Properly handle fixed stack slots during multi-fixed-reg fixup

This commit is contained in:
Amanieu d'Antras
2021-11-28 17:52:50 +00:00
parent 707aacd818
commit 8f435243e0
5 changed files with 335 additions and 69 deletions

View File

@@ -331,8 +331,8 @@ pub struct Env<'a, F: Function> {
// will insert a copy from wherever the VReg's primary allocation
// was to the approprate PReg.
//
// (progpoint, copy-from-preg, copy-to-preg, to-slot)
pub multi_fixed_reg_fixups: Vec<(ProgPoint, PRegIndex, PRegIndex, VRegIndex, usize)>,
// (progpoint, from-slot, copy-to-preg, vreg, to-slot)
pub multi_fixed_reg_fixups: Vec<(ProgPoint, u8, PRegIndex, VRegIndex, u8)>,
pub inserted_moves: Vec<InsertedMove>,

View File

@@ -18,6 +18,7 @@ use super::{
SpillSetIndex, Use, VRegData, VRegIndex, SLOT_NONE,
};
use crate::indexset::IndexSet;
use crate::util::SliceGroupBy;
use crate::{
Allocation, Block, Function, Inst, InstPosition, Operand, OperandConstraint, OperandKind,
OperandPos, PReg, ProgPoint, RegAllocError, VReg,
@@ -1169,8 +1170,6 @@ impl<'a, F: Function> Env<'a, F> {
// have to split the multiple uses at the same progpoint into
// different bundles, which breaks invariants related to
// disjoint ranges and bundles).
let mut seen_fixed_for_vreg: SmallVec<[VReg; 16]> = smallvec![];
let mut first_preg: SmallVec<[PRegIndex; 16]> = smallvec![];
let mut extra_clobbers: SmallVec<[(PReg, Inst); 8]> = smallvec![];
for vreg in 0..self.vregs.len() {
for range_idx in 0..self.vregs[vreg].ranges.len() {
@@ -1181,67 +1180,109 @@ impl<'a, F: Function> Env<'a, F> {
VRegIndex::new(vreg),
range,
);
let mut last_point = None;
let mut fixup_multi_fixed_vregs = |pos: ProgPoint,
slot: usize,
op: &mut Operand,
fixups: &mut Vec<(
ProgPoint,
PRegIndex,
PRegIndex,
VRegIndex,
usize,
)>| {
if last_point.is_some() && Some(pos) != last_point {
seen_fixed_for_vreg.clear();
first_preg.clear();
}
last_point = Some(pos);
if let OperandConstraint::FixedReg(preg) = op.constraint() {
let vreg_idx = VRegIndex::new(op.vreg().vreg());
// Find groups of uses that occur in at the same program point.
for uses in self.ranges[range.index()]
.uses
.group_by_mut_(|a, b| a.pos == b.pos)
{
if uses.len() < 2 {
continue;
}
// Search for conflicting constraints in the uses.
let mut requires_reg = false;
let mut num_fixed_reg = 0;
let mut num_fixed_stack = 0;
let mut first_reg_slot = None;
let mut first_stack_slot = None;
for u in uses.iter() {
match u.operand.constraint() {
OperandConstraint::Any => {
first_reg_slot.get_or_insert(u.slot);
first_stack_slot.get_or_insert(u.slot);
}
OperandConstraint::Reg | OperandConstraint::Reuse(_) => {
first_reg_slot.get_or_insert(u.slot);
requires_reg = true;
}
OperandConstraint::FixedReg(preg) => {
if self.pregs[preg.index()].is_stack {
num_fixed_stack += 1;
first_stack_slot.get_or_insert(u.slot);
} else {
requires_reg = true;
num_fixed_reg += 1;
first_reg_slot.get_or_insert(u.slot);
}
}
// Maybe this could be supported in this future...
OperandConstraint::Stack => panic!(
"multiple uses of vreg with a Stack constraint are not supported"
),
}
}
// Fast path if there are no conflicts.
if num_fixed_reg + num_fixed_stack <= 1
&& !(requires_reg && num_fixed_stack != 0)
{
continue;
}
// We pick one constraint (in order: FixedReg, Reg, FixedStack)
// and then rewrite any incompatible constraints to Any.
// This allows register allocation to succeed and we will
// later insert moves to satisfy the rewritten constraints.
let source_slot = if requires_reg {
first_reg_slot.unwrap()
} else {
first_stack_slot.unwrap()
};
let mut first_preg = None;
for u in uses.iter_mut() {
if let OperandConstraint::FixedReg(preg) = u.operand.constraint() {
let vreg_idx = VRegIndex::new(u.operand.vreg().vreg());
let preg_idx = PRegIndex::new(preg.index());
log::trace!(
"at pos {:?}, vreg {:?} has fixed constraint to preg {:?}",
pos,
u.pos,
vreg_idx,
preg_idx
);
if let Some(idx) = seen_fixed_for_vreg.iter().position(|r| *r == op.vreg())
// FixedStack is incompatible if there are any
// Reg/FixedReg constraints. FixedReg is
// incompatible if there already is a different
// FixedReg constraint.
if !(requires_reg && self.pregs[preg.index()].is_stack)
&& *first_preg.get_or_insert(preg) == preg
{
let orig_preg = first_preg[idx];
if orig_preg != preg_idx {
continue;
}
log::trace!(" -> duplicate; switching to constraint Reg");
fixups.push((pos, orig_preg, preg_idx, vreg_idx, slot));
*op = Operand::new(
op.vreg(),
OperandConstraint::Reg,
op.kind(),
op.pos(),
self.multi_fixed_reg_fixups.push((
u.pos,
source_slot,
preg_idx,
vreg_idx,
u.slot,
));
u.operand = Operand::new(
u.operand.vreg(),
OperandConstraint::Any,
u.operand.kind(),
u.operand.pos(),
);
log::trace!(
" -> extra clobber {} at inst{}",
preg,
pos.inst().index()
u.pos.inst().index()
);
extra_clobbers.push((preg, pos.inst()));
}
} else {
seen_fixed_for_vreg.push(op.vreg());
first_preg.push(preg_idx);
extra_clobbers.push((preg, u.pos.inst()));
}
}
};
for u in &mut self.ranges[range.index()].uses {
let pos = u.pos;
let slot = u.slot as usize;
fixup_multi_fixed_vregs(
pos,
slot,
&mut u.operand,
&mut self.multi_fixed_reg_fixups,
);
}
for &(clobber, inst) in &extra_clobbers {
@@ -1253,8 +1294,6 @@ impl<'a, F: Function> Env<'a, F> {
}
extra_clobbers.clear();
first_preg.clear();
seen_fixed_for_vreg.clear();
}
}
}

View File

@@ -695,26 +695,28 @@ impl<'a, F: Function> Env<'a, F> {
}
// Handle multi-fixed-reg constraints by copying.
for (progpoint, from_preg, to_preg, to_vreg, slot) in
for (progpoint, from_slot, to_preg, to_vreg, to_slot) in
std::mem::replace(&mut self.multi_fixed_reg_fixups, vec![])
{
let from_alloc = self.get_alloc(progpoint.inst(), from_slot as usize);
let to_alloc = Allocation::reg(self.pregs[to_preg.index()].reg);
log::trace!(
"multi-fixed-move constraint at {:?} from p{} to p{} for v{}",
"multi-fixed-move constraint at {:?} from {} to {} for v{}",
progpoint,
from_preg.index(),
to_preg.index(),
from_alloc,
to_alloc,
to_vreg.index(),
);
self.insert_move(
progpoint,
InsertMovePrio::MultiFixedReg,
Allocation::reg(self.pregs[from_preg.index()].reg),
Allocation::reg(self.pregs[to_preg.index()].reg),
from_alloc,
to_alloc,
Some(self.vreg_regs[to_vreg.index()]),
);
self.set_alloc(
progpoint.inst(),
slot,
to_slot as usize,
Allocation::reg(self.pregs[to_preg.index()].reg),
);
}

View File

@@ -19,6 +19,7 @@ pub(crate) mod ion;
pub(crate) mod moves;
pub(crate) mod postorder;
pub(crate) mod ssa;
pub(crate) mod util;
#[macro_use]
mod index;

224
src/util.rs Normal file
View File

@@ -0,0 +1,224 @@
// This file contains a port of the unstable GroupBy slice iterator from the
// Rust standard library. The methods have a trailing underscore to avoid
// naming conflicts with the standard library.
use std::fmt;
use std::iter::FusedIterator;
use std::mem;
pub trait SliceGroupBy<T> {
/// Returns an iterator over the slice producing non-overlapping runs
/// of elements using the predicate to separate them.
///
/// The predicate is called on two elements following themselves,
/// it means the predicate is called on `slice[0]` and `slice[1]`
/// then on `slice[1]` and `slice[2]` and so on.
fn group_by_<F>(&self, pred: F) -> GroupBy<'_, T, F>
where
F: FnMut(&T, &T) -> bool;
/// Returns an iterator over the slice producing non-overlapping mutable
/// runs of elements using the predicate to separate them.
///
/// The predicate is called on two elements following themselves,
/// it means the predicate is called on `slice[0]` and `slice[1]`
/// then on `slice[1]` and `slice[2]` and so on.
fn group_by_mut_<F>(&mut self, pred: F) -> GroupByMut<'_, T, F>
where
F: FnMut(&T, &T) -> bool;
}
impl<T> SliceGroupBy<T> for [T] {
fn group_by_<F>(&self, pred: F) -> GroupBy<'_, T, F>
where
F: FnMut(&T, &T) -> bool,
{
GroupBy::new(self, pred)
}
fn group_by_mut_<F>(&mut self, pred: F) -> GroupByMut<'_, T, F>
where
F: FnMut(&T, &T) -> bool,
{
GroupByMut::new(self, pred)
}
}
/// An iterator over slice in (non-overlapping) chunks separated by a predicate.
pub struct GroupBy<'a, T: 'a, P> {
slice: &'a [T],
predicate: P,
}
impl<'a, T: 'a, P> GroupBy<'a, T, P> {
pub(super) fn new(slice: &'a [T], predicate: P) -> Self {
GroupBy { slice, predicate }
}
}
impl<'a, T: 'a, P> Iterator for GroupBy<'a, T, P>
where
P: FnMut(&T, &T) -> bool,
{
type Item = &'a [T];
#[inline]
fn next(&mut self) -> Option<Self::Item> {
if self.slice.is_empty() {
None
} else {
let mut len = 1;
let mut iter = self.slice.windows(2);
while let Some([l, r]) = iter.next() {
if (self.predicate)(l, r) {
len += 1
} else {
break;
}
}
let (head, tail) = self.slice.split_at(len);
self.slice = tail;
Some(head)
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
if self.slice.is_empty() {
(0, Some(0))
} else {
(1, Some(self.slice.len()))
}
}
#[inline]
fn last(mut self) -> Option<Self::Item> {
self.next_back()
}
}
impl<'a, T: 'a, P> DoubleEndedIterator for GroupBy<'a, T, P>
where
P: FnMut(&T, &T) -> bool,
{
#[inline]
fn next_back(&mut self) -> Option<Self::Item> {
if self.slice.is_empty() {
None
} else {
let mut len = 1;
let mut iter = self.slice.windows(2);
while let Some([l, r]) = iter.next_back() {
if (self.predicate)(l, r) {
len += 1
} else {
break;
}
}
let (head, tail) = self.slice.split_at(self.slice.len() - len);
self.slice = head;
Some(tail)
}
}
}
impl<'a, T: 'a, P> FusedIterator for GroupBy<'a, T, P> where P: FnMut(&T, &T) -> bool {}
impl<'a, T: 'a + fmt::Debug, P> fmt::Debug for GroupBy<'a, T, P> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("GroupBy")
.field("slice", &self.slice)
.finish()
}
}
/// An iterator over slice in (non-overlapping) mutable chunks separated
/// by a predicate.
pub struct GroupByMut<'a, T: 'a, P> {
slice: &'a mut [T],
predicate: P,
}
impl<'a, T: 'a, P> GroupByMut<'a, T, P> {
pub(super) fn new(slice: &'a mut [T], predicate: P) -> Self {
GroupByMut { slice, predicate }
}
}
impl<'a, T: 'a, P> Iterator for GroupByMut<'a, T, P>
where
P: FnMut(&T, &T) -> bool,
{
type Item = &'a mut [T];
#[inline]
fn next(&mut self) -> Option<Self::Item> {
if self.slice.is_empty() {
None
} else {
let mut len = 1;
let mut iter = self.slice.windows(2);
while let Some([l, r]) = iter.next() {
if (self.predicate)(l, r) {
len += 1
} else {
break;
}
}
let slice = mem::take(&mut self.slice);
let (head, tail) = slice.split_at_mut(len);
self.slice = tail;
Some(head)
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
if self.slice.is_empty() {
(0, Some(0))
} else {
(1, Some(self.slice.len()))
}
}
#[inline]
fn last(mut self) -> Option<Self::Item> {
self.next_back()
}
}
impl<'a, T: 'a, P> DoubleEndedIterator for GroupByMut<'a, T, P>
where
P: FnMut(&T, &T) -> bool,
{
#[inline]
fn next_back(&mut self) -> Option<Self::Item> {
if self.slice.is_empty() {
None
} else {
let mut len = 1;
let mut iter = self.slice.windows(2);
while let Some([l, r]) = iter.next_back() {
if (self.predicate)(l, r) {
len += 1
} else {
break;
}
}
let slice = mem::take(&mut self.slice);
let (head, tail) = slice.split_at_mut(slice.len() - len);
self.slice = head;
Some(tail)
}
}
}
impl<'a, T: 'a, P> FusedIterator for GroupByMut<'a, T, P> where P: FnMut(&T, &T) -> bool {}
impl<'a, T: 'a + fmt::Debug, P> fmt::Debug for GroupByMut<'a, T, P> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("GroupByMut")
.field("slice", &self.slice)
.finish()
}
}