/* * Released under the terms of the Apache 2.0 license with LLVM * exception. See `LICENSE` for details. */ //! Index sets: sets of integers that represent indices into a space. //! //! For historical reasons this is called a `BitVec` but it is no //! longer a dense bitvector; the chunked adaptive-sparse data //! structure here has better performance. use fxhash::FxHashMap; use std::cell::Cell; const SMALL_ELEMS: usize = 12; /// A hybrid large/small-mode sparse mapping from integer indices to /// elements. /// /// The trailing `(u32, u64)` elements in each variant is a one-item /// cache to allow fast access when streaming through. #[derive(Clone, Debug)] enum AdaptiveMap { Small( u32, [u32; SMALL_ELEMS], [u64; SMALL_ELEMS], Cell<(u32, u64)>, ), Large(FxHashMap, Cell<(u32, u64)>), } const INVALID: u32 = 0xffff_ffff; impl AdaptiveMap { fn new() -> Self { Self::Small( 0, [INVALID; SMALL_ELEMS], [0; SMALL_ELEMS], Cell::new((INVALID, 0)), ) } #[inline(never)] fn expand(&mut self) { match self { &mut Self::Small(len, ref keys, ref values, ref cache) => { let mut map = FxHashMap::default(); for i in 0..len { map.insert(keys[i as usize], values[i as usize]); } *self = Self::Large(map, cache.clone()); } _ => {} } } #[inline(always)] fn get_or_insert<'a>(&'a mut self, key: u32) -> &'a mut u64 { let needs_expand = match self { &mut Self::Small(len, ref keys, ..) => { len == SMALL_ELEMS as u32 && !keys.iter().any(|k| *k == key) } _ => false, }; if needs_expand { self.expand(); } match self { &mut Self::Small(ref mut len, ref mut keys, ref mut values, ref cached) => { if cached.get().0 == key { cached.set((INVALID, 0)); } for i in 0..*len { if keys[i as usize] == key { return &mut values[i as usize]; } } assert!(*len < SMALL_ELEMS as u32); let idx = *len; *len += 1; keys[idx as usize] = key; values[idx as usize] = 0; &mut values[idx as usize] } &mut Self::Large(ref mut map, ref cached) => { if cached.get().0 == key { cached.set((INVALID, 0)); } map.entry(key).or_insert(0) } } } #[inline(always)] fn get_mut(&mut self, key: u32) -> Option<&mut u64> { match self { &mut Self::Small(len, ref keys, ref mut values, ref cached) => { if cached.get().0 == key { cached.set((INVALID, 0)); } for i in 0..len { if keys[i as usize] == key { return Some(&mut values[i as usize]); } } None } &mut Self::Large(ref mut map, ref cached) => { if cached.get().0 == key { cached.set((INVALID, 0)); } map.get_mut(&key) } } } #[inline(always)] fn get(&self, key: u32) -> Option { match self { &Self::Small(len, ref keys, ref values, ref cached) => { if cached.get().0 == key { return Some(cached.get().1); } for i in 0..len { if keys[i as usize] == key { let value = values[i as usize]; cached.set((key, value)); return Some(value); } } None } &Self::Large(ref map, ref cached) => { if cached.get().0 == key { return Some(cached.get().1); } let value = map.get(&key).cloned(); if let Some(value) = value { cached.set((key, value)); } value } } } fn iter<'a>(&'a self) -> AdaptiveMapIter<'a> { match self { &Self::Small(len, ref keys, ref values, ..) => { AdaptiveMapIter::Small(&keys[0..len as usize], &values[0..len as usize]) } &Self::Large(ref map, ..) => AdaptiveMapIter::Large(map.iter()), } } } enum AdaptiveMapIter<'a> { Small(&'a [u32], &'a [u64]), Large(std::collections::hash_map::Iter<'a, u32, u64>), } impl<'a> std::iter::Iterator for AdaptiveMapIter<'a> { type Item = (u32, u64); fn next(&mut self) -> Option { match self { &mut Self::Small(ref mut keys, ref mut values) => { if keys.is_empty() { None } else { let (k, v) = ((*keys)[0], (*values)[0]); *keys = &(*keys)[1..]; *values = &(*values)[1..]; Some((k, v)) } } &mut Self::Large(ref mut it) => it.next().map(|(&k, &v)| (k, v)), } } } /// A conceptually infinite-length bitvector that allows bitwise operations and /// iteration over set bits efficiently. #[derive(Clone)] pub struct BitVec { elems: AdaptiveMap, } const BITS_PER_WORD: usize = 64; impl BitVec { pub fn new() -> Self { Self { elems: AdaptiveMap::new(), } } #[inline(always)] fn elem(&mut self, bit_index: usize) -> &mut u64 { let word_index = (bit_index / BITS_PER_WORD) as u32; self.elems.get_or_insert(word_index) } #[inline(always)] fn maybe_elem_mut(&mut self, bit_index: usize) -> Option<&mut u64> { let word_index = (bit_index / BITS_PER_WORD) as u32; self.elems.get_mut(word_index) } #[inline(always)] fn maybe_elem(&self, bit_index: usize) -> Option { let word_index = (bit_index / BITS_PER_WORD) as u32; self.elems.get(word_index) } #[inline(always)] pub fn set(&mut self, idx: usize, val: bool) { let bit = idx % BITS_PER_WORD; if val { *self.elem(idx) |= 1 << bit; } else if let Some(word) = self.maybe_elem_mut(idx) { *word &= !(1 << bit); } } pub fn assign(&mut self, other: &Self) { self.elems = other.elems.clone(); } #[inline(always)] pub fn get(&self, idx: usize) -> bool { let bit = idx % BITS_PER_WORD; if let Some(word) = self.maybe_elem(idx) { (word & (1 << bit)) != 0 } else { false } } pub fn or(&mut self, other: &Self) -> bool { let mut changed = 0; for (word_idx, bits) in other.elems.iter() { if bits == 0 { continue; } let word_idx = word_idx as usize; let self_word = self.elem(word_idx * BITS_PER_WORD); changed |= bits & !*self_word; *self_word |= bits; } changed != 0 } pub fn iter<'a>(&'a self) -> impl Iterator + 'a { self.elems.iter().flat_map(|(word_idx, bits)| { let word_idx = word_idx as usize; set_bits(bits).map(move |i| BITS_PER_WORD * word_idx + i) }) } } fn set_bits(bits: u64) -> impl Iterator { let iter = SetBitsIter(bits); iter } pub struct SetBitsIter(u64); impl Iterator for SetBitsIter { type Item = usize; fn next(&mut self) -> Option { if self.0 == 0 { None } else { let bitidx = self.0.trailing_zeros(); self.0 &= !(1 << bitidx); Some(bitidx as usize) } } } impl std::fmt::Debug for BitVec { fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { let vals = self.iter().collect::>(); write!(f, "{:?}", vals) } } #[cfg(test)] mod test { use super::BitVec; #[test] fn test_set_bits_iter() { let mut vec = BitVec::new(); let mut sum = 0; for i in 0..1024 { if i % 17 == 0 { vec.set(i, true); sum += i; } } let mut checksum = 0; for bit in vec.iter() { assert!(bit % 17 == 0); checksum += bit; } assert_eq!(sum, checksum); } }