#include #include #include #include #if defined(ARCH_X86_64) && __SIZEOF_POINTER__ < 8 #error "Decoding x86-64 requires a 64-bit architecture" #endif #define LIKELY(x) __builtin_expect((x), 1) #define UNLIKELY(x) __builtin_expect((x), 0) #define FD_DECODE_TABLE_DATA static __attribute__((aligned(16))) const uint8_t _decode_table[] = { #include }; #undef FD_DECODE_TABLE_DATA // Defines FD_TABLE_OFFSET_32 and FD_TABLE_OFFSET_64, if available #define FD_DECODE_TABLE_DEFINES #include #undef FD_DECODE_TABLE_DEFINES enum DecodeMode { DECODE_64 = 0, DECODE_32 = 1, }; typedef enum DecodeMode DecodeMode; #define ENTRY_NONE 0 #define ENTRY_INSTR 1 #define ENTRY_TABLE256 2 #define ENTRY_TABLE8 3 #define ENTRY_TABLE72 4 #define ENTRY_TABLE_PREFIX 5 #define ENTRY_TABLE_VEX 6 #define ENTRY_TABLE_PREFIX_REP 7 #define ENTRY_TABLE_ROOT 8 #define ENTRY_MASK 7 #define ENTRY_UNPACK(table,kind,entry) do { \ uint16_t entry_copy = entry; \ table = &((uint16_t*) _decode_table)[(entry_copy & ~7) >> 1]; \ kind = entry_copy & ENTRY_MASK; \ } while (0) #define LOAD_LE_1(buf) ((size_t) *(uint8_t*) (buf)) #define LOAD_LE_2(buf) (LOAD_LE_1(buf) | LOAD_LE_1((uint8_t*) (buf) + 1)<<8) #define LOAD_LE_3(buf) (LOAD_LE_2(buf) | LOAD_LE_1((uint8_t*) (buf) + 2)<<16) #define LOAD_LE_4(buf) (LOAD_LE_2(buf) | LOAD_LE_2((uint8_t*) (buf) + 2)<<16) #if defined(ARCH_X86_64) #define LOAD_LE_8(buf) (LOAD_LE_4(buf) | LOAD_LE_4((uint8_t*) (buf) + 4)<<32) #endif enum PrefixSet { PREFIX_LOCK = FD_FLAG_LOCK, PREFIX_REP = FD_FLAG_REP, PREFIX_REPNZ = FD_FLAG_REPNZ, PREFIX_REX = FD_FLAG_REX, PREFIX_OPSZ = 1 << 13, PREFIX_ADDRSZ = 1 << 14, PREFIX_REXB = 1 << 15, PREFIX_REXX = 1 << 16, PREFIX_REXR = 1 << 17, PREFIX_REXW = 1 << 18, PREFIX_VEXL = 1 << 19, PREFIX_VEX = 1 << 20, }; typedef enum PrefixSet PrefixSet; static int decode_prefixes(const uint8_t* buffer, int len, DecodeMode mode, PrefixSet* out_prefixes, uint8_t* out_mandatory, uint8_t* out_segment, uint8_t* out_vex_operand, int* out_opcode_escape) { int off = 0; PrefixSet prefixes = 0; PrefixSet rex_prefix = 0; int rex_off = -1; uint8_t rep = 0; *out_mandatory = 0; *out_segment = FD_REG_NONE; *out_opcode_escape = -1; while (LIKELY(off < len)) { uint8_t prefix = buffer[off]; switch (prefix) { default: goto out; // From segment overrides, the last one wins. case 0x26: *out_segment = FD_REG_ES; off++; break; case 0x2e: *out_segment = FD_REG_CS; off++; break; case 0x36: *out_segment = FD_REG_SS; off++; break; case 0x3e: *out_segment = FD_REG_DS; off++; break; case 0x64: *out_segment = FD_REG_FS; off++; break; case 0x65: *out_segment = FD_REG_GS; off++; break; case 0x67: prefixes |= PREFIX_ADDRSZ; off++; break; case 0xf0: prefixes |= PREFIX_LOCK; off++; break; case 0x66: prefixes |= PREFIX_OPSZ; off++; break; // From REP/REPE and REPNZ, the last one wins; and for mandatory // prefixes they have a higher priority than 66h (handled below). case 0xf3: rep = PREFIX_REP; *out_mandatory = 2; off++; break; case 0xf2: rep = PREFIX_REPNZ; *out_mandatory = 3; off++; break; #if defined(ARCH_X86_64) case 0x40: case 0x41: case 0x42: case 0x43: case 0x44: case 0x45: case 0x46: case 0x47: case 0x48: case 0x49: case 0x4a: case 0x4b: case 0x4c: case 0x4d: case 0x4e: case 0x4f: if (mode != DECODE_64) goto out; rex_prefix = PREFIX_REX; rex_prefix |= prefix & 0x1 ? PREFIX_REXB : 0; rex_prefix |= prefix & 0x2 ? PREFIX_REXX : 0; rex_prefix |= prefix & 0x4 ? PREFIX_REXR : 0; rex_prefix |= prefix & 0x8 ? PREFIX_REXW : 0; rex_off = off; off++; break; #endif case 0xc4: case 0xc5: // VEX if (UNLIKELY(off + 1 >= len)) return FD_ERR_PARTIAL; uint8_t byte = buffer[off + 1]; if (mode == DECODE_32 && (byte & 0xc0) != 0xc0) goto out; // VEX + 66/F2/F3/LOCK will #UD. if (prefixes & (PREFIX_REP|PREFIX_REPNZ|PREFIX_OPSZ|PREFIX_LOCK)) return FD_ERR_UD; // VEX + REX will #UD. if (rex_prefix) return FD_ERR_UD; prefixes |= PREFIX_VEX; prefixes |= byte & 0x80 ? 0 : PREFIX_REXR; if (prefix == 0xc4) // 3-byte VEX { prefixes |= byte & 0x80 ? 0 : PREFIX_REXR; prefixes |= byte & 0x40 ? 0 : PREFIX_REXX; // SDM Vol 2A 2-15 (Dec. 2016): Ignored in 32-bit mode prefixes |= mode == DECODE_64 || (byte & 0x20) ? 0 : PREFIX_REXB; *out_opcode_escape = (byte & 0x1f); // Load third byte of VEX prefix if (UNLIKELY(off + 2 >= len)) return FD_ERR_PARTIAL; byte = buffer[off + 2]; // SDM Vol 2A 2-16 (Dec. 2016) says that: // - "In 32-bit modes, VEX.W is silently ignored." // - VEX.W either replaces REX.W, is don't care or is reserved. // This is actually incorrect, there are instructions that // use VEX.W as an opcode extension even in 32-bit mode. prefixes |= byte & 0x80 ? PREFIX_REXW : 0; } else // 2-byte VEX *out_opcode_escape = 1; prefixes |= byte & 0x04 ? PREFIX_VEXL : 0; *out_mandatory = byte & 0x03; *out_vex_operand = ((byte & 0x78) >> 3) ^ 0xf; // VEX prefix is always the last prefix. off += prefix == 0xc4 ? 3 : 2; goto out; } } out: // REX prefix is only considered if it is the last prefix. if (rex_off == off - 1) prefixes |= rex_prefix; // If there is no REP/REPNZ prefix and implied opcode extension from a VEX // prefix, offer 66h as mandatory prefix. If there is a REP prefix, then the // 66h prefix is ignored when evaluating mandatory prefixes. if (*out_mandatory == 0 && (prefixes & PREFIX_OPSZ)) *out_mandatory = 1; *out_prefixes = prefixes | rep; return off; } static int decode_modrm(const uint8_t* buffer, int len, DecodeMode mode, FdInstr* instr, PrefixSet prefixes, bool vsib, FdOp* out_o1, FdOp* out_o2) { int off = 0; if (UNLIKELY(off >= len)) { return FD_ERR_PARTIAL; } uint8_t modrm = buffer[off++]; uint8_t mod = (modrm & 0xc0) >> 6; uint8_t mod_reg = (modrm & 0x38) >> 3; uint8_t rm = modrm & 0x07; // VSIB must have a memory operand with SIB byte. if (vsib && (rm != 4 || mod == 3)) return FD_ERR_UD; // Operand 2 may be NULL when reg field is used as opcode extension if (out_o2) { uint8_t reg_idx = mod_reg; #if defined(ARCH_X86_64) reg_idx += prefixes & PREFIX_REXR ? 8 : 0; #endif out_o2->type = FD_OT_REG; out_o2->reg = reg_idx; } if (mod == 3 || instr->type == FDI_MOV_CR || instr->type == FDI_MOV_DR) { uint8_t reg_idx = rm; #if defined(ARCH_X86_64) reg_idx += prefixes & PREFIX_REXB ? 8 : 0; #endif out_o1->type = FD_OT_REG; out_o1->reg = reg_idx; return off; } // SIB byte uint8_t scale = 0; uint8_t idx = 4; uint8_t base = rm; if (rm == 4) { if (UNLIKELY(off >= len)) return FD_ERR_PARTIAL; uint8_t sib = buffer[off++]; scale = (sib & 0xc0) >> 6; idx = (sib & 0x38) >> 3; #if defined(ARCH_X86_64) idx += prefixes & PREFIX_REXX ? 8 : 0; #endif base = sib & 0x07; } out_o1->type = FD_OT_MEM; instr->idx_scale = scale; instr->idx_reg = !vsib && idx == 4 ? FD_REG_NONE : idx; // RIP-relative addressing only if SIB-byte is absent if (mod == 0 && rm == 5 && mode == DECODE_64) out_o1->reg = FD_REG_IP; else if (mod == 0 && base == 5) out_o1->reg = FD_REG_NONE; else out_o1->reg = base + (prefixes & PREFIX_REXB ? 8 : 0); if (mod == 1) { if (UNLIKELY(off + 1 > len)) return FD_ERR_PARTIAL; instr->disp = (int8_t) LOAD_LE_1(&buffer[off]); off += 1; } else if (mod == 2 || (mod == 0 && base == 5)) { if (UNLIKELY(off + 4 > len)) return FD_ERR_PARTIAL; instr->disp = (int32_t) LOAD_LE_4(&buffer[off]); off += 4; } else { instr->disp = 0; } return off; } struct InstrDesc { uint16_t type; uint8_t operand_indices; uint8_t operand_sizes; uint8_t immediate; uint8_t gp_size_8 : 1; uint8_t gp_size_def64 : 1; uint8_t gp_instr_width : 1; uint8_t gp_fixed_operand_size : 3; uint8_t lock : 1; uint8_t vsib : 1; uint16_t reg_types; } __attribute__((packed)); #define DESC_HAS_MODRM(desc) (((desc)->operand_indices & (3 << 0)) != 0) #define DESC_MODRM_IDX(desc) ((((desc)->operand_indices >> 0) & 3) ^ 3) #define DESC_HAS_MODREG(desc) (((desc)->operand_indices & (3 << 2)) != 0) #define DESC_MODREG_IDX(desc) ((((desc)->operand_indices >> 2) & 3) ^ 3) #define DESC_HAS_VEXREG(desc) (((desc)->operand_indices & (3 << 4)) != 0) #define DESC_VEXREG_IDX(desc) ((((desc)->operand_indices >> 4) & 3) ^ 3) #define DESC_HAS_IMPLICIT(desc) (((desc)->operand_indices & (3 << 6)) != 0) #define DESC_IMPLICIT_IDX(desc) ((((desc)->operand_indices >> 6) & 3) ^ 3) #define DESC_IMM_CONTROL(desc) (((desc)->immediate >> 4) & 0x7) #define DESC_IMM_IDX(desc) (((desc)->immediate & 3) ^ 3) #define DESC_IMM_BYTE(desc) (((desc)->immediate >> 7) & 1) int fd_decode(const uint8_t* buffer, size_t len_sz, int mode_int, uintptr_t address, FdInstr* instr) { const uint16_t* table = NULL; int len = len_sz > 15 ? 15 : len_sz; DecodeMode mode = mode_int == 32 ? DECODE_32 : mode_int == 64 ? DECODE_64 : -1; // Ensure that we can actually handle the decode request #if defined(ARCH_386) if (mode == DECODE_32) table = &((uint16_t*) _decode_table)[FD_TABLE_OFFSET_32 >> 1]; #endif #if defined(ARCH_X86_64) if (mode == DECODE_64) table = &((uint16_t*) _decode_table)[FD_TABLE_OFFSET_64 >> 1]; #endif if (UNLIKELY(table == NULL)) return FD_ERR_INTERNAL; int retval; int off = 0; uint8_t vex_operand = 0; uint8_t mandatory_prefix; int opcode_escape; PrefixSet prefixes = 0; retval = decode_prefixes(buffer + off, len - off, mode, &prefixes, &mandatory_prefix, &instr->segment, &vex_operand, &opcode_escape); if (UNLIKELY(retval < 0)) return retval; if (UNLIKELY(off + retval >= len)) return FD_ERR_PARTIAL; off += retval; uint32_t kind = ENTRY_TABLE_ROOT; if (LIKELY(!(prefixes & PREFIX_VEX))) { // "Legacy" walk through table and escape opcodes ENTRY_UNPACK(table, kind, table[0]); while (kind == ENTRY_TABLE256 && LIKELY(off < len)) ENTRY_UNPACK(table, kind, table[buffer[off++]]); } else { // VEX/EVEX compact escapes; the prefix precedes the single opcode byte if (opcode_escape < 0 || opcode_escape > 3) return FD_ERR_UD; ENTRY_UNPACK(table, kind, table[4 | opcode_escape]); if (LIKELY(off < len)) ENTRY_UNPACK(table, kind, table[buffer[off++]]); } // Then, walk through ModR/M-encoded opcode extensions. if ((kind == ENTRY_TABLE8 || kind == ENTRY_TABLE72) && LIKELY(off < len)) { uint16_t entry = 0; if (kind == ENTRY_TABLE72 && (buffer[off] & 0xc0) == 0xc0) { entry = table[buffer[off] - 0xb8]; if ((entry & ENTRY_MASK) != ENTRY_NONE) off++; else entry = table[(buffer[off] >> 3) & 7]; } else entry = table[(buffer[off] >> 3) & 7]; ENTRY_UNPACK(table, kind, entry); } // Handle mandatory prefixes (which behave like an opcode ext.). if (kind == ENTRY_TABLE_PREFIX) { // If a prefix is mandatory and used as opcode extension, it has no // further effect on the instruction. This is especially important // for the 0x66 prefix, which could otherwise override the operand // size of general purpose registers. prefixes &= ~(PREFIX_OPSZ | PREFIX_REPNZ | PREFIX_REP); ENTRY_UNPACK(table, kind, table[mandatory_prefix]); } if (kind == ENTRY_TABLE_PREFIX_REP) { // Discard 66h mandatory prefix uint8_t index = mandatory_prefix != 1 ? mandatory_prefix : 0; prefixes &= ~(PREFIX_REPNZ | PREFIX_REP); ENTRY_UNPACK(table, kind, table[index]); } // For VEX prefix, we have to distinguish between VEX.W and VEX.L which may // be part of the opcode. if (kind == ENTRY_TABLE_VEX) { uint8_t index = 0; index |= prefixes & PREFIX_REXW ? (1 << 0) : 0; index |= prefixes & PREFIX_VEXL ? (1 << 1) : 0; ENTRY_UNPACK(table, kind, table[index]); } if (UNLIKELY(kind != ENTRY_INSTR)) return FD_ERR_UD; struct InstrDesc* desc = (struct InstrDesc*) table; instr->type = desc->type; instr->flags = prefixes & 0x7f; if (mode == DECODE_64) instr->flags |= FD_FLAG_64; instr->address = address; uint8_t op_size = 0; if (desc->gp_size_8) op_size = 1; else if (mode == DECODE_64 && (prefixes & PREFIX_REXW)) op_size = 8; else if (prefixes & PREFIX_OPSZ) op_size = 2; else if (mode == DECODE_64 && desc->gp_size_def64) op_size = 8; else op_size = 4; instr->operandsz = desc->gp_instr_width ? op_size : 0; uint8_t vec_size = 16; if (prefixes & PREFIX_VEXL) vec_size = 32; // Compute address size. uint8_t addr_size = mode == DECODE_64 ? 8 : 4; if (prefixes & PREFIX_ADDRSZ) addr_size >>= 1; instr->addrsz = addr_size; uint8_t operand_sizes[4] = { 0, 1 << desc->gp_fixed_operand_size, op_size, vec_size }; __builtin_memset(instr->operands, 0, sizeof(instr->operands)); for (int i = 0; i < 4; i++) { uint8_t enc_size = (desc->operand_sizes >> 2 * i) & 3; instr->operands[i].size = operand_sizes[enc_size]; } if (DESC_HAS_IMPLICIT(desc)) { FdOp* operand = &instr->operands[DESC_IMPLICIT_IDX(desc)]; operand->type = FD_OT_REG; operand->reg = 0; } if (DESC_HAS_MODRM(desc)) { FdOp* operand1 = &instr->operands[DESC_MODRM_IDX(desc)]; FdOp* operand2 = NULL; if (DESC_HAS_MODREG(desc)) operand2 = &instr->operands[DESC_MODREG_IDX(desc)]; retval = decode_modrm(buffer + off, len - off, mode, instr, prefixes, desc->vsib, operand1, operand2); if (UNLIKELY(retval < 0)) return retval; off += retval; } else if (DESC_HAS_MODREG(desc)) { // If there is no ModRM, but a Mod-Reg, its opcode-encoded. FdOp* operand = &instr->operands[DESC_MODREG_IDX(desc)]; uint8_t reg_idx = buffer[off - 1] & 7; #if defined(ARCH_X86_64) reg_idx += prefixes & PREFIX_REXB ? 8 : 0; #endif operand->type = FD_OT_REG; operand->reg = reg_idx; } if (UNLIKELY(DESC_HAS_VEXREG(desc))) { FdOp* operand = &instr->operands[DESC_VEXREG_IDX(desc)]; operand->type = FD_OT_REG; #if defined(ARCH_386) if (mode == DECODE_32) vex_operand &= 0x7; #endif operand->reg = vex_operand; } else if (vex_operand != 0) { return FD_ERR_UD; } uint32_t imm_control = DESC_IMM_CONTROL(desc); if (imm_control == 1) { FdOp* operand = &instr->operands[DESC_IMM_IDX(desc)]; operand->type = FD_OT_IMM; instr->imm = 1; } else if (imm_control == 2) { FdOp* operand = &instr->operands[DESC_IMM_IDX(desc)]; operand->type = FD_OT_MEM; operand->reg = FD_REG_NONE; instr->idx_reg = FD_REG_NONE; if (UNLIKELY(off + addr_size > len)) return FD_ERR_PARTIAL; #if defined(ARCH_386) if (addr_size == 2) instr->disp = LOAD_LE_2(&buffer[off]); #endif if (addr_size == 4) instr->disp = LOAD_LE_4(&buffer[off]); #if defined(ARCH_X86_64) if (addr_size == 8) instr->disp = LOAD_LE_8(&buffer[off]); #endif off += addr_size; } else if (imm_control != 0) { FdOp* operand = &instr->operands[DESC_IMM_IDX(desc)]; uint8_t imm_size; if (DESC_IMM_BYTE(desc)) imm_size = 1; else if (UNLIKELY(instr->type == FDI_RET_IMM || instr->type == FDI_RETF)) imm_size = 2; else if (UNLIKELY(instr->type == FDI_ENTER)) imm_size = 3; #if defined(ARCH_X86_64) else if (mode == DECODE_64 && UNLIKELY(imm_control == 4)) // Jumps are always 8 or 32 bit on x86-64. imm_size = 4; #endif else if (op_size == 2) imm_size = 2; #if defined(ARCH_X86_64) else if (mode == DECODE_64 && (prefixes & PREFIX_REXW) && instr->type == FDI_MOVABS_IMM) imm_size = 8; #endif else imm_size = 4; if (UNLIKELY(off + imm_size > len)) return FD_ERR_PARTIAL; if (imm_size == 1) instr->imm = (int8_t) LOAD_LE_1(&buffer[off]); else if (imm_size == 2) instr->imm = (int16_t) LOAD_LE_2(&buffer[off]); else if (imm_size == 3) instr->imm = LOAD_LE_3(&buffer[off]); else if (imm_size == 4) instr->imm = (int32_t) LOAD_LE_4(&buffer[off]); #if defined(ARCH_X86_64) else if (imm_size == 8) instr->imm = (int64_t) LOAD_LE_8(&buffer[off]); #endif off += imm_size; if (imm_control == 4) { instr->imm += instr->address + off; #if defined(ARCH_X86_64) // On x86-64, jumps always have an operand size of 64 bit. if (mode == DECODE_64) operand->size = 8; #endif } if (UNLIKELY(imm_control == 5)) { operand->type = FD_OT_REG; operand->reg = (instr->imm & 0xf0) >> 4; } else { operand->type = FD_OT_IMM; } } if ((prefixes & PREFIX_LOCK) && !desc->lock) return FD_ERR_UD; if ((prefixes & PREFIX_LOCK) && instr->operands[0].type != FD_OT_MEM) return FD_ERR_UD; for (int i = 0; i < 4; i++) { uint32_t reg_type = (desc->reg_types >> 4 * i) & 0xf; uint32_t reg_idx = instr->operands[i].reg; if (reg_type == FD_RT_MEM && instr->operands[i].type != FD_OT_MEM) return FD_ERR_UD; if (instr->operands[i].type != FD_OT_REG) continue; if (reg_type == FD_RT_GPL && !(prefixes & PREFIX_REX) && instr->operands[i].size == 1 && reg_idx >= 4) reg_type = FD_RT_GPH; // Fixup eager application of REX prefix if ((reg_type == FD_RT_MMX || reg_type == FD_RT_SEG) && reg_idx >= 8) instr->operands[i].reg -= 8; // Reject invalid segment registers if (reg_type == FD_RT_SEG && reg_idx >= 6) return FD_ERR_UD; // Reject invalid control registers if (reg_type == FD_RT_CR && reg_idx != 0 && reg_idx != 2 && reg_idx != 3 && reg_idx != 4 && reg_idx != 8) return FD_ERR_UD; // Reject invalid debug registers if (reg_type == FD_RT_DR && reg_idx >= 8) return FD_ERR_UD; instr->operands[i].misc = reg_type; } if (instr->type == FDI_MOV_G2S && instr->operands[0].reg == 1) return FD_ERR_UD; instr->size = off; return off; }