* Make regalloc2 `#![no_std]` This crate doesn't require any features from the standard library, so it can be made `no_std` to allow it to be used in environments that can't use the Rust standard library. This PR mainly performs the following mechanical changes: - `std::collections` is replaced with `alloc::collections`. - `std::*` is replaced with `core::*`. - `Vec`, `vec!`, `format!` and `ToString` are imported when needed since they are no longer in the prelude. - `HashSet` and `HashMap` are taken from the `hashbrown` crate, which is the same implementation that the standard library uses. - `FxHashSet` and `FxHashMap` are typedefs in `lib.rs` that are based on the `hashbrown` types. The only functional change is that `RegAllocError` no longer implements the `Error` trait since that is not available in `core`. Dependencies were adjusted to not require `std` and this is tested in CI by building against the `thumbv6m-none-eabi` target that doesn't have `std`. * Add the Error trait impl back under a "std" feature
350 lines
10 KiB
Rust
350 lines
10 KiB
Rust
/*
|
|
* Released under the terms of the Apache 2.0 license with LLVM
|
|
* exception. See `LICENSE` for details.
|
|
*/
|
|
|
|
//! Index sets: sets of integers that represent indices into a space.
|
|
|
|
use alloc::vec::Vec;
|
|
use core::cell::Cell;
|
|
|
|
use crate::FxHashMap;
|
|
|
|
const SMALL_ELEMS: usize = 12;
|
|
|
|
/// A hybrid large/small-mode sparse mapping from integer indices to
|
|
/// elements.
|
|
///
|
|
/// The trailing `(u32, u64)` elements in each variant is a one-item
|
|
/// cache to allow fast access when streaming through.
|
|
#[derive(Clone, Debug)]
|
|
enum AdaptiveMap {
|
|
Small {
|
|
len: u32,
|
|
keys: [u32; SMALL_ELEMS],
|
|
values: [u64; SMALL_ELEMS],
|
|
},
|
|
Large(FxHashMap<u32, u64>),
|
|
}
|
|
|
|
const INVALID: u32 = 0xffff_ffff;
|
|
|
|
impl AdaptiveMap {
|
|
fn new() -> Self {
|
|
Self::Small {
|
|
len: 0,
|
|
keys: [INVALID; SMALL_ELEMS],
|
|
values: [0; SMALL_ELEMS],
|
|
}
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn get_or_insert<'a>(&'a mut self, key: u32) -> &'a mut u64 {
|
|
// Check whether the key is present and we are in small mode;
|
|
// if no to both, we need to expand first.
|
|
let small_mode_idx = match self {
|
|
&mut Self::Small {
|
|
len,
|
|
ref mut keys,
|
|
ref values,
|
|
} => {
|
|
// Perform this scan but do not return right away;
|
|
// doing so runs into overlapping-borrow issues
|
|
// because the current non-lexical lifetimes
|
|
// implementation is not able to see that the `self`
|
|
// mutable borrow on return is only on the
|
|
// early-return path.
|
|
if let Some(i) = keys[..len as usize].iter().position(|&k| k == key) {
|
|
Some(i)
|
|
} else if len != SMALL_ELEMS as u32 {
|
|
debug_assert!(len < SMALL_ELEMS as u32);
|
|
None
|
|
} else if let Some(i) = values.iter().position(|&v| v == 0) {
|
|
// If an existing value is zero, reuse that slot.
|
|
keys[i] = key;
|
|
Some(i)
|
|
} else {
|
|
*self = Self::Large(keys.iter().copied().zip(values.iter().copied()).collect());
|
|
None
|
|
}
|
|
}
|
|
_ => None,
|
|
};
|
|
|
|
match self {
|
|
Self::Small { len, keys, values } => {
|
|
// If we found the key already while checking whether
|
|
// we need to expand above, use that index to return
|
|
// early.
|
|
if let Some(i) = small_mode_idx {
|
|
return &mut values[i];
|
|
}
|
|
// Otherwise, the key must not be present; add a new
|
|
// entry.
|
|
debug_assert!(*len < SMALL_ELEMS as u32);
|
|
let idx = *len as usize;
|
|
*len += 1;
|
|
keys[idx] = key;
|
|
values[idx] = 0;
|
|
&mut values[idx]
|
|
}
|
|
Self::Large(map) => map.entry(key).or_insert(0),
|
|
}
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn get_mut(&mut self, key: u32) -> Option<&mut u64> {
|
|
match self {
|
|
&mut Self::Small {
|
|
len,
|
|
ref keys,
|
|
ref mut values,
|
|
} => {
|
|
for i in 0..len {
|
|
if keys[i as usize] == key {
|
|
return Some(&mut values[i as usize]);
|
|
}
|
|
}
|
|
None
|
|
}
|
|
&mut Self::Large(ref mut map) => map.get_mut(&key),
|
|
}
|
|
}
|
|
#[inline(always)]
|
|
fn get(&self, key: u32) -> Option<u64> {
|
|
match self {
|
|
&Self::Small {
|
|
len,
|
|
ref keys,
|
|
ref values,
|
|
} => {
|
|
for i in 0..len {
|
|
if keys[i as usize] == key {
|
|
let value = values[i as usize];
|
|
return Some(value);
|
|
}
|
|
}
|
|
None
|
|
}
|
|
&Self::Large(ref map) => {
|
|
let value = map.get(&key).cloned();
|
|
value
|
|
}
|
|
}
|
|
}
|
|
fn iter<'a>(&'a self) -> AdaptiveMapIter<'a> {
|
|
match self {
|
|
&Self::Small {
|
|
len,
|
|
ref keys,
|
|
ref values,
|
|
} => AdaptiveMapIter::Small(&keys[0..len as usize], &values[0..len as usize]),
|
|
&Self::Large(ref map) => AdaptiveMapIter::Large(map.iter()),
|
|
}
|
|
}
|
|
|
|
fn is_empty(&self) -> bool {
|
|
match self {
|
|
AdaptiveMap::Small { values, .. } => values.iter().all(|&value| value == 0),
|
|
AdaptiveMap::Large(m) => m.values().all(|&value| value == 0),
|
|
}
|
|
}
|
|
}
|
|
|
|
enum AdaptiveMapIter<'a> {
|
|
Small(&'a [u32], &'a [u64]),
|
|
Large(hashbrown::hash_map::Iter<'a, u32, u64>),
|
|
}
|
|
|
|
impl<'a> core::iter::Iterator for AdaptiveMapIter<'a> {
|
|
type Item = (u32, u64);
|
|
|
|
#[inline]
|
|
fn next(&mut self) -> Option<Self::Item> {
|
|
match self {
|
|
&mut Self::Small(ref mut keys, ref mut values) => {
|
|
if keys.is_empty() {
|
|
None
|
|
} else {
|
|
let (k, v) = ((*keys)[0], (*values)[0]);
|
|
*keys = &(*keys)[1..];
|
|
*values = &(*values)[1..];
|
|
Some((k, v))
|
|
}
|
|
}
|
|
&mut Self::Large(ref mut it) => it.next().map(|(&k, &v)| (k, v)),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A conceptually infinite-length set of indices that allows union
|
|
/// and efficient iteration over elements.
|
|
#[derive(Clone)]
|
|
pub struct IndexSet {
|
|
elems: AdaptiveMap,
|
|
cache: Cell<(u32, u64)>,
|
|
}
|
|
|
|
const BITS_PER_WORD: usize = 64;
|
|
|
|
impl IndexSet {
|
|
pub fn new() -> Self {
|
|
Self {
|
|
elems: AdaptiveMap::new(),
|
|
cache: Cell::new((INVALID, 0)),
|
|
}
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn elem(&mut self, bit_index: usize) -> &mut u64 {
|
|
let word_index = (bit_index / BITS_PER_WORD) as u32;
|
|
if self.cache.get().0 == word_index {
|
|
self.cache.set((INVALID, 0));
|
|
}
|
|
self.elems.get_or_insert(word_index)
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn maybe_elem_mut(&mut self, bit_index: usize) -> Option<&mut u64> {
|
|
let word_index = (bit_index / BITS_PER_WORD) as u32;
|
|
if self.cache.get().0 == word_index {
|
|
self.cache.set((INVALID, 0));
|
|
}
|
|
self.elems.get_mut(word_index)
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn maybe_elem(&self, bit_index: usize) -> Option<u64> {
|
|
let word_index = (bit_index / BITS_PER_WORD) as u32;
|
|
if self.cache.get().0 == word_index {
|
|
Some(self.cache.get().1)
|
|
} else {
|
|
self.elems.get(word_index)
|
|
}
|
|
}
|
|
|
|
#[inline(always)]
|
|
pub fn set(&mut self, idx: usize, val: bool) {
|
|
let bit = idx % BITS_PER_WORD;
|
|
if val {
|
|
*self.elem(idx) |= 1 << bit;
|
|
} else if let Some(word) = self.maybe_elem_mut(idx) {
|
|
*word &= !(1 << bit);
|
|
}
|
|
}
|
|
|
|
pub fn assign(&mut self, other: &Self) {
|
|
self.elems = other.elems.clone();
|
|
self.cache = other.cache.clone();
|
|
}
|
|
|
|
#[inline(always)]
|
|
pub fn get(&self, idx: usize) -> bool {
|
|
let bit = idx % BITS_PER_WORD;
|
|
if let Some(word) = self.maybe_elem(idx) {
|
|
(word & (1 << bit)) != 0
|
|
} else {
|
|
false
|
|
}
|
|
}
|
|
|
|
pub fn union_with(&mut self, other: &Self) -> bool {
|
|
let mut changed = 0;
|
|
for (word_idx, bits) in other.elems.iter() {
|
|
if bits == 0 {
|
|
continue;
|
|
}
|
|
let word_idx = word_idx as usize;
|
|
let self_word = self.elem(word_idx * BITS_PER_WORD);
|
|
changed |= bits & !*self_word;
|
|
*self_word |= bits;
|
|
}
|
|
changed != 0
|
|
}
|
|
|
|
pub fn iter<'a>(&'a self) -> impl Iterator<Item = usize> + 'a {
|
|
self.elems.iter().flat_map(|(word_idx, bits)| {
|
|
let word_idx = word_idx as usize;
|
|
SetBitsIter(bits).map(move |i| BITS_PER_WORD * word_idx + i)
|
|
})
|
|
}
|
|
|
|
/// Is the adaptive data structure in "small" mode? This is meant
|
|
/// for testing assertions only.
|
|
pub(crate) fn is_small(&self) -> bool {
|
|
match &self.elems {
|
|
&AdaptiveMap::Small { .. } => true,
|
|
_ => false,
|
|
}
|
|
}
|
|
|
|
/// Is the set empty?
|
|
pub(crate) fn is_empty(&self) -> bool {
|
|
self.elems.is_empty()
|
|
}
|
|
}
|
|
|
|
pub struct SetBitsIter(u64);
|
|
|
|
impl Iterator for SetBitsIter {
|
|
type Item = usize;
|
|
|
|
#[inline]
|
|
fn next(&mut self) -> Option<usize> {
|
|
// Build an `Option<NonZeroU64>` so that on the nonzero path,
|
|
// the compiler can optimize the trailing-zeroes operator
|
|
// using that knowledge.
|
|
core::num::NonZeroU64::new(self.0).map(|nz| {
|
|
let bitidx = nz.trailing_zeros();
|
|
self.0 &= self.0 - 1; // clear highest set bit
|
|
bitidx as usize
|
|
})
|
|
}
|
|
}
|
|
|
|
impl core::fmt::Debug for IndexSet {
|
|
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
|
|
let vals = self.iter().collect::<Vec<_>>();
|
|
write!(f, "{:?}", vals)
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod test {
|
|
use super::IndexSet;
|
|
|
|
#[test]
|
|
fn test_set_bits_iter() {
|
|
let mut vec = IndexSet::new();
|
|
let mut sum = 0;
|
|
for i in 0..1024 {
|
|
if i % 17 == 0 {
|
|
vec.set(i, true);
|
|
sum += i;
|
|
}
|
|
}
|
|
|
|
let mut checksum = 0;
|
|
for bit in vec.iter() {
|
|
debug_assert!(bit % 17 == 0);
|
|
checksum += bit;
|
|
}
|
|
|
|
debug_assert_eq!(sum, checksum);
|
|
}
|
|
|
|
#[test]
|
|
fn test_expand_remove_zero_elems() {
|
|
let mut vec = IndexSet::new();
|
|
// Set 12 different words (this is the max small-mode size).
|
|
for i in 0..12 {
|
|
vec.set(64 * i, true);
|
|
}
|
|
// Now clear a bit, and set a bit in a different word. We
|
|
// should still be in small mode.
|
|
vec.set(64 * 5, false);
|
|
vec.set(64 * 100, true);
|
|
debug_assert!(vec.is_small());
|
|
}
|
|
}
|