#include #include #include #include #ifdef __GNUC__ #define LIKELY(x) __builtin_expect((x), 1) #define UNLIKELY(x) __builtin_expect((x), 0) #else #define LIKELY(x) (x) #define UNLIKELY(x) (x) #endif // Defines FD_TABLE_OFFSET_32 and FD_TABLE_OFFSET_64, if available #define FD_DECODE_TABLE_DEFINES #include #undef FD_DECODE_TABLE_DEFINES enum DecodeMode { DECODE_64 = 0, DECODE_32 = 1, }; typedef enum DecodeMode DecodeMode; #define ENTRY_NONE 0 #define ENTRY_INSTR 1 #define ENTRY_TABLE256 2 #define ENTRY_TABLE16 3 #define ENTRY_TABLE8E 4 #define ENTRY_TABLE_PREFIX 5 #define ENTRY_TABLE_VEX 6 #define ENTRY_TABLE_ROOT 8 #define ENTRY_MASK 7 static unsigned table_walk(unsigned cur_idx, unsigned entry_idx, unsigned* out_kind) { static _Alignas(16) const uint16_t _decode_table[] = { #define FD_DECODE_TABLE_DATA #include #undef FD_DECODE_TABLE_DATA }; unsigned entry = _decode_table[cur_idx + entry_idx]; *out_kind = entry & ENTRY_MASK; return (entry & ~ENTRY_MASK) >> 1; } #define LOAD_LE_1(buf) ((uint64_t) *(uint8_t*) (buf)) #define LOAD_LE_2(buf) (LOAD_LE_1(buf) | LOAD_LE_1((uint8_t*) (buf) + 1)<<8) #define LOAD_LE_3(buf) (LOAD_LE_2(buf) | LOAD_LE_1((uint8_t*) (buf) + 2)<<16) #define LOAD_LE_4(buf) (LOAD_LE_2(buf) | LOAD_LE_2((uint8_t*) (buf) + 2)<<16) #define LOAD_LE_8(buf) (LOAD_LE_4(buf) | LOAD_LE_4((uint8_t*) (buf) + 4)<<32) enum { PREFIX_REXB = 0x01, PREFIX_REXX = 0x02, PREFIX_REXR = 0x04, PREFIX_REXW = 0x08, PREFIX_REX = 0x40, PREFIX_VEXL = 0x10, PREFIX_REXRR = 0x80, }; struct InstrDesc { uint16_t type; uint16_t operand_indices; uint16_t operand_sizes; uint16_t reg_types; }; #define DESC_HAS_MODRM(desc) (((desc)->operand_indices & (3 << 0)) != 0) #define DESC_MODRM_IDX(desc) ((((desc)->operand_indices >> 0) & 3) ^ 3) #define DESC_HAS_MODREG(desc) (((desc)->operand_indices & (3 << 2)) != 0) #define DESC_MODREG_IDX(desc) ((((desc)->operand_indices >> 2) & 3) ^ 3) #define DESC_HAS_VEXREG(desc) (((desc)->operand_indices & (3 << 4)) != 0) #define DESC_VEXREG_IDX(desc) ((((desc)->operand_indices >> 4) & 3) ^ 3) #define DESC_IMM_CONTROL(desc) (((desc)->operand_indices >> 12) & 0x7) #define DESC_IMM_IDX(desc) ((((desc)->operand_indices >> 6) & 3) ^ 3) #define DESC_EVEX_BCST(desc) (((desc)->operand_indices >> 8) & 1) #define DESC_EVEX_MASK(desc) (((desc)->operand_indices >> 9) & 1) #define DESC_ZEROREG_VAL(desc) (((desc)->operand_indices >> 10) & 1) #define DESC_LOCK(desc) (((desc)->operand_indices >> 11) & 1) #define DESC_VSIB(desc) (((desc)->operand_indices >> 15) & 1) #define DESC_OPSIZE(desc) (((desc)->reg_types >> 11) & 7) #define DESC_SIZE_FIX1(desc) (((desc)->operand_sizes >> 10) & 7) #define DESC_SIZE_FIX2(desc) (((desc)->operand_sizes >> 13) & 3) #define DESC_INSTR_WIDTH(desc) (((desc)->operand_sizes >> 15) & 1) #define DESC_MODRM(desc) (((desc)->reg_types >> 14) & 1) #define DESC_IGN66(desc) (((desc)->reg_types >> 15) & 1) #define DESC_EVEX_SAE(desc) (((desc)->reg_types >> 8) & 1) #define DESC_EVEX_ER(desc) (((desc)->reg_types >> 9) & 1) #define DESC_REGTY_MODRM(desc) (((desc)->reg_types >> 0) & 7) #define DESC_REGTY_MODREG(desc) (((desc)->reg_types >> 3) & 7) #define DESC_REGTY_VEXREG(desc) (((desc)->reg_types >> 6) & 3) int fd_decode(const uint8_t* buffer, size_t len_sz, int mode_int, uintptr_t address, FdInstr* instr) { int len = len_sz > 15 ? 15 : len_sz; // Ensure that we can actually handle the decode request DecodeMode mode; unsigned table_idx; unsigned kind = ENTRY_TABLE_ROOT; switch (mode_int) { #if defined(FD_TABLE_OFFSET_32) case 32: table_idx = FD_TABLE_OFFSET_32; mode = DECODE_32; break; #endif #if defined(FD_TABLE_OFFSET_64) case 64: table_idx = FD_TABLE_OFFSET_64; mode = DECODE_64; break; #endif default: return FD_ERR_INTERNAL; } int off = 0; uint8_t vex_operand = 0; unsigned prefix_rep = 0; bool prefix_lock = false; bool prefix_66 = false; uint8_t addr_size = mode == DECODE_64 ? 3 : 2; unsigned prefix_rex = 0; int rex_off = -1; unsigned prefix_evex = 0; instr->segment = FD_REG_NONE; if (mode == DECODE_32) { while (LIKELY(off < len)) { uint8_t prefix = buffer[off]; switch (UNLIKELY(prefix)) { default: goto prefix_end; // From segment overrides, the last one wins. case 0x26: instr->segment = FD_REG_ES; break; case 0x2e: instr->segment = FD_REG_CS; break; case 0x36: instr->segment = FD_REG_SS; break; case 0x3e: instr->segment = FD_REG_DS; break; case 0x64: instr->segment = FD_REG_FS; break; case 0x65: instr->segment = FD_REG_GS; break; case 0x66: prefix_66 = true; break; case 0x67: addr_size = 1; break; case 0xf0: prefix_lock = true; break; case 0xf3: prefix_rep = 2; break; case 0xf2: prefix_rep = 3; break; } off++; } } if (mode == DECODE_64) { while (LIKELY(off < len)) { uint8_t prefix = buffer[off]; switch (UNLIKELY(prefix)) { default: goto prefix_end; // ES/CS/SS/DS overrides are ignored. case 0x26: case 0x2e: case 0x36: case 0x3e: break; // From segment overrides, the last one wins. case 0x64: instr->segment = FD_REG_FS; break; case 0x65: instr->segment = FD_REG_GS; break; case 0x66: prefix_66 = true; break; case 0x67: addr_size = 2; break; case 0xf0: prefix_lock = true; break; case 0xf3: prefix_rep = 2; break; case 0xf2: prefix_rep = 3; break; case 0x40: case 0x41: case 0x42: case 0x43: case 0x44: case 0x45: case 0x46: case 0x47: case 0x48: case 0x49: case 0x4a: case 0x4b: case 0x4c: case 0x4d: case 0x4e: case 0x4f: prefix_rex = prefix; rex_off = off; break; } off++; } } prefix_end: // REX prefix is only considered if it is the last prefix. if (rex_off != off - 1) prefix_rex = 0; if (UNLIKELY(off >= len)) return FD_ERR_PARTIAL; unsigned opcode_escape = 0; if (buffer[off] == 0x0f) { if (UNLIKELY(off + 1 >= len)) return FD_ERR_PARTIAL; if (buffer[off + 1] == 0x38) opcode_escape = 2; else if (buffer[off + 1] == 0x3a) opcode_escape = 3; else opcode_escape = 1; off += opcode_escape >= 2 ? 2 : 1; } else if (UNLIKELY((buffer[off] & 0xfe) == 0xc4 || buffer[off] == 0x62)) { unsigned vex_prefix = buffer[off]; // VEX (C4/C5) or EVEX (62) if (UNLIKELY(off + 1 >= len)) return FD_ERR_PARTIAL; if (mode == DECODE_32 && (buffer[off + 1] & 0xc0) != 0xc0) goto skipvex; // VEX/EVEX + 66/F3/F2/REX will #UD. // Note: REX is also here only respected if it immediately precedes the // opcode, in this case the VEX/EVEX "prefix". if (prefix_66 || prefix_rep || prefix_rex) return FD_ERR_UD; uint8_t byte = buffer[off + 1]; prefix_rex |= byte & 0x80 ? 0 : PREFIX_REXR; if (vex_prefix == 0xc5) // 2-byte VEX { opcode_escape = 1 | 4; // 4 is table index with VEX, 0f escape } else // 3-byte VEX or EVEX { prefix_rex |= byte & 0x40 ? 0 : PREFIX_REXX; // SDM Vol 2A 2-15 (Dec. 2016): Ignored in 32-bit mode prefix_rex |= mode != DECODE_64 || (byte & 0x20) ? 0 : PREFIX_REXB; if (vex_prefix == 0x62) // EVEX { if (byte & 0x0c) // Bits 3:2 of opcode_escape must be clear. return FD_ERR_UD; opcode_escape = (byte & 0x03) | 8; // 8 is table index with EVEX prefix_rex |= mode != DECODE_64 || (byte & 0x10) ? 0 : PREFIX_REXRR; } else // 3-byte VEX { if (byte & 0x1c) // Bits 4:2 of opcode_escape must be clear. return FD_ERR_UD; opcode_escape = (byte & 0x03) | 4; // 4 is table index with VEX } // Load third byte of VEX prefix if (UNLIKELY(off + 2 >= len)) return FD_ERR_PARTIAL; byte = buffer[off + 2]; prefix_rex |= byte & 0x80 ? PREFIX_REXW : 0; } prefix_rep = (byte & 2) ? (byte & 3) : 0; prefix_66 = (byte & 3) == 1; vex_operand = ((byte & 0x78) >> 3) ^ 0xf; if (vex_prefix == 0x62) // EVEX { if (!(byte & 0x04)) // Bit 10 must be 1. return FD_ERR_UD; if (UNLIKELY(off + 3 >= len)) return FD_ERR_PARTIAL; byte = buffer[off + 3]; // prefix_evex is z:L'L/RC:b:V':aaa prefix_evex = byte | 0x08; // Ensure that prefix_evex is non-zero. if (mode == DECODE_64) // V' causes UD in 32-bit mode vex_operand |= byte & 0x08 ? 0 : 0x10; // V' else if (!(byte & 0x08)) return FD_ERR_UD; off += 4; } else // VEX { prefix_rex |= byte & 0x04 ? PREFIX_VEXL : 0; off += vex_prefix == 0xc4 ? 3 : 2; } skipvex:; } table_idx = table_walk(table_idx, opcode_escape, &kind); if (kind == ENTRY_TABLE256 && LIKELY(off < len)) table_idx = table_walk(table_idx, buffer[off++], &kind); // Handle mandatory prefixes (which behave like an opcode ext.). if (kind == ENTRY_TABLE_PREFIX) { // If there is no REP/REPNZ prefix offer 66h as mandatory prefix. If // there is a REP prefix, then the 66h prefix is ignored here. uint8_t mandatory_prefix = prefix_rep ? prefix_rep : !!prefix_66; table_idx = table_walk(table_idx, mandatory_prefix, &kind); } // Then, walk through ModR/M-encoded opcode extensions. if (kind == ENTRY_TABLE16 && LIKELY(off < len)) { unsigned isreg = (buffer[off] & 0xc0) == 0xc0 ? 8 : 0; table_idx = table_walk(table_idx, ((buffer[off] >> 3) & 7) | isreg, &kind); if (kind == ENTRY_TABLE8E) table_idx = table_walk(table_idx, buffer[off] & 7, &kind); } // For VEX prefix, we have to distinguish between VEX.W and VEX.L which may // be part of the opcode. if (UNLIKELY(kind == ENTRY_TABLE_VEX)) { uint8_t index = 0; index |= prefix_rex & PREFIX_REXW ? (1 << 0) : 0; index |= prefix_rex & PREFIX_VEXL ? (1 << 1) : 0; // When EVEX.L'L is the rounding mode, the instruction must not have // L'L constraints. index |= (prefix_evex >> 4) & 6; table_idx = table_walk(table_idx, index, &kind); } if (UNLIKELY(kind != ENTRY_INSTR)) return kind == 0 ? FD_ERR_UD : FD_ERR_PARTIAL; static _Alignas(16) const struct InstrDesc descs[] = { #define FD_DECODE_TABLE_DESCS #include #undef FD_DECODE_TABLE_DESCS }; const struct InstrDesc* desc = &descs[table_idx >> 2]; instr->type = desc->type; instr->addrsz = addr_size; instr->flags = prefix_rep == 2 ? FD_FLAG_REP : prefix_rep == 3 ? FD_FLAG_REPNZ : 0; if (mode == DECODE_64) instr->flags |= FD_FLAG_64; instr->address = address; for (unsigned i = 0; i < sizeof(instr->operands) / sizeof(FdOp); i++) instr->operands[i] = (FdOp) {0}; if (DESC_MODRM(desc) && UNLIKELY(off++ >= len)) return FD_ERR_PARTIAL; unsigned op_byte = buffer[off - 1] | (!DESC_MODRM(desc) ? 0xc0 : 0); unsigned vexl = !!(prefix_rex & PREFIX_VEXL); if (UNLIKELY(prefix_evex)) { // VSIB inst (gather/scatter) without mask register or w/EVEX.z is UD if (DESC_VSIB(desc) && (!(prefix_evex & 0x07) || (prefix_evex & 0x80))) return FD_ERR_UD; // Inst doesn't support masking, so EVEX.z or EVEX.aaa is UD if (!DESC_EVEX_MASK(desc) && (prefix_evex & 0x87)) return FD_ERR_UD; vexl = (prefix_evex >> 5) & 3; // Cases for SAE/RC (reg operands only): // - ER supported -> all ok // - SAE supported -> assume L'L is RC, but ignored (undocumented) // - Neither supported -> b == 0 if ((prefix_evex & 0x10) && (op_byte & 0xc0) == 0xc0) { // EVEX.b+reg if (!DESC_EVEX_SAE(desc)) return FD_ERR_UD; vexl = 2; if (DESC_EVEX_ER(desc)) instr->evex = prefix_evex; else instr->evex = (prefix_evex & 0x87) | 0x60; // set RC, clear B } else { if (UNLIKELY(vexl == 3)) // EVEX.L'L == 11b is UD return FD_ERR_UD; // Update V' to REX.W, s.t. broadcast size is exposed unsigned rexw = prefix_rex & PREFIX_REXW ? 0x08 : 0x00; instr->evex = (prefix_evex & 0x87) | rexw; } } else { instr->evex = 0; } unsigned op_size; unsigned op_size_alt = 0; if (!(DESC_OPSIZE(desc) & 4)) { if (DESC_OPSIZE(desc) == 1) op_size = 1; else if (mode == DECODE_64) op_size = ((prefix_rex & PREFIX_REXW) || DESC_OPSIZE(desc) == 3) ? 4 : UNLIKELY(prefix_66 && !DESC_IGN66(desc)) ? 2 : DESC_OPSIZE(desc) ? 4 : 3; else op_size = UNLIKELY(prefix_66 && !DESC_IGN66(desc)) ? 2 : 3; } else { op_size = 5 + vexl; op_size_alt = op_size - (DESC_OPSIZE(desc) & 3); } uint8_t operand_sizes[4] = { DESC_SIZE_FIX1(desc), DESC_SIZE_FIX2(desc) + 1, op_size, op_size_alt }; if (UNLIKELY(instr->type == FDI_MOV_CR || instr->type == FDI_MOV_DR)) { unsigned modreg = (op_byte >> 3) & 0x7; unsigned modrm = op_byte & 0x7; FdOp* op_modreg = &instr->operands[DESC_MODREG_IDX(desc)]; op_modreg->type = FD_OT_REG; op_modreg->size = op_size; op_modreg->reg = modreg | (prefix_rex & PREFIX_REXR ? 8 : 0); op_modreg->misc = instr->type == FDI_MOV_CR ? FD_RT_CR : FD_RT_DR; if (instr->type == FDI_MOV_CR && (~0x011d >> op_modreg->reg) & 1) return FD_ERR_UD; else if (instr->type == FDI_MOV_DR && prefix_rex & PREFIX_REXR) return FD_ERR_UD; FdOp* op_modrm = &instr->operands[DESC_MODRM_IDX(desc)]; op_modrm->type = FD_OT_REG; op_modrm->size = op_size; op_modrm->reg = modrm | (prefix_rex & PREFIX_REXB ? 8 : 0); op_modrm->misc = FD_RT_GPL; goto skip_modrm; } if (DESC_HAS_MODREG(desc)) { FdOp* op_modreg = &instr->operands[DESC_MODREG_IDX(desc)]; unsigned reg_idx = (op_byte & 0x38) >> 3; unsigned reg_ty = DESC_REGTY_MODREG(desc); // GPL VEC MSK - MMX SEG op_modreg->misc = (0350761 >> (3 * reg_ty)) & 0x7; if (LIKELY(!(reg_ty & 4))) reg_idx += prefix_rex & PREFIX_REXR ? 8 : 0; if (reg_ty == 2 && reg_idx >= 8) // REXR can't be set in 32-bit mode return FD_ERR_UD; if (reg_ty == 2 && (prefix_evex & 0x80)) // EVEX.z with mask as dest return FD_ERR_UD; if (reg_ty == 1) // PREFIX_REXRR ignored above in 32-bit mode reg_idx += prefix_rex & PREFIX_REXRR ? 16 : 0; else if (prefix_rex & PREFIX_REXRR) return FD_ERR_UD; op_modreg->type = FD_OT_REG; op_modreg->size = operand_sizes[(desc->operand_sizes >> 2) & 3]; op_modreg->reg = reg_idx; } if (DESC_HAS_MODRM(desc)) { FdOp* op_modrm = &instr->operands[DESC_MODRM_IDX(desc)]; op_modrm->size = operand_sizes[(desc->operand_sizes >> 0) & 3]; unsigned mod = op_byte & 0xc0; unsigned rm = op_byte & 0x07; if (mod == 0xc0) { uint8_t reg_idx = rm; unsigned reg_ty = DESC_REGTY_MODRM(desc); // GPL VEC - - MMX FPU MSK op_modrm->misc = (07450061 >> (3 * reg_ty)) & 0x7; if (LIKELY(!(reg_ty & 4))) reg_idx += prefix_rex & PREFIX_REXB ? 8 : 0; if (prefix_evex && reg_ty == 1) // vector registers only reg_idx += prefix_rex & PREFIX_REXX ? 16 : 0; op_modrm->type = FD_OT_REG; op_modrm->reg = reg_idx; } else { bool vsib = UNLIKELY(DESC_VSIB(desc)); // SIB byte uint8_t base = rm; if (rm == 4) { if (UNLIKELY(off >= len)) return FD_ERR_PARTIAL; uint8_t sib = buffer[off++]; unsigned scale = sib & 0xc0; unsigned idx = (sib & 0x38) >> 3; idx += prefix_rex & PREFIX_REXX ? 8 : 0; base = sib & 0x07; if (!vsib && idx == 4) idx = FD_REG_NONE; if (vsib) { idx |= vex_operand & 0x10; vex_operand &= 0xf; } op_modrm->misc = scale | idx; } else { // VSIB must have a memory operand with SIB byte. if (vsib) return FD_ERR_UD; op_modrm->misc = FD_REG_NONE; } // EVEX.z for memory destination operand is UD. if (DESC_MODRM_IDX(desc) == 0 && (prefix_evex & 0x80)) return FD_ERR_UD; // EVEX.b for memory-operand without broadcast support is UD. unsigned scale = op_modrm->size - 1; if (UNLIKELY(prefix_evex & 0x10)) { if (UNLIKELY(!DESC_EVEX_BCST(desc))) return FD_ERR_UD; scale = prefix_rex & PREFIX_REXW ? 3 : 2; op_modrm->type = FD_OT_MEMBCST; } else { op_modrm->type = FD_OT_MEM; } // RIP-relative addressing only if SIB-byte is absent if (mod == 0 && rm == 5 && mode == DECODE_64) op_modrm->reg = FD_REG_IP; else if (mod == 0 && base == 5) op_modrm->reg = FD_REG_NONE; else op_modrm->reg = base + (prefix_rex & PREFIX_REXB ? 8 : 0); if (mod == 0x40) { if (UNLIKELY(off + 1 > len)) return FD_ERR_PARTIAL; instr->disp = (int8_t) LOAD_LE_1(&buffer[off]); if (prefix_evex) instr->disp <<= scale; off += 1; } else if (mod == 0x80 || (mod == 0 && base == 5)) { if (UNLIKELY(off + 4 > len)) return FD_ERR_PARTIAL; instr->disp = (int32_t) LOAD_LE_4(&buffer[off]); off += 4; } else { instr->disp = 0; } } } if (UNLIKELY(DESC_HAS_VEXREG(desc))) { // Without VEX prefix, this encodes an implicit register FdOp* operand = &instr->operands[DESC_VEXREG_IDX(desc)]; operand->type = FD_OT_REG; operand->size = operand_sizes[(desc->operand_sizes >> 4) & 3]; if (mode == DECODE_32) vex_operand &= 0x7; // Note: 32-bit will never UD here. EVEX.V' is caught above already. // Note: UD if > 16 for non-VEC. No EVEX-encoded instruction uses // EVEX.vvvv to refer to non-vector registers. Verified in parseinstrs. operand->reg = vex_operand | DESC_ZEROREG_VAL(desc); unsigned reg_ty = DESC_REGTY_VEXREG(desc); // GPL VEC MSK FPU // In 64-bit mode: UD if FD_RT_MASK and vex_operand&8 != 0 if (reg_ty == 2 && vex_operand >= 8) return FD_ERR_UD; operand->misc = (04761 >> (3 * reg_ty)) & 0x7; } else if (vex_operand != 0) { // TODO: bit 3 ignored in 32-bit mode? unverified return FD_ERR_UD; } uint32_t imm_control = DESC_IMM_CONTROL(desc); if (UNLIKELY(imm_control == 1)) { // 1 = immediate constant 1, used for shifts FdOp* operand = &instr->operands[DESC_IMM_IDX(desc)]; operand->type = FD_OT_IMM; operand->size = 1; instr->imm = 1; } else if (UNLIKELY(imm_control == 2)) { // 2 = memory, address-sized, used for mov with moffs operand FdOp* operand = &instr->operands[DESC_IMM_IDX(desc)]; operand->type = FD_OT_MEM; operand->size = op_size; operand->reg = FD_REG_NONE; operand->misc = FD_REG_NONE; int moffsz = 1 << addr_size; if (UNLIKELY(off + moffsz > len)) return FD_ERR_PARTIAL; if (moffsz == 2) instr->disp = LOAD_LE_2(&buffer[off]); if (moffsz == 4) instr->disp = LOAD_LE_4(&buffer[off]); if (LIKELY(moffsz == 8)) instr->disp = LOAD_LE_8(&buffer[off]); off += moffsz; } else if (UNLIKELY(imm_control == 3)) { // 3 = register in imm8[7:4], used for RVMR encoding with VBLENDVP[SD] FdOp* operand = &instr->operands[DESC_IMM_IDX(desc)]; operand->type = FD_OT_REG; operand->size = op_size; operand->misc = FD_RT_VEC; if (UNLIKELY(off + 1 > len)) return FD_ERR_PARTIAL; uint8_t reg = (uint8_t) LOAD_LE_1(&buffer[off]); off += 1; if (mode == DECODE_32) reg &= 0x7f; operand->reg = reg >> 4; instr->imm = reg & 0x0f; } else if (imm_control != 0) { // 4/5 = immediate, operand-sized/8 bit // 6/7 = offset, operand-sized/8 bit (used for jumps/calls) int imm_byte = imm_control & 1; int imm_offset = imm_control & 2; FdOp* operand = &instr->operands[DESC_IMM_IDX(desc)]; operand->type = FD_OT_IMM; if (imm_byte) { if (UNLIKELY(off + 1 > len)) return FD_ERR_PARTIAL; instr->imm = (int8_t) LOAD_LE_1(&buffer[off++]); operand->size = desc->operand_sizes & 0x40 ? 1 : op_size; } else { operand->size = operand_sizes[(desc->operand_sizes >> 6) & 3]; uint8_t imm_size; if (UNLIKELY(instr->type == FDI_RET || instr->type == FDI_RETF || instr->type == FDI_SSE_EXTRQ || instr->type == FDI_SSE_INSERTQ)) imm_size = 2; else if (UNLIKELY(instr->type == FDI_JMPF || instr->type == FDI_CALLF)) imm_size = (1 << op_size >> 1) + 2; else if (UNLIKELY(instr->type == FDI_ENTER)) imm_size = 3; else if (instr->type == FDI_MOVABS) imm_size = (1 << op_size >> 1); else imm_size = op_size == 2 ? 2 : 4; if (UNLIKELY(off + imm_size > len)) return FD_ERR_PARTIAL; if (imm_size == 2) instr->imm = (int16_t) LOAD_LE_2(&buffer[off]); else if (imm_size == 3) instr->imm = LOAD_LE_3(&buffer[off]); else if (imm_size == 4) instr->imm = (int32_t) LOAD_LE_4(&buffer[off]); else if (imm_size == 6) instr->imm = LOAD_LE_4(&buffer[off]) | LOAD_LE_2(&buffer[off+4]) << 32; else if (imm_size == 8) instr->imm = (int64_t) LOAD_LE_8(&buffer[off]); off += imm_size; } if (imm_offset) { if (instr->address != 0) instr->imm += instr->address + off; else operand->type = FD_OT_OFF; } } if (instr->type == FDI_XCHG_NOP) { // Only 4890, 90, and 6690 are true NOPs. if (instr->operands[0].reg == 0 && instr->operands[1].reg == 0) { instr->operands[0].type = FD_OT_NONE; instr->operands[1].type = FD_OT_NONE; instr->type = FDI_NOP; } else { instr->type = FDI_XCHG; } } if (UNLIKELY(instr->type == FDI_3DNOW)) { unsigned opc3dn = instr->imm; if (opc3dn & 0x40) return FD_ERR_UD; uint64_t msk = opc3dn & 0x80 ? 0x88d144d144d14400 : 0x30003000; if (!(msk >> (opc3dn & 0x3f) & 1)) return FD_ERR_UD; } skip_modrm: if (UNLIKELY(prefix_lock)) { if (!DESC_LOCK(desc) || instr->operands[0].type != FD_OT_MEM) return FD_ERR_UD; instr->flags |= FD_FLAG_LOCK; } if (UNLIKELY(op_size == 1 || instr->type == FDI_MOVSX || instr->type == FDI_MOVZX)) { if (!(prefix_rex & PREFIX_REX)) { for (int i = 0; i < 2; i++) { FdOp* operand = &instr->operands[i]; if (operand->type == FD_OT_NONE) break; if (operand->type == FD_OT_REG && operand->misc == FD_RT_GPL && operand->size == 1 && operand->reg >= 4) operand->misc = FD_RT_GPH; } } } instr->size = off; instr->operandsz = DESC_INSTR_WIDTH(desc) ? op_size - 1 : 0; return off; }