prior inst and this one, or
// (ii) any moves/spills/reloads occur between the two
// instructions. We really do need the input to be live at
// this inst's Before.
//
// In principle what we really need is a "BeforeBefore"
// program point, but we don't want to introduce that
// everywhere and pay the cost of twice as many ProgPoints
// throughout the allocator.
//
// Or we could introduce a separate move instruction -- this
// is the approach that regalloc.rs takes with "mod" operands
// -- but that is also costly.
//
// So we take this approach (invented by IonMonkey -- somewhat
// hard to discern, though see [0] for a comment that makes
// this slightly less unclear) to avoid interference between
// the actual reused input and reusing output, ensure
// interference (hence no incorrectness) between other inputs
// and the reusing output, and not require a separate explicit
// move instruction.
//
// [0] https://searchfox.org/mozilla-central/rev/3a798ef9252896fb389679f06dd3203169565af0/js/src/jit/shared/Lowering-shared-inl.h#108-110
for inst in reuse_input_insts {
let mut input_reused: SmallVec<[usize; 4]> = smallvec![];
for output_idx in 0..self.func.inst_operands(inst).len() {
let operand = self.func.inst_operands(inst)[output_idx];
if let OperandPolicy::Reuse(input_idx) = operand.policy() {
debug_assert!(!input_reused.contains(&input_idx));
debug_assert_eq!(operand.pos(), OperandPos::After);
input_reused.push(input_idx);
let input_alloc = self.get_alloc(inst, input_idx);
let output_alloc = self.get_alloc(inst, output_idx);
log::debug!(
"reuse-input inst {:?}: output {} has alloc {:?}, input {} has alloc {:?}",
inst,
output_idx,
output_alloc,
input_idx,
input_alloc
);
if input_alloc != output_alloc {
#[cfg(debug)]
{
if log::log_enabled!(log::Level::Debug) {
self.annotate(
ProgPoint::before(inst),
format!(
" reuse-input-copy: {} -> {}",
input_alloc, output_alloc
),
);
}
}
self.insert_move(
ProgPoint::before(inst),
InsertMovePrio::ReusedInput,
input_alloc,
output_alloc,
None,
);
self.set_alloc(inst, input_idx, output_alloc);
}
}
}
}
// Sort the prog-moves lists and insert moves to reify the
// input program's move operations.
self.prog_move_srcs
.sort_unstable_by_key(|((_, inst), _)| *inst);
self.prog_move_dsts
.sort_unstable_by_key(|((_, inst), _)| inst.prev());
let prog_move_srcs = std::mem::replace(&mut self.prog_move_srcs, vec![]);
let prog_move_dsts = std::mem::replace(&mut self.prog_move_dsts, vec![]);
assert_eq!(prog_move_srcs.len(), prog_move_dsts.len());
for (&((_, from_inst), from_alloc), &((to_vreg, to_inst), to_alloc)) in
prog_move_srcs.iter().zip(prog_move_dsts.iter())
{
log::debug!(
"program move at inst {:?}: alloc {:?} -> {:?} (v{})",
from_inst,
from_alloc,
to_alloc,
to_vreg.index(),
);
assert!(!from_alloc.is_none());
assert!(!to_alloc.is_none());
assert_eq!(from_inst, to_inst.prev());
// N.B.: these moves happen with the *same* priority as
// LR-to-LR moves, because they work just like them: they
// connect a use at one progpoint (move-After) with a def
// at an adjacent progpoint (move+1-Before), so they must
// happen in parallel with all other LR-to-LR moves.
self.insert_move(
ProgPoint::before(to_inst),
InsertMovePrio::Regular,
from_alloc,
to_alloc,
Some(self.vreg_regs[to_vreg.index()]),
);
}
}
fn resolve_inserted_moves(&mut self) {
// For each program point, gather all moves together. Then
// resolve (see cases below).
let mut i = 0;
self.inserted_moves
.sort_unstable_by_key(|m| (m.pos.to_index(), m.prio));
while i < self.inserted_moves.len() {
let start = i;
let pos = self.inserted_moves[i].pos;
let prio = self.inserted_moves[i].prio;
while i < self.inserted_moves.len()
&& self.inserted_moves[i].pos == pos
&& self.inserted_moves[i].prio == prio
{
i += 1;
}
let moves = &self.inserted_moves[start..i];
// Gather all the moves with Int class and Float class
// separately. These cannot interact, so it is safe to
// have two separate ParallelMove instances. They need to
// be separate because moves between the two classes are
// impossible. (We could enhance ParallelMoves to
// understand register classes and take multiple scratch
// regs, but this seems simpler.)
let mut int_moves: SmallVec<[InsertedMove; 8]> = smallvec![];
let mut float_moves: SmallVec<[InsertedMove; 8]> = smallvec![];
for m in moves {
if m.from_alloc.is_reg() && m.to_alloc.is_reg() {
assert_eq!(m.from_alloc.class(), m.to_alloc.class());
}
match m.from_alloc.class() {
RegClass::Int => {
int_moves.push(m.clone());
}
RegClass::Float => {
float_moves.push(m.clone());
}
}
}
for &(regclass, moves) in
&[(RegClass::Int, &int_moves), (RegClass::Float, &float_moves)]
{
// All moves in `moves` semantically happen in
// parallel. Let's resolve these to a sequence of moves
// that can be done one at a time.
let mut parallel_moves = ParallelMoves::new(Allocation::reg(
self.env.scratch_by_class[regclass as u8 as usize],
));
log::debug!("parallel moves at pos {:?} prio {:?}", pos, prio);
for m in moves {
if (m.from_alloc != m.to_alloc) || m.to_vreg.is_some() {
log::debug!(" {} -> {}", m.from_alloc, m.to_alloc,);
parallel_moves.add(m.from_alloc, m.to_alloc, m.to_vreg);
}
}
let resolved = parallel_moves.resolve();
for (src, dst, to_vreg) in resolved {
log::debug!(" resolved: {} -> {} ({:?})", src, dst, to_vreg);
self.add_edit(
pos,
prio,
Edit::Move {
from: src,
to: dst,
to_vreg,
},
);
}
}
}
// Add edits to describe blockparam locations too. This is
// required by the checker. This comes after any edge-moves.
self.blockparam_allocs
.sort_unstable_by_key(|&(block, idx, _, _)| (block, idx));
self.stats.blockparam_allocs_count = self.blockparam_allocs.len();
let mut i = 0;
while i < self.blockparam_allocs.len() {
let start = i;
let block = self.blockparam_allocs[i].0;
while i < self.blockparam_allocs.len() && self.blockparam_allocs[i].0 == block {
i += 1;
}
let params = &self.blockparam_allocs[start..i];
let vregs = params
.iter()
.map(|(_, _, vreg_idx, _)| self.vreg_regs[vreg_idx.index()])
.collect::<Vec<_>>();
let allocs = params
.iter()
.map(|(_, _, _, alloc)| *alloc)
.collect::<Vec<_>>();
assert_eq!(vregs.len(), self.func.block_params(block).len());
assert_eq!(allocs.len(), self.func.block_params(block).len());
self.add_edit(
self.cfginfo.block_entry[block.index()],
InsertMovePrio::BlockParam,
Edit::BlockParams { vregs, allocs },
);
}
// Ensure edits are in sorted ProgPoint order. N.B.: this must
// be a stable sort! We have to keep the order produced by the
// parallel-move resolver for all moves within a single sort
// key.
self.edits.sort_by_key(|&(pos, prio, _)| (pos, prio));
self.stats.edits_count = self.edits.len();
// Add debug annotations.
#[cfg(debug)]
{
if log::log_enabled!(log::Level::Debug) {
for i in 0..self.edits.len() {
let &(pos, _, ref edit) = &self.edits[i];
match edit {
&Edit::Move { from, to, to_vreg } => {
self.annotate(
ProgPoint::from_index(pos),
format!("move {} -> {} ({:?})", from, to, to_vreg),
);
}
&Edit::BlockParams {
ref vregs,
ref allocs,
} => {
let s = format!("blockparams vregs:{:?} allocs:{:?}", vregs, allocs);
self.annotate(ProgPoint::from_index(pos), s);
}
}
}
}
}
}
fn add_edit(&mut self, pos: ProgPoint, prio: InsertMovePrio, edit: Edit) {
match &edit {
&Edit::Move { from, to, to_vreg } if from == to && to_vreg.is_none() => return,
&Edit::Move { from, to, .. } if from.is_reg() && to.is_reg() => {
assert_eq!(from.as_reg().unwrap().class(), to.as_reg().unwrap().class());
}
_ => {}
}
self.edits.push((pos.to_index(), prio, edit));
}
fn compute_stackmaps(&mut self) {
// For each ref-typed vreg, iterate through ranges and find
// safepoints in-range. Add the SpillSlot to the stackmap.
if self.func.reftype_vregs().is_empty() {
return;
}
// Given `safepoints_per_vreg` from the liveness computation,
// all we have to do is, for each vreg in this map, step
// through the LiveRanges along with a sorted list of
// safepoints; and for each safepoint in the current range,
// emit the allocation into the `safepoint_slots` list.
log::debug!("safepoints_per_vreg = {:?}", self.safepoints_per_vreg);
for vreg in self.func.reftype_vregs() {
log::debug!("generating safepoint info for vreg {}", vreg);
let vreg = VRegIndex::new(vreg.vreg());
let mut safepoints: Vec<ProgPoint> = self
.safepoints_per_vreg
.get(&vreg.index())
.unwrap()
.iter()
.map(|&inst| ProgPoint::before(inst))
.collect();
safepoints.sort_unstable();
log::debug!(" -> live over safepoints: {:?}", safepoints);
let mut safepoint_idx = 0;
for entry in &self.vregs[vreg.index()].ranges {
let range = entry.range;
let alloc = self.get_alloc_for_range(entry.index);
log::debug!(" -> range {:?}: alloc {}", range, alloc);
while safepoint_idx < safepoints.len() && safepoints[safepoint_idx] < range.to {
if safepoints[safepoint_idx] < range.from {
safepoint_idx += 1;
continue;
}
log::debug!(" -> covers safepoint {:?}", safepoints[safepoint_idx]);
let slot = alloc
.as_stack()
.expect("Reference-typed value not in spillslot at safepoint");
self.safepoint_slots.push((safepoints[safepoint_idx], slot));
safepoint_idx += 1;
}
}
}
self.safepoint_slots.sort_unstable();
log::debug!("final safepoint slots info: {:?}", self.safepoint_slots);
}
pub(crate) fn init(&mut self) -> Result<(), RegAllocError> {
self.create_pregs_and_vregs();
self.compute_liveness()?;
self.merge_vreg_bundles();
self.queue_bundles();
if log::log_enabled!(log::Level::Debug) {
self.dump_state();
}
Ok(())
}
pub(crate) fn run(&mut self) -> Result<(), RegAllocError> {
self.process_bundles()?;
self.try_allocating_regs_for_spilled_bundles();
self.allocate_spillslots();
self.apply_allocations_and_insert_moves();
self.resolve_inserted_moves();
self.compute_stackmaps();
Ok(())
}
fn annotate(&mut self, progpoint: ProgPoint, s: String) {
if log::log_enabled!(log::Level::Debug) {
self.debug_annotations
.entry(progpoint)
.or_insert_with(|| vec![])
.push(s);
}
}
fn dump_results(&self) {
log::debug!("=== REGALLOC RESULTS ===");
for block in 0..self.func.blocks() {
let block = Block::new(block);
log::debug!(
"block{}: [succs {:?} preds {:?}]",
block.index(),
self.func
.block_succs(block)
.iter()
.map(|b| b.index())
.collect::<Vec<_>>(),
self.func
.block_preds(block)
.iter()
.map(|b| b.index())
.collect::<Vec<_>>()
);
for inst in self.func.block_insns(block).iter() {
for annotation in self
.debug_annotations
.get(&ProgPoint::before(inst))
.map(|v| &v[..])
.unwrap_or(&[])
{
log::debug!(" inst{}-pre: {}", inst.index(), annotation);
}
let ops = self
.func
.inst_operands(inst)
.iter()
.map(|op| format!("{}", op))
.collect::<Vec<_>>();
let clobbers = self
.func
.inst_clobbers(inst)
.iter()
.map(|preg| format!("{}", preg))
.collect::<Vec<_>>();
let allocs = (0..ops.len())
.map(|i| format!("{}", self.get_alloc(inst, i)))
.collect::<Vec<_>>();
let opname = if self.func.is_branch(inst) {
"br"
} else if self.func.is_call(inst) {
"call"
} else if self.func.is_ret(inst) {
"ret"
} else {
"op"
};
let args = ops
.iter()
.zip(allocs.iter())
.map(|(op, alloc)| format!("{} [{}]", op, alloc))
.collect::<Vec<_>>();
let clobbers = if clobbers.is_empty() {
"".to_string()
} else {
format!(" [clobber: {}]", clobbers.join(", "))
};
log::debug!(
" inst{}: {} {}{}",
inst.index(),
opname,
args.join(", "),
clobbers
);
for annotation in self
.debug_annotations
.get(&ProgPoint::after(inst))
.map(|v| &v[..])
.unwrap_or(&[])
{
log::debug!(" inst{}-post: {}", inst.index(), annotation);
}
}
}
}
}
pub fn run<F: Function>(
func: &F,
mach_env: &MachineEnv,
enable_annotations: bool,
) -> Result<Output, RegAllocError> {
let cfginfo = CFGInfo::new(func)?;
let mut env = Env::new(func, mach_env, cfginfo, enable_annotations);
env.init()?;
env.run()?;
if log::log_enabled!(log::Level::Debug) {
env.dump_results();
}
Ok(Output {
edits: env
.edits
.into_iter()
.map(|(pos, _, edit)| (ProgPoint::from_index(pos), edit))
.collect(),
allocs: env.allocs,
inst_alloc_offsets: env.inst_alloc_offsets,
num_spillslots: env.num_spillslots as usize,
debug_locations: vec![],
safepoint_slots: env.safepoint_slots,
stats: env.stats,
})
}